mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 03:32:28 +00:00 
			
		
		
		
	add finite sets to datatype recursion, delay initialize finite_set plugin, fix bugs in are_distinct and equality simplification
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									d847a28589
								
							
						
					
					
						commit
						4630373a97
					
				
					 9 changed files with 297 additions and 72 deletions
				
			
		|  | @ -26,6 +26,19 @@ Revision History: | |||
| 
 | ||||
| finite_set_decl_plugin::finite_set_decl_plugin(): | ||||
|     m_init(false) { | ||||
|     m_names.resize(LAST_FINITE_SET_OP, nullptr); | ||||
|     m_names[OP_FINITE_SET_EMPTY] = "set.empty "; | ||||
|     m_names[OP_FINITE_SET_SINGLETON] = "set.singleton"; | ||||
|     m_names[OP_FINITE_SET_UNION] = "set.union"; | ||||
|     m_names[OP_FINITE_SET_INTERSECT] = "set.intersect"; | ||||
|     m_names[OP_FINITE_SET_DIFFERENCE] = "set.difference"; | ||||
|     m_names[OP_FINITE_SET_IN] = "set.in"; | ||||
|     m_names[OP_FINITE_SET_SIZE] = "set.size"; | ||||
|     m_names[OP_FINITE_SET_SUBSET] = "set.subset"; | ||||
|     m_names[OP_FINITE_SET_MAP] = "set.map"; | ||||
|     m_names[OP_FINITE_SET_FILTER] = "set.filter"; | ||||
|     m_names[OP_FINITE_SET_RANGE] = "set.range"; | ||||
|     m_names[OP_FINITE_SET_EXT] = "set.diff"; | ||||
| } | ||||
| 
 | ||||
| finite_set_decl_plugin::~finite_set_decl_plugin() { | ||||
|  | @ -59,18 +72,18 @@ void finite_set_decl_plugin::init() { | |||
|     sort* intintT[2] = { intT, intT }; | ||||
|      | ||||
|     m_sigs.resize(LAST_FINITE_SET_OP); | ||||
|     m_sigs[OP_FINITE_SET_EMPTY]      = alloc(polymorphism::psig, m, "set.empty",      1, 0, nullptr, setA); | ||||
|     m_sigs[OP_FINITE_SET_SINGLETON]  = alloc(polymorphism::psig, m, "set.singleton",  1, 1, &A, setA); | ||||
|     m_sigs[OP_FINITE_SET_UNION]      = alloc(polymorphism::psig, m, "set.union",      1, 2, setAsetA, setA); | ||||
|     m_sigs[OP_FINITE_SET_INTERSECT]  = alloc(polymorphism::psig, m, "set.intersect",  1, 2, setAsetA, setA); | ||||
|     m_sigs[OP_FINITE_SET_DIFFERENCE]  = alloc(polymorphism::psig, m, "set.difference", 1, 2, setAsetA, setA); | ||||
|     m_sigs[OP_FINITE_SET_IN]         = alloc(polymorphism::psig, m, "set.in",         1, 2, AsetA, boolT); | ||||
|     m_sigs[OP_FINITE_SET_SIZE]       = alloc(polymorphism::psig, m, "set.size",       1, 1, &setA, intT); | ||||
|     m_sigs[OP_FINITE_SET_SUBSET]     = alloc(polymorphism::psig, m, "set.subset",     1, 2, setAsetA, boolT); | ||||
|     m_sigs[OP_FINITE_SET_MAP]        = alloc(polymorphism::psig, m, "set.map",        2, 2, arrABsetA, setB); | ||||
|     m_sigs[OP_FINITE_SET_FILTER]     = alloc(polymorphism::psig, m, "set.filter",     1, 2, arrABoolsetA, setA); | ||||
|     m_sigs[OP_FINITE_SET_RANGE]      = alloc(polymorphism::psig, m, "set.range",      0, 2, intintT, setInt); | ||||
|     m_sigs[OP_FINITE_SET_EXT]       = alloc(polymorphism::psig, m, "set.diff", 1, 2, setAsetA, A); | ||||
|     m_sigs[OP_FINITE_SET_EMPTY]      = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EMPTY],      1, 0, nullptr, setA); | ||||
|     m_sigs[OP_FINITE_SET_SINGLETON]  = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_SINGLETON], 1, 1, &A, setA); | ||||
|     m_sigs[OP_FINITE_SET_UNION]      = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_UNION], 1, 2, setAsetA, setA); | ||||
|     m_sigs[OP_FINITE_SET_INTERSECT]  = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_INTERSECT], 1, 2, setAsetA, setA); | ||||
|     m_sigs[OP_FINITE_SET_DIFFERENCE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_DIFFERENCE], 1, 2, setAsetA, setA); | ||||
|     m_sigs[OP_FINITE_SET_IN]         = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_IN], 1, 2, AsetA, boolT); | ||||
|     m_sigs[OP_FINITE_SET_SIZE]       = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_SIZE], 1, 1, &setA, intT); | ||||
|     m_sigs[OP_FINITE_SET_SUBSET]     = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_SUBSET], 1, 2, setAsetA, boolT); | ||||
|     m_sigs[OP_FINITE_SET_MAP]        = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_MAP], 2, 2, arrABsetA, setB); | ||||
|     m_sigs[OP_FINITE_SET_FILTER]     = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_FILTER], 1, 2, arrABoolsetA, setA); | ||||
|     m_sigs[OP_FINITE_SET_RANGE]      = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_RANGE],      0, 2, intintT, setInt); | ||||
|     m_sigs[OP_FINITE_SET_EXT]        = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EXT], 1, 2, setAsetA, A); | ||||
| //    m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A);
 | ||||
| } | ||||
| 
 | ||||
|  | @ -187,11 +200,9 @@ func_decl * finite_set_decl_plugin::mk_func_decl(decl_kind k, unsigned num_param | |||
| } | ||||
| 
 | ||||
| void finite_set_decl_plugin::get_op_names(svector<builtin_name>& op_names, symbol const & logic) { | ||||
|     init(); | ||||
|     for (unsigned i = 0; i < m_sigs.size(); ++i) { | ||||
|         if (m_sigs[i]) | ||||
|             op_names.push_back(builtin_name(m_sigs[i]->m_name.str(), i)); | ||||
|     } | ||||
|     for (unsigned i = 0; i < m_names.size(); ++i)  | ||||
|         if (m_names[i]) | ||||
|             op_names.push_back(builtin_name(std::string(m_names[i]), i));     | ||||
| } | ||||
| 
 | ||||
| void finite_set_decl_plugin::get_sort_names(svector<builtin_name>& sort_names, symbol const & logic) { | ||||
|  | @ -282,8 +293,10 @@ bool finite_set_decl_plugin::is_value(app * e) const { | |||
| 
 | ||||
| bool finite_set_decl_plugin::is_unique_value(app* e) const { | ||||
|     // Empty set is a value
 | ||||
|     // A singleton of a unique value is tagged as unique
 | ||||
|     // ranges are not considered unique even if the bounds are values
 | ||||
|     return is_app_of(e, m_family_id, OP_FINITE_SET_EMPTY) || | ||||
|            (is_app_of(e, m_family_id, OP_FINITE_SET_SINGLETON) && is_unique_value(to_app(e->get_arg(0)))); | ||||
|            (is_app_of(e, m_family_id, OP_FINITE_SET_SINGLETON) && m_manager->is_unique_value(to_app(e->get_arg(0)))); | ||||
| } | ||||
| 
 | ||||
| bool finite_set_decl_plugin::are_distinct(app* e1, app* e2) const { | ||||
|  | @ -294,8 +307,9 @@ bool finite_set_decl_plugin::are_distinct(app* e1, app* e2) const { | |||
|         return true; | ||||
|     if (r.is_singleton(e1) && r.is_empty(e2)) | ||||
|         return true; | ||||
|     if(r.is_singleton(e1) && r.is_singleton(e2)) | ||||
|         return m_manager->are_distinct(e1, e2); | ||||
|     expr *x = nullptr, *y = nullptr; | ||||
|     if(r.is_singleton(e1, x) && r.is_singleton(e2, y)) | ||||
|         return m_manager->are_distinct(x, y); | ||||
|      | ||||
|     // TODO: could be extended to cases where we can prove the sets are different by containing one element
 | ||||
|     // that the other doesn't contain. Such as (union (singleton a) (singleton b)) and (singleton c) where c is different from a, b.
 | ||||
|  |  | |||
|  | @ -54,7 +54,8 @@ enum finite_set_op_kind { | |||
| 
 | ||||
| class finite_set_decl_plugin : public decl_plugin { | ||||
|     ptr_vector<polymorphism::psig>   m_sigs; | ||||
|     bool                             m_init; | ||||
|     svector<char const*>             m_names; | ||||
|     bool                             m_init = false; | ||||
| 
 | ||||
|     void init(); | ||||
|     func_decl * mk_empty(sort* set_sort); | ||||
|  |  | |||
|  | @ -17,6 +17,7 @@ Author: | |||
| 
 | ||||
| #include "ast/rewriter/finite_set_rewriter.h" | ||||
| #include "ast/arith_decl_plugin.h" | ||||
| #include "ast/ast_pp.h" | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) { | ||||
|     SASSERT(f->get_family_id() == get_fid()); | ||||
|  | @ -39,7 +40,6 @@ br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, exp | |||
|         SASSERT(num_args == 2); | ||||
|         return mk_in(args[0], args[1], result); | ||||
|     case OP_FINITE_SET_SIZE: | ||||
|         // Size is already in normal form, no simplifications
 | ||||
|         return mk_size(args[0], result); | ||||
|     default: | ||||
|         return BR_FAILED; | ||||
|  | @ -55,18 +55,18 @@ br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, | |||
|      | ||||
|     // Identity: set.union(x, empty) -> x or set.union(empty, x) -> x
 | ||||
|     if (num_args == 2) { | ||||
|         if (m_util.is_empty(args[0])) { | ||||
|         if (u.is_empty(args[0])) { | ||||
|             result = args[1]; | ||||
|             return BR_DONE; | ||||
|         } | ||||
|         if (m_util.is_empty(args[1])) { | ||||
|         if (u.is_empty(args[1])) { | ||||
|             result = args[0]; | ||||
|             return BR_DONE; | ||||
|         } | ||||
|          | ||||
|         // Absorption: set.union(x, set.intersect(x, y)) -> x
 | ||||
|         expr* a1, *a2; | ||||
|         if (m_util.is_intersect(args[1], a1, a2)) { | ||||
|         if (u.is_intersect(args[1], a1, a2)) { | ||||
|             if (args[0] == a1 || args[0] == a2) { | ||||
|                 result = args[0]; | ||||
|                 return BR_DONE; | ||||
|  | @ -74,7 +74,7 @@ br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, | |||
|         } | ||||
|          | ||||
|         // Absorption: set.union(set.intersect(x, y), x) -> x
 | ||||
|         if (m_util.is_intersect(args[0], a1, a2)) { | ||||
|         if (u.is_intersect(args[0], a1, a2)) { | ||||
|             if (args[1] == a1 || args[1] == a2) { | ||||
|                 result = args[1]; | ||||
|                 return BR_DONE; | ||||
|  | @ -94,18 +94,18 @@ br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * ar | |||
|      | ||||
|     // Annihilation: set.intersect(x, empty) -> empty or set.intersect(empty, x) -> empty
 | ||||
|     if (num_args == 2) { | ||||
|         if (m_util.is_empty(args[0])) { | ||||
|         if (u.is_empty(args[0])) { | ||||
|             result = args[0]; | ||||
|             return BR_DONE; | ||||
|         } | ||||
|         if (m_util.is_empty(args[1])) { | ||||
|         if (u.is_empty(args[1])) { | ||||
|             result = args[1]; | ||||
|             return BR_DONE; | ||||
|         } | ||||
|          | ||||
|         // Absorption: set.intersect(x, set.union(x, y)) -> x
 | ||||
|         expr* a1, *a2; | ||||
|         if (m_util.is_union(args[1], a1, a2)) { | ||||
|         if (u.is_union(args[1], a1, a2)) { | ||||
|             if (args[0] == a1 || args[0] == a2) { | ||||
|                 result = args[0]; | ||||
|                 return BR_DONE; | ||||
|  | @ -113,7 +113,7 @@ br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * ar | |||
|         } | ||||
|          | ||||
|         // Absorption: set.intersect(set.union(x, y), x) -> x
 | ||||
|         if (m_util.is_union(args[0], a1, a2)) { | ||||
|         if (u.is_union(args[0], a1, a2)) { | ||||
|             if (args[1] == a1 || args[1] == a2) { | ||||
|                 result = args[1]; | ||||
|                 return BR_DONE; | ||||
|  | @ -128,19 +128,19 @@ br_status finite_set_rewriter::mk_difference(expr * arg1, expr * arg2, expr_ref | |||
|     // set.difference(x, x) -> set.empty
 | ||||
|     if (arg1 == arg2) { | ||||
|         sort* set_sort = arg1->get_sort(); | ||||
|         SASSERT(m_util.is_finite_set(set_sort)); | ||||
|         result = m_util.mk_empty(set_sort); | ||||
|         SASSERT(u.is_finite_set(set_sort)); | ||||
|         result = u.mk_empty(set_sort); | ||||
|         return BR_DONE; | ||||
|     } | ||||
|      | ||||
|     // Identity: set.difference(x, empty) -> x
 | ||||
|     if (m_util.is_empty(arg2)) { | ||||
|     if (u.is_empty(arg2)) { | ||||
|         result = arg1; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|      | ||||
|     // Annihilation: set.difference(empty, x) -> empty
 | ||||
|     if (m_util.is_empty(arg1)) { | ||||
|     if (u.is_empty(arg1)) { | ||||
|         result = arg1; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|  | @ -156,20 +156,20 @@ br_status finite_set_rewriter::mk_subset(expr * arg1, expr * arg2, expr_ref & re | |||
|     } | ||||
|      | ||||
|     // set.subset(empty, x) -> true
 | ||||
|     if (m_util.is_empty(arg1)) { | ||||
|     if (u.is_empty(arg1)) { | ||||
|         result = m.mk_true(); | ||||
|         return BR_DONE; | ||||
|     } | ||||
|      | ||||
|     // set.subset(x, empty) -> x = empty
 | ||||
|     if (m_util.is_empty(arg2)) { | ||||
|     if (u.is_empty(arg2)) { | ||||
|         result = m.mk_eq(arg1, arg2); | ||||
|         return BR_REWRITE1; | ||||
|     } | ||||
|      | ||||
|     // General case: set.subset(x, y) -> set.intersect(x, y) = x
 | ||||
|     expr_ref intersect(m); | ||||
|     intersect = m_util.mk_intersect(arg1, arg2); | ||||
|     intersect = u.mk_intersect(arg1, arg2); | ||||
|     result = m.mk_eq(intersect, arg1); | ||||
|     return BR_REWRITE3; | ||||
| } | ||||
|  | @ -181,18 +181,18 @@ br_status finite_set_rewriter::mk_singleton(expr * arg, expr_ref & result) { | |||
| 
 | ||||
| br_status finite_set_rewriter::mk_size(expr * arg, expr_ref & result) { | ||||
|     arith_util a(m); | ||||
|     if (m_util.is_empty(arg)) { | ||||
|     if (u.is_empty(arg)) { | ||||
|         // size(empty) -> 0
 | ||||
|         result = a.mk_int(0); | ||||
|         return BR_DONE; | ||||
|     } | ||||
|     if (m_util.is_singleton(arg)) { | ||||
|     if (u.is_singleton(arg)) { | ||||
|         // size(singleton(x)) -> 1
 | ||||
|         result = a.mk_int(1); | ||||
|         return BR_DONE; | ||||
|     } | ||||
|     expr *lower, *upper; | ||||
|     if (m_util.is_range(arg, lower, upper)) { | ||||
|     if (u.is_range(arg, lower, upper)) { | ||||
|         // size(range(a, b)) -> b - a + 1
 | ||||
|         expr_ref size_expr(m); | ||||
|         size_expr = a.mk_add(a.mk_sub(upper, lower), a.mk_int(1)); | ||||
|  | @ -205,14 +205,14 @@ br_status finite_set_rewriter::mk_size(expr * arg, expr_ref & result) { | |||
| 
 | ||||
| br_status finite_set_rewriter::mk_in(expr * elem, expr * set, expr_ref & result) { | ||||
|     // set.in(x, empty) -> false
 | ||||
|     if (m_util.is_empty(set)) { | ||||
|     if (u.is_empty(set)) { | ||||
|         result = m.mk_false(); | ||||
|         return BR_DONE; | ||||
|     } | ||||
|      | ||||
|     // set.in(x, singleton(y)) checks
 | ||||
|     expr* singleton_elem; | ||||
|     if (m_util.is_singleton(set, singleton_elem)) { | ||||
|     if (u.is_singleton(set, singleton_elem)) { | ||||
|         // set.in(x, singleton(x)) -> true (when x is the same)
 | ||||
|         if (elem == singleton_elem) { | ||||
|             result = m.mk_true(); | ||||
|  | @ -222,6 +222,12 @@ br_status finite_set_rewriter::mk_in(expr * elem, expr * set, expr_ref & result) | |||
|         result = m.mk_eq(elem, singleton_elem); | ||||
|         return BR_REWRITE1; | ||||
|     } | ||||
|     expr *lo = nullptr, *hi = nullptr; | ||||
|     if (u.is_range(set, lo, hi)) { | ||||
|         arith_util a(m); | ||||
|         result = m.mk_and(a.mk_le(lo, elem), a.mk_le(elem, hi)); | ||||
|         return BR_REWRITE2; | ||||
|     } | ||||
|     // NB we don't rewrite (set.in x (set.union s t)) to (or (set.in x s) (set.in x t))
 | ||||
|     // because it creates two new sub-expressions. The expression (set.union s t) could
 | ||||
|     // be shared with other expressions so the net effect of this rewrite could be to create
 | ||||
|  | @ -248,18 +254,169 @@ br_status finite_set_rewriter::mk_in(expr * elem, expr * set, expr_ref & result) | |||
| * min({}) = {} | ||||
| * min([l..u]) = [l..u] u {} | ||||
| * min(s u t) =  | ||||
| *   let range_s u s1 = min(s) | ||||
| *   let range_t u t1 = min(t) | ||||
| *   if range_s < range_t:  | ||||
| *        range_s u (t u s1) | ||||
| *   if range_t < range_t: | ||||
| *        range_t u (s u t1) | ||||
| *   if range_t n range_s != {}: | ||||
| *        min(range_t, range_s) u the rest ... | ||||
| *   etc. | ||||
| *   let {x} u s1 = min(s) | ||||
| *   let {y} u t1 = min(t) | ||||
| *   if x = y then | ||||
| *        { x } u (s1 u t1) | ||||
| *   else  if x < y then  | ||||
| *        {x} u (s1 u ({y} u t1) | ||||
| *   else // x > y 
 | ||||
| *        {y} u (t1 u ({x} u s1) | ||||
| *    | ||||
| *  Handling ranges is TBD | ||||
| *  For proper range handling we have to change is_less on numeric singleton sets | ||||
| *  to use the numerical value, not the expression identifier. Then the ordering | ||||
| *  has to make all numeric values less than symbolic values. | ||||
| */ | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_eq_core(expr* a, expr* b, expr_ref& result) { | ||||
| bool finite_set_rewriter::is_less(expr *a, expr *b) { | ||||
|     return a->get_id() < b->get_id(); | ||||
| } | ||||
| 
 | ||||
| expr* finite_set_rewriter::mk_union(expr* a, expr* b) { | ||||
|     if (u.is_empty(a)) | ||||
|         return b; | ||||
|     if (u.is_empty(b)) | ||||
|         return a; | ||||
|     if (a == b) | ||||
|         return a; | ||||
|     return u.mk_union(a, b); | ||||
| } | ||||
| 
 | ||||
| expr* finite_set_rewriter::min(expr* e) { | ||||
|     if (m_is_min.is_marked(e)) | ||||
|         return e; | ||||
|     expr *a = nullptr, *b = nullptr; | ||||
|     if (u.is_union(e, a, b)) { | ||||
|         a = min(a); | ||||
|         b = min(b); | ||||
|         if (u.is_empty(a)) | ||||
|             return b; | ||||
|         if (u.is_empty(b)) | ||||
|             return a; | ||||
|         auto [x,a1] = get_min(a); | ||||
|         auto [y,b1] = get_min(b); | ||||
|         if (x == y) | ||||
|             a = mk_union(x, mk_union(a1, b1)); | ||||
|         else if (is_less(x, y)) | ||||
|             a = mk_union(x, mk_union(a1, b)); | ||||
|         else | ||||
|             a = mk_union(y, mk_union(a, b1)); | ||||
|         m_pinned.push_back(a); | ||||
|         m_is_min.mark(a); | ||||
|         return a; | ||||
|     } | ||||
|     if (u.is_intersect(e, a, b)) { | ||||
|         if (!from_unique_values(a) || !from_unique_values(b)) { | ||||
|             m_pinned.push_back(e); | ||||
|             m_is_min.mark(e); | ||||
|             return e; | ||||
|         } | ||||
|         while (true) { | ||||
|             a = min(a); | ||||
|             b = min(b); | ||||
|             if (u.is_empty(a)) | ||||
|                 return a; | ||||
|             if (u.is_empty(b)) | ||||
|                 return b; | ||||
|             auto [x, a1] = get_min(a); | ||||
|             auto [y, b1] = get_min(b); | ||||
|             if (x == y) { | ||||
|                 a = mk_union(x, u.mk_intersect(a1, b1)); | ||||
|                 m_pinned.push_back(a); | ||||
|                 m_is_min.mark(a); | ||||
|                 return a; | ||||
|             } | ||||
|             else if (is_less(x, y)) | ||||
|                 a = a1; | ||||
|             else | ||||
|                 b = b1; | ||||
|         } | ||||
|     } | ||||
|     if (u.is_difference(e, a, b)) { | ||||
|         if (!from_unique_values(a) || !from_unique_values(b)) { | ||||
|             m_pinned.push_back(e); | ||||
|             m_is_min.mark(e); | ||||
|             return e; | ||||
|         } | ||||
|         while (true) { | ||||
|             a = min(a); | ||||
|             b = min(b); | ||||
|             if (u.is_empty(a) || u.is_empty(b)) | ||||
|                 return a; | ||||
|             auto [x, a1] = get_min(a); | ||||
|             auto [y, b1] = get_min(b); | ||||
|             if (x == y) { | ||||
|                 a = a1; | ||||
|                 b = b1; | ||||
|             } | ||||
|             else if (is_less(x, y)) { | ||||
|                 a = mk_union(x, u.mk_difference(a1, b)); | ||||
|                 m_pinned.push_back(a); | ||||
|                 m_is_min.mark(a); | ||||
|                 return a; | ||||
|             } | ||||
|             else { | ||||
|                 b = b1; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|     // set.filter, set.map don't have decompositions
 | ||||
|     m_pinned.push_back(e); | ||||
|     m_is_min.mark(e); | ||||
|     return e; | ||||
| } | ||||
| 
 | ||||
| std::pair<expr*, expr*> finite_set_rewriter::get_min(expr* a) { | ||||
|     expr *x = nullptr, *y = nullptr; | ||||
|     if (u.is_union(a, x, y)) | ||||
|         return {x, y}; | ||||
|     auto empty = u.mk_empty(a->get_sort()); | ||||
|     m_pinned.push_back(empty); | ||||
|     return {a, empty}; | ||||
| } | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_eq_core(expr *a, expr *b, expr_ref &result) { | ||||
|     m_is_min.reset(); | ||||
|     m_pinned.reset(); | ||||
|     bool are_unique = true; | ||||
|     while (true) { | ||||
|         if (a == b) { | ||||
|             result = m.mk_true(); | ||||
|             return BR_DONE; | ||||
|         } | ||||
|         TRACE(finite_set, tout << mk_pp(a, m) << " == " << mk_pp(b, m) << "\n"); | ||||
|         a = min(a); | ||||
|         b = min(b); | ||||
|         auto [x, a1] = get_min(a); | ||||
|         auto [y, b1] = get_min(b); | ||||
| 
 | ||||
|         // only empty sets and singletons of unique values are unique.
 | ||||
|         // ranges are not counted as unique.
 | ||||
|         are_unique &= m.is_unique_value(x) && m.is_unique_value(y); | ||||
|         a = a1; | ||||
|         b = b1; | ||||
|         if (x == y) | ||||
|             continue; | ||||
| 
 | ||||
|         if (m.are_distinct(x, y) && are_unique) { | ||||
|             are_unique &= from_unique_values(a); | ||||
|             are_unique &= from_unique_values(b); | ||||
|             if (are_unique) { | ||||
|                 result = m.mk_false(); | ||||
|                 return BR_DONE; | ||||
|             } | ||||
|         } | ||||
|         return BR_FAILED; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| bool finite_set_rewriter::from_unique_values(expr *a) { | ||||
|     while (!u.is_empty(a)) { | ||||
|         auto [x, a1] = get_min(min(a)); | ||||
|         if (!m.is_unique_value(x)) | ||||
|             return false; | ||||
|         a = a1; | ||||
|     } | ||||
|     return true; | ||||
| } | ||||
|  |  | |||
|  | @ -35,7 +35,15 @@ where the signature is defined in finite_set_decl_plugin.h. | |||
| class finite_set_rewriter { | ||||
|     friend class finite_set_rewriter_test; | ||||
|     ast_manager &m; | ||||
|     finite_set_util  m_util; | ||||
|     finite_set_util  u; | ||||
|     expr_ref_vector m_pinned; | ||||
|     expr_mark m_is_min; | ||||
|      | ||||
|     expr * min(expr *a); | ||||
|     std::pair<expr *, expr *> get_min(expr *a); | ||||
|     bool is_less(expr *a, expr *b); | ||||
|     expr *mk_union(expr *a, expr *b); | ||||
|     bool from_unique_values(expr *a); | ||||
| 
 | ||||
|     // Rewrite rules for set operations
 | ||||
|     br_status mk_union(unsigned num_args, expr *const *args, expr_ref &result); | ||||
|  | @ -48,11 +56,11 @@ class finite_set_rewriter { | |||
| 
 | ||||
| public: | ||||
|     finite_set_rewriter(ast_manager & m, params_ref const & p = params_ref()): | ||||
|         m(m), m_util(m) { | ||||
|         m(m), u(m), m_pinned(m) { | ||||
|     } | ||||
|      | ||||
|     family_id get_fid() const { return m_util.get_family_id(); } | ||||
|     finite_set_util& util() { return m_util; } | ||||
|     family_id get_fid() const { return u.get_family_id(); } | ||||
|     finite_set_util& util() { return u; } | ||||
| 
 | ||||
|     br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result);    | ||||
| 
 | ||||
|  |  | |||
|  | @ -335,6 +335,7 @@ namespace smt { | |||
|             for (unsigned i = 0; i < num_args; i++) { | ||||
|                 enode * arg = e->get_arg(i); | ||||
|                 sort * s    = arg->get_sort(); | ||||
|                 sort *e_sort = nullptr; | ||||
|                 if (m_autil.is_array(s) && m_util.is_datatype(get_array_range(s))) { | ||||
|                     app_ref def(m_autil.mk_default(arg->get_expr()), m); | ||||
|                     if (!ctx.e_internalized(def)) { | ||||
|  | @ -342,6 +343,13 @@ namespace smt { | |||
|                     } | ||||
|                     arg = ctx.get_enode(def);        | ||||
|                 } | ||||
|                 if (m_fsutil.is_finite_set(s, e_sort) && m_util.is_datatype(e_sort)) { | ||||
|                     app_ref def(m_fsutil.mk_empty(s), m); | ||||
|                     if (!ctx.e_internalized(def)) { | ||||
|                         ctx.internalize(def, false); | ||||
|                     } | ||||
|                     arg = ctx.get_enode(def);       | ||||
|                 } | ||||
|                 if (!m_util.is_datatype(s) && !m_sutil.is_seq(s)) | ||||
|                     continue; | ||||
|                 if (is_attached_to_var(arg)) | ||||
|  | @ -532,8 +540,9 @@ namespace smt { | |||
|                 found = true; | ||||
|             } | ||||
|             sort * s = arg->get_sort(); | ||||
|             if (m_autil.is_array(s) && m_util.is_datatype(get_array_range(s))) { | ||||
|                 for (enode* aarg : get_array_args(arg)) { | ||||
|             sort *se = nullptr; | ||||
|             auto add_args = [&](ptr_vector<enode> const &args) { | ||||
|                 for (enode *aarg : args) { | ||||
|                     if (aarg->get_root() == child->get_root()) { | ||||
|                         if (aarg != child) { | ||||
|                             m_used_eqs.push_back(enode_pair(aarg, child)); | ||||
|  | @ -541,17 +550,16 @@ namespace smt { | |||
|                         found = true; | ||||
|                     } | ||||
|                 } | ||||
|             }; | ||||
|             if (m_autil.is_array(s) && m_util.is_datatype(get_array_range(s))) { | ||||
|                 add_args(get_array_args(arg)); | ||||
|             } | ||||
|             if (m_fsutil.is_finite_set(s, se) && m_util.is_datatype(se)) { | ||||
|                 add_args(get_finite_set_args(arg)); | ||||
|             } | ||||
|             sort* se = nullptr; | ||||
|             if (m_sutil.is_seq(s, se) && m_util.is_datatype(se)) { | ||||
|                 enode* sibling; | ||||
|                 for (enode* aarg : get_seq_args(arg, sibling)) { | ||||
|                     if (aarg->get_root() == child->get_root()) { | ||||
|                         if (aarg != child)  | ||||
|                             m_used_eqs.push_back(enode_pair(aarg, child)); | ||||
|                         found = true; | ||||
|                     } | ||||
|                 } | ||||
|                 enode *sibling = nullptr; | ||||
|                 add_args(get_seq_args(arg, sibling)); | ||||
|                 if (sibling && sibling != arg) | ||||
|                     m_used_eqs.push_back(enode_pair(arg, sibling)); | ||||
| 
 | ||||
|  | @ -640,6 +648,11 @@ namespace smt { | |||
|                         return true; | ||||
|                 } | ||||
|             } | ||||
|             else if (m_fsutil.is_finite_set(s, se) && m_util.is_datatype(se)) { | ||||
|                 for (enode *aarg : get_finite_set_args(arg)) | ||||
|                     if (process_arg(aarg)) | ||||
|                         return true; | ||||
|             } | ||||
|             else if (m_autil.is_array(s) && m_util.is_datatype(get_array_range(s))) { | ||||
|                 for (enode* aarg : get_array_args(arg))  | ||||
|                     if (process_arg(aarg)) | ||||
|  | @ -649,6 +662,33 @@ namespace smt { | |||
|         return false; | ||||
|     } | ||||
| 
 | ||||
|     ptr_vector<enode> const &theory_datatype::get_finite_set_args(enode *n) { | ||||
|         m_args.reset(); | ||||
|         m_todo.reset(); | ||||
|         auto add_todo = [&](enode *n) { | ||||
|             if (!n->is_marked()) { | ||||
|                 n->set_mark(); | ||||
|                 m_todo.push_back(n); | ||||
|             } | ||||
|         }; | ||||
|         add_todo(n); | ||||
| 
 | ||||
|         for (unsigned i = 0; i < m_todo.size(); ++i) { | ||||
|             enode *n = m_todo[i]; | ||||
|             expr *e = n->get_expr(); | ||||
|             if (m_fsutil.is_singleton(e)) | ||||
|                 m_args.push_back(n->get_arg(0)); | ||||
|             else if (m_fsutil.is_union(e)) | ||||
|                 for (auto k : enode::args(n)) | ||||
|                     add_todo(k); | ||||
|         } | ||||
|         for (enode *n : m_todo) | ||||
|             n->unset_mark(); | ||||
| 
 | ||||
|         return m_args; | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
|     ptr_vector<enode> const& theory_datatype::get_seq_args(enode* n, enode*& sibling) { | ||||
|         m_args.reset(); | ||||
|         m_todo.reset(); | ||||
|  | @ -762,6 +802,7 @@ namespace smt { | |||
|         m_util(m), | ||||
|         m_autil(m), | ||||
|         m_sutil(m), | ||||
|         m_fsutil(m), | ||||
|         m_find(*this) { | ||||
|     } | ||||
| 
 | ||||
|  |  | |||
|  | @ -21,6 +21,7 @@ Revision History: | |||
| #include "util/union_find.h" | ||||
| #include "ast/array_decl_plugin.h" | ||||
| #include "ast/seq_decl_plugin.h" | ||||
| #include "ast/finite_set_decl_plugin.h" | ||||
| #include "ast/datatype_decl_plugin.h" | ||||
| #include "model/datatype_factory.h" | ||||
| #include "smt/smt_theory.h" | ||||
|  | @ -48,6 +49,7 @@ namespace smt { | |||
|         datatype_util             m_util; | ||||
|         array_util                m_autil; | ||||
|         seq_util                  m_sutil; | ||||
|         finite_set_util           m_fsutil; | ||||
|         ptr_vector<var_data>      m_var_data; | ||||
|         th_union_find             m_find; | ||||
|         trail_stack               m_trail_stack; | ||||
|  | @ -95,6 +97,7 @@ namespace smt { | |||
|         ptr_vector<enode> m_args, m_todo; | ||||
|         ptr_vector<enode> const& get_array_args(enode* n); | ||||
|         ptr_vector<enode> const& get_seq_args(enode* n, enode*& sibling); | ||||
|         ptr_vector<enode> const& get_finite_set_args(enode *n); | ||||
| 
 | ||||
|         // class for managing state of final_check
 | ||||
|         class final_check_st { | ||||
|  |  | |||
|  | @ -690,6 +690,7 @@ namespace smt { | |||
|                 continue; | ||||
|             out << "watch[" << i << "] := " << m_clauses.watch[i] << "\n"; | ||||
|         } | ||||
|         m_cardinality_solver.display(out); | ||||
|     } | ||||
| 
 | ||||
|     void theory_finite_set::init_model(model_generator & mg) { | ||||
|  |  | |||
|  | @ -65,7 +65,7 @@ namespace smt { | |||
|         expr_ref_vector bs(m); | ||||
|         for (auto n : ns) { | ||||
|             std::ostringstream strm; | ||||
|             strm << enode_pp(n, ctx); | ||||
|             strm << "|" << enode_pp(n, ctx) << "|"; | ||||
|             symbol name = symbol(strm.str()); | ||||
|             expr_ref b(m.mk_const(name, m.mk_bool_sort()), m); | ||||
|             bs.push_back(b); | ||||
|  | @ -401,7 +401,7 @@ namespace smt { | |||
|         return false; | ||||
|     } | ||||
| 
 | ||||
|     std::ostream& theory_finite_set_size::display(std::ostream& out) { | ||||
|     std::ostream& theory_finite_set_size::display(std::ostream& out) const { | ||||
|         if (m_solver) | ||||
|             m_solver->display(out); | ||||
|         return out; | ||||
|  |  | |||
|  | @ -68,6 +68,6 @@ namespace smt { | |||
|         void add_theory_assumptions(expr_ref_vector &assumptions);  | ||||
|         bool should_research(expr_ref_vector &unsat_core); | ||||
|         lbool final_check();  | ||||
|         std::ostream &display(std::ostream &out); | ||||
|         std::ostream &display(std::ostream &out) const; | ||||
|     }; | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue