3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00

extract monomial iterators to a separate file

Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
Lev 2019-01-12 01:31:21 -08:00 committed by Lev Nachmanson
parent d223f47526
commit 466586bf22
2 changed files with 115 additions and 109 deletions

View file

@ -0,0 +1,111 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
namespace nla {
struct const_iterator_equiv_mon {
// fields
vector<const unsigned_vector*> m_same_abs_vals;
vector<unsigned_vector::const_iterator> m_its;
bool m_done;
std::function<unsigned (const unsigned_vector&)> m_find_monomial;
// constructor for begin()
const_iterator_equiv_mon(vector<const unsigned_vector*> abs_vals,
std::function<unsigned (const unsigned_vector&)> find_monomial)
: m_same_abs_vals(abs_vals),
m_done(false),
m_find_monomial(find_monomial) {
for (auto it: abs_vals){
m_its.push_back(it->begin());
}
}
// constructor for end()
const_iterator_equiv_mon() : m_done(true) {}
//typedefs
typedef const_iterator_equiv_mon self_type;
typedef unsigned value_type;
typedef unsigned reference;
typedef int difference_type;
typedef std::forward_iterator_tag iterator_category;
void advance() {
if (m_done)
return;
unsigned k = 0;
for (; k < m_its.size(); k++) {
auto & it = m_its[k];
it++;
const auto & evars = *(m_same_abs_vals[k]);
if (it == evars.end()) {
it = evars.begin();
} else {
break;
}
}
if (k == m_its.size()) {
m_done = true;
}
}
unsigned_vector get_key() const {
unsigned_vector r;
for(const auto& it : m_its){
r.push_back(*it);
}
std::sort(r.begin(), r.end());
return r;
}
self_type operator++() {self_type i = *this; operator++(1); return i;}
self_type operator++(int) { advance(); return *this; }
bool operator==(const self_type &other) const { return m_done == other.m_done;}
bool operator!=(const self_type &other) const { return ! (*this == other); }
reference operator*() const {
return m_find_monomial(get_key());
}
};
struct equiv_monomials {
const monomial & m_mon;
std::function<const unsigned_vector*(lpvar)> m_abs_eq_vars;
std::function<unsigned (const unsigned_vector&)> m_find_monomial;
equiv_monomials(const monomial & m,
std::function<const unsigned_vector*(lpvar)> abs_eq_vars,
std::function<unsigned (const unsigned_vector&)> find_monomial) :
m_mon(m),
m_abs_eq_vars(abs_eq_vars),
m_find_monomial(find_monomial) {}
vector<const unsigned_vector*> vars_eqs() const {
vector<const unsigned_vector*> r;
for(lpvar j : m_mon.vars()) {
r.push_back(m_abs_eq_vars(j));
}
return r;
}
const_iterator_equiv_mon begin() const {
return const_iterator_equiv_mon(vars_eqs(), m_find_monomial);
}
const_iterator_equiv_mon end() const {
return const_iterator_equiv_mon();
}
};
} // end of namespace nla

View file

@ -24,14 +24,12 @@
#include "util/lp/vars_equivalence.h"
#include "util/lp/factorization.h"
#include "util/lp/rooted_mons.h"
#include "util/lp/equiv_monomials.h"
namespace nla {
typedef lp::lconstraint_kind llc;
struct solver::imp {
typedef lp::lar_base_constraint lpcon;
//fields
vars_equivalence m_vars_equivalence;
vector<monomial> m_monomials;
@ -49,100 +47,6 @@ struct solver::imp {
unsigned_vector m_to_refine;
std::unordered_map<unsigned_vector, unsigned, hash_svector> m_mkeys; // the key is the sorted vars of a monomial
struct const_iterator_equiv_mon {
// fields
vector<const unsigned_vector*> m_same_abs_vals;
vector<unsigned_vector::const_iterator> m_its;
bool m_done;
const imp * m_imp;
// constructor for begin()
const_iterator_equiv_mon(vector<const unsigned_vector*> abs_vals, const imp* i)
: m_same_abs_vals(abs_vals),
m_done(false),
m_imp(i) {
for (auto it: abs_vals){
m_its.push_back(it->begin());
}
}
// constructor for end()
const_iterator_equiv_mon() : m_done(true) {}
//typedefs
typedef const_iterator_equiv_mon self_type;
typedef unsigned value_type;
typedef unsigned reference;
typedef int difference_type;
typedef std::forward_iterator_tag iterator_category;
void advance() {
if (m_done)
return;
unsigned k = 0;
for (; k < m_its.size(); k++) {
auto & it = m_its[k];
it++;
const auto & evars = *(m_same_abs_vals[k]);
if (it == evars.end()) {
it = evars.begin();
} else {
break;
}
}
if (k == m_its.size()) {
m_done = true;
}
}
unsigned_vector get_key() const {
unsigned_vector r;
for(const auto& it : m_its){
r.push_back(*it);
}
std::sort(r.begin(), r.end());
TRACE("nla_solver", tout << "r = "; m_imp->print_product_with_vars(r, tout););
return r;
}
unsigned get_monomial() const {
return m_imp->find_monomial(get_key());
}
self_type operator++() {self_type i = *this; operator++(1); return i;}
self_type operator++(int) { advance(); return *this; }
bool operator==(const self_type &other) const { return m_done == other.m_done;}
bool operator!=(const self_type &other) const { return ! (*this == other); }
reference operator*() const {
unsigned i = get_monomial();
TRACE("nla_solver",
if (static_cast<int>(i) != -1)
m_imp->print_monomial_with_vars(m_imp->m_monomials[i], tout);
else
tout << "not found";);
return i;
}
};
struct equiv_monomials {
const monomial & m_mon;
const imp& m_imp;
equiv_monomials(const monomial & m, const imp& i) : m_mon(m), m_imp(i) {}
vector<const unsigned_vector*> vars_eqs() const {
vector<const unsigned_vector*> r;
for(lpvar j : m_mon.vars()) {
r.push_back(&m_imp.abs_eq_vars(j));
}
return r;
}
const_iterator_equiv_mon begin() const {
return const_iterator_equiv_mon(vars_eqs(), &m_imp);
}
const_iterator_equiv_mon end() const {
return const_iterator_equiv_mon();
}
};
unsigned find_monomial(const unsigned_vector& k) const {
TRACE("nla_solver", tout << "k = "; print_product_with_vars(k, tout););
@ -257,7 +161,6 @@ struct solver::imp {
m_monomials_counts.push_back(m_monomials.size());
}
void deregister_monomial_from_rooted_monomials (const monomial & m, unsigned i){
rational sign = rational(1);
svector<lpvar> vars = reduce_monomial_to_rooted(m.vars(), sign);
@ -301,16 +204,6 @@ struct solver::imp {
return mon_value_by_vars(m) == m_lar_solver.get_column_value_rational(m.var());
}
/**
* \brief <here we have two monomials, i_mon and other_m, examined for "sign" equivalence>
*/
bool values_are_different(lpvar j, rational const& sign, lpvar k) const {
SASSERT(sign == 1 || sign == -1);
return sign * m_lar_solver.get_column_value(j) != m_lar_solver.get_column_value(k);
}
void explain(const monomial& m) const {
m_vars_equivalence.explain(m, *m_expl);
}
@ -744,7 +637,9 @@ struct solver::imp {
bool basic_sign_lemma_on_mon(unsigned i){
TRACE("nla_solver", tout << "i = " << i << ", mon = "; print_monomial_with_vars(m_monomials[i], tout););
const monomial& m = m_monomials[i];
for (unsigned n : equiv_monomials(m, *this)) {
for (unsigned n : equiv_monomials(m, [this](lpvar j) {return &abs_eq_vars(j);},
[this](const unsigned_vector& key) {return find_monomial(key);})
) {
if (n == static_cast<unsigned>(-1) || n == i) continue;
if (basic_sign_lemma_on_two_monomials(m_monomials[i], m_monomials[n]))
return true;