mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
Merge branch 'master' of https://github.com/Z3Prover/z3
This commit is contained in:
commit
45fc5d9fbd
|
@ -1,4 +1,4 @@
|
|||
# Z3's CMake build system
|
||||
# Z3's CMake build system
|
||||
|
||||
[CMake](https://cmake.org/) is a "meta build system" that reads a description
|
||||
of the project written in the ``CMakeLists.txt`` files and emits a build
|
||||
|
|
|
@ -1506,6 +1506,7 @@ br_status seq_rewriter::mk_re_opt(expr* a, expr_ref& result) {
|
|||
}
|
||||
|
||||
br_status seq_rewriter::mk_eq_core(expr * l, expr * r, expr_ref & result) {
|
||||
TRACE("seq", tout << mk_pp(l, m()) << " = " << mk_pp(r, m()) << "\n";);
|
||||
expr_ref_vector lhs(m()), rhs(m()), res(m());
|
||||
bool changed = false;
|
||||
if (!reduce_eq(l, r, lhs, rhs, changed)) {
|
||||
|
|
|
@ -876,6 +876,36 @@ bool seq_decl_plugin::is_value(app* e) const {
|
|||
}
|
||||
}
|
||||
|
||||
bool seq_decl_plugin::are_equal(app* a, app* b) const {
|
||||
if (a == b) return true;
|
||||
// handle concatenations
|
||||
return false;
|
||||
}
|
||||
|
||||
bool seq_decl_plugin::are_distinct(app* a, app* b) const {
|
||||
if (a == b) {
|
||||
return false;
|
||||
}
|
||||
if (is_app_of(a, m_family_id, OP_STRING_CONST) &&
|
||||
is_app_of(b, m_family_id, OP_STRING_CONST)) {
|
||||
return true;
|
||||
}
|
||||
if (is_app_of(a, m_family_id, OP_SEQ_UNIT) &&
|
||||
is_app_of(b, m_family_id, OP_SEQ_UNIT)) {
|
||||
return true;
|
||||
}
|
||||
if (is_app_of(a, m_family_id, OP_SEQ_EMPTY) &&
|
||||
is_app_of(b, m_family_id, OP_SEQ_UNIT)) {
|
||||
return true;
|
||||
}
|
||||
if (is_app_of(b, m_family_id, OP_SEQ_EMPTY) &&
|
||||
is_app_of(a, m_family_id, OP_SEQ_UNIT)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
expr* seq_decl_plugin::get_some_value(sort* s) {
|
||||
seq_util util(*m_manager);
|
||||
if (util.is_seq(s)) {
|
||||
|
|
|
@ -182,7 +182,11 @@ public:
|
|||
|
||||
virtual bool is_value(app * e) const;
|
||||
|
||||
virtual bool is_unique_value(app * e) const { return is_value(e); }
|
||||
virtual bool is_unique_value(app * e) const { return false; }
|
||||
|
||||
virtual bool are_equal(app* a, app* b) const;
|
||||
|
||||
virtual bool are_distinct(app* a, app* b) const;
|
||||
|
||||
virtual expr * get_some_value(sort * s);
|
||||
|
||||
|
|
|
@ -80,7 +80,6 @@ void run_solver(lp_params & params, char const * mps_file_name) {
|
|||
solver->settings().set_message_ostream(&std::cout);
|
||||
solver->settings().report_frequency = params.rep_freq();
|
||||
solver->settings().print_statistics = params.print_stats();
|
||||
solver->settings().presolve_with_double_solver_for_lar = params.presolve_with_dbl();
|
||||
solver->find_maximal_solution();
|
||||
|
||||
*(solver->settings().get_message_ostream()) << "status is " << lp_status_to_string(solver->get_status()) << std::endl;
|
||||
|
|
|
@ -471,12 +471,16 @@ namespace smt {
|
|||
setup_r_arith();
|
||||
}
|
||||
|
||||
void setup::setup_QF_LIRA(static_features const& st) {
|
||||
setup_mi_arith();
|
||||
}
|
||||
|
||||
void setup::setup_QF_LIA() {
|
||||
TRACE("setup", tout << "setup_QF_LIA(st)\n";);
|
||||
m_params.m_relevancy_lvl = 0;
|
||||
m_params.m_arith_expand_eqs = true;
|
||||
m_params.m_arith_reflect = false;
|
||||
m_params.m_arith_propagate_eqs = false;
|
||||
m_params.m_arith_propagate_eqs = false;
|
||||
m_params.m_nnf_cnf = false;
|
||||
setup_i_arith();
|
||||
}
|
||||
|
@ -720,10 +724,9 @@ namespace smt {
|
|||
}
|
||||
|
||||
void setup::setup_r_arith() {
|
||||
m_context.register_plugin(alloc(smt::theory_mi_arith, m_manager, m_params));
|
||||
|
||||
// Disabled in initial commit of LRA additions
|
||||
// m_context.register_plugin(alloc(smt::theory_lra, m_manager, m_params));
|
||||
// to disable theory lra
|
||||
// m_context.register_plugin(alloc(smt::theory_mi_arith, m_manager, m_params));
|
||||
m_context.register_plugin(alloc(smt::theory_lra, m_manager, m_params));
|
||||
}
|
||||
|
||||
void setup::setup_mi_arith() {
|
||||
|
@ -937,7 +940,9 @@ namespace smt {
|
|||
}
|
||||
|
||||
if (st.num_theories() == 1 && is_arith(st)) {
|
||||
if (st.m_has_real)
|
||||
if ((st.m_has_int && st.m_has_real) || (st.m_num_non_linear != 0))
|
||||
setup_QF_LIRA(st);
|
||||
else if (st.m_has_real)
|
||||
setup_QF_LRA(st);
|
||||
else
|
||||
setup_QF_LIA(st);
|
||||
|
|
|
@ -65,6 +65,7 @@ namespace smt {
|
|||
void setup_QF_LRA();
|
||||
void setup_QF_LRA(static_features const & st);
|
||||
void setup_QF_LIA();
|
||||
void setup_QF_LIRA(static_features const& st);
|
||||
void setup_QF_LIA(static_features const & st);
|
||||
void setup_QF_UFLIA();
|
||||
void setup_QF_UFLIA(static_features & st);
|
||||
|
|
|
@ -21,6 +21,7 @@ Notes:
|
|||
#include"smt_kernel.h"
|
||||
#include"smt_params.h"
|
||||
#include"smt_params_helper.hpp"
|
||||
#include"lp_params.hpp"
|
||||
#include"rewriter_types.h"
|
||||
#include"filter_model_converter.h"
|
||||
#include"ast_util.h"
|
||||
|
@ -64,6 +65,10 @@ public:
|
|||
return m_params;
|
||||
}
|
||||
|
||||
params_ref & params() {
|
||||
return m_params_ref;
|
||||
}
|
||||
|
||||
void updt_params_core(params_ref const & p) {
|
||||
m_candidate_models = p.get_bool("candidate_models", false);
|
||||
m_fail_if_inconclusive = p.get_bool("fail_if_inconclusive", true);
|
||||
|
@ -73,6 +78,7 @@ public:
|
|||
TRACE("smt_tactic", tout << "updt_params: " << p << "\n";);
|
||||
updt_params_core(p);
|
||||
fparams().updt_params(p);
|
||||
m_params_ref.copy(p);
|
||||
m_logic = p.get_sym(symbol("logic"), m_logic);
|
||||
if (m_logic != symbol::null && m_ctx) {
|
||||
m_ctx->set_logic(m_logic);
|
||||
|
@ -84,6 +90,7 @@ public:
|
|||
r.insert("candidate_models", CPK_BOOL, "(default: false) create candidate models even when quantifier or theory reasoning is incomplete.");
|
||||
r.insert("fail_if_inconclusive", CPK_BOOL, "(default: true) fail if found unsat (sat) for under (over) approximated goal.");
|
||||
smt_params_helper::collect_param_descrs(r);
|
||||
lp_params::collect_param_descrs(r);
|
||||
}
|
||||
|
||||
|
||||
|
@ -112,10 +119,12 @@ public:
|
|||
struct scoped_init_ctx {
|
||||
smt_tactic & m_owner;
|
||||
smt_params m_params; // smt-setup overwrites parameters depending on the current assertions.
|
||||
params_ref m_params_ref;
|
||||
|
||||
scoped_init_ctx(smt_tactic & o, ast_manager & m):m_owner(o) {
|
||||
m_params = o.fparams();
|
||||
smt::kernel * new_ctx = alloc(smt::kernel, m, m_params);
|
||||
m_params_ref = o.params();
|
||||
smt::kernel * new_ctx = alloc(smt::kernel, m, m_params, m_params_ref);
|
||||
TRACE("smt_tactic", tout << "logic: " << o.m_logic << "\n";);
|
||||
new_ctx->set_logic(o.m_logic);
|
||||
if (o.m_callback) {
|
||||
|
|
|
@ -143,14 +143,11 @@ namespace smt {
|
|||
theory_lra& th;
|
||||
ast_manager& m;
|
||||
theory_arith_params& m_arith_params;
|
||||
lp_params m_lp_params; // seeded from global parameters.
|
||||
arith_util a;
|
||||
|
||||
arith_eq_adapter m_arith_eq_adapter;
|
||||
|
||||
vector<rational> m_columns;
|
||||
int m_print_counter = 0;
|
||||
|
||||
// temporary values kept during internalization
|
||||
struct internalize_state {
|
||||
expr_ref_vector m_terms;
|
||||
|
@ -282,14 +279,15 @@ namespace smt {
|
|||
expr* get_owner(theory_var v) const { return get_enode(v)->get_owner(); }
|
||||
|
||||
void init_solver() {
|
||||
if (m_solver) return;
|
||||
lp_params lp(ctx().get_params());
|
||||
m_solver = alloc(lean::lar_solver);
|
||||
m_theory_var2var_index.reset();
|
||||
m_solver->settings().set_resource_limit(m_resource_limit);
|
||||
m_solver->settings().simplex_strategy() = static_cast<lean::simplex_strategy_enum>(m_lp_params.simplex_strategy());
|
||||
m_solver->settings().presolve_with_double_solver_for_lar = m_lp_params.presolve_with_dbl();
|
||||
m_solver->settings().simplex_strategy() = static_cast<lean::simplex_strategy_enum>(lp.simplex_strategy());
|
||||
reset_variable_values();
|
||||
m_solver->settings().bound_propagation() = BP_NONE != propagation_mode();
|
||||
m_solver->set_propagate_bounds_on_pivoted_rows_mode(m_lp_params.bprop_on_pivoted_rows());
|
||||
m_solver->set_propagate_bounds_on_pivoted_rows_mode(lp.bprop_on_pivoted_rows());
|
||||
//m_solver->settings().set_ostream(0);
|
||||
}
|
||||
|
||||
|
@ -646,9 +644,11 @@ namespace smt {
|
|||
|
||||
|
||||
public:
|
||||
imp(theory_lra& th, ast_manager& m, theory_arith_params& p):
|
||||
th(th), m(m), m_arith_params(p), a(m),
|
||||
m_arith_eq_adapter(th, p, a),
|
||||
imp(theory_lra& th, ast_manager& m, theory_arith_params& ap):
|
||||
th(th), m(m),
|
||||
m_arith_params(ap),
|
||||
a(m),
|
||||
m_arith_eq_adapter(th, ap, a),
|
||||
m_internalize_head(0),
|
||||
m_delay_constraints(false),
|
||||
m_delayed_terms(m),
|
||||
|
@ -657,14 +657,18 @@ namespace smt {
|
|||
m_assume_eq_head(0),
|
||||
m_num_conflicts(0),
|
||||
m_model_eqs(DEFAULT_HASHTABLE_INITIAL_CAPACITY, var_value_hash(*this), var_value_eq(*this)),
|
||||
m_solver(0),
|
||||
m_resource_limit(*this) {
|
||||
init_solver();
|
||||
}
|
||||
|
||||
~imp() {
|
||||
del_bounds(0);
|
||||
std::for_each(m_internalize_states.begin(), m_internalize_states.end(), delete_proc<internalize_state>());
|
||||
}
|
||||
|
||||
void init(context* ctx) {
|
||||
init_solver();
|
||||
}
|
||||
|
||||
bool internalize_atom(app * atom, bool gate_ctx) {
|
||||
if (m_delay_constraints) {
|
||||
|
@ -1978,7 +1982,6 @@ namespace smt {
|
|||
typedef pair_hash<obj_hash<rational>, bool_hash> value_sort_pair_hash;
|
||||
typedef map<value_sort_pair, theory_var, value_sort_pair_hash, default_eq<value_sort_pair> > value2var;
|
||||
value2var m_fixed_var_table;
|
||||
const lean::constraint_index null_index = static_cast<lean::constraint_index>(-1);
|
||||
|
||||
void propagate_eqs(lean::var_index vi, lean::constraint_index ci, lean::lconstraint_kind k, lp::bound& b) {
|
||||
if (propagate_eqs()) {
|
||||
|
@ -2008,7 +2011,7 @@ namespace smt {
|
|||
|
||||
bool proofs_enabled() const { return m.proofs_enabled(); }
|
||||
|
||||
bool use_tableau() const { return m_lp_params.simplex_strategy() < 2; }
|
||||
bool use_tableau() const { return lp_params(ctx().get_params()).simplex_strategy() < 2; }
|
||||
|
||||
void set_upper_bound(lean::var_index vi, lean::constraint_index ci, rational const& v) { set_bound(vi, ci, v, false); }
|
||||
|
||||
|
@ -2022,10 +2025,10 @@ namespace smt {
|
|||
lean::var_index ti = m_solver->adjust_term_index(vi);
|
||||
auto& vec = is_lower ? m_lower_terms : m_upper_terms;
|
||||
if (vec.size() <= ti) {
|
||||
vec.resize(ti + 1, constraint_bound(null_index, rational()));
|
||||
vec.resize(ti + 1, constraint_bound(UINT_MAX, rational()));
|
||||
}
|
||||
constraint_bound& b = vec[ti];
|
||||
if (b.first == null_index || (is_lower? b.second < v : b.second > v)) {
|
||||
if (b.first == UINT_MAX || (is_lower? b.second < v : b.second > v)) {
|
||||
ctx().push_trail(vector_value_trail<context, constraint_bound>(vec, ti));
|
||||
b.first = ci;
|
||||
b.second = v;
|
||||
|
@ -2045,7 +2048,7 @@ namespace smt {
|
|||
rational val;
|
||||
TRACE("arith", tout << vi << " " << v << "\n";);
|
||||
if (v != null_theory_var && a.is_numeral(get_owner(v), val) && bound == val) {
|
||||
ci = null_constraint_index;
|
||||
ci = UINT_MAX;
|
||||
return bound == val;
|
||||
}
|
||||
|
||||
|
@ -2053,7 +2056,7 @@ namespace smt {
|
|||
if (vec.size() > ti) {
|
||||
constraint_bound& b = vec[ti];
|
||||
ci = b.first;
|
||||
return ci != null_index && bound == b.second;
|
||||
return ci != UINT_MAX && bound == b.second;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
|
@ -2137,22 +2140,10 @@ namespace smt {
|
|||
if (m_solver->A_r().row_count() > m_stats.m_max_rows)
|
||||
m_stats.m_max_rows = m_solver->A_r().row_count();
|
||||
TRACE("arith_verbose", display(tout););
|
||||
bool print = false && m_print_counter++ % 1000 == 0;
|
||||
stopwatch sw;
|
||||
if (print) {
|
||||
sw.start();
|
||||
}
|
||||
lean::lp_status status = m_solver->find_feasible_solution();
|
||||
if (print) {
|
||||
sw.stop();
|
||||
}
|
||||
m_stats.m_num_iterations = m_solver->settings().st().m_total_iterations;
|
||||
m_stats.m_num_factorizations = m_solver->settings().st().m_num_factorizations;
|
||||
m_stats.m_need_to_solve_inf = m_solver->settings().st().m_need_to_solve_inf;
|
||||
if (print) {
|
||||
IF_VERBOSE(0, verbose_stream() << status << " " << sw.get_seconds() << " " << m_stats.m_num_iterations << " " << m_print_counter << "\n";);
|
||||
}
|
||||
//m_stats.m_num_iterations_with_no_progress += m_solver->settings().st().m_iters_with_no_cost_growing;
|
||||
|
||||
switch (status) {
|
||||
case lean::lp_status::INFEASIBLE:
|
||||
|
@ -2175,10 +2166,11 @@ namespace smt {
|
|||
literal_vector m_core;
|
||||
svector<enode_pair> m_eqs;
|
||||
vector<parameter> m_params;
|
||||
lean::constraint_index const null_constraint_index = UINT_MAX;
|
||||
|
||||
// lean::constraint_index const null_constraint_index = UINT_MAX; // not sure what a correct fix is
|
||||
|
||||
void set_evidence(lean::constraint_index idx) {
|
||||
if (idx == null_constraint_index) {
|
||||
if (idx == UINT_MAX) {
|
||||
return;
|
||||
}
|
||||
switch (m_constraint_sources[idx]) {
|
||||
|
@ -2517,9 +2509,9 @@ namespace smt {
|
|||
}
|
||||
};
|
||||
|
||||
theory_lra::theory_lra(ast_manager& m, theory_arith_params& p):
|
||||
theory_lra::theory_lra(ast_manager& m, theory_arith_params& ap):
|
||||
theory(m.get_family_id("arith")) {
|
||||
m_imp = alloc(imp, *this, m, p);
|
||||
m_imp = alloc(imp, *this, m, ap);
|
||||
}
|
||||
theory_lra::~theory_lra() {
|
||||
dealloc(m_imp);
|
||||
|
@ -2529,6 +2521,7 @@ namespace smt {
|
|||
}
|
||||
void theory_lra::init(context * ctx) {
|
||||
theory::init(ctx);
|
||||
m_imp->init(ctx);
|
||||
}
|
||||
bool theory_lra::internalize_atom(app * atom, bool gate_ctx) {
|
||||
return m_imp->internalize_atom(atom, gate_ctx);
|
||||
|
|
|
@ -26,8 +26,9 @@ namespace smt {
|
|||
class theory_lra : public theory, public theory_opt {
|
||||
class imp;
|
||||
imp* m_imp;
|
||||
|
||||
public:
|
||||
theory_lra(ast_manager& m, theory_arith_params& params);
|
||||
theory_lra(ast_manager& m, theory_arith_params& ap);
|
||||
virtual ~theory_lra();
|
||||
virtual theory* mk_fresh(context* new_ctx);
|
||||
virtual char const* get_name() const { return "lra"; }
|
||||
|
|
|
@ -22,7 +22,6 @@ Notes:
|
|||
#include"solve_eqs_tactic.h"
|
||||
#include"elim_uncnstr_tactic.h"
|
||||
#include"smt_tactic.h"
|
||||
// include"mip_tactic.h"
|
||||
#include"recover_01_tactic.h"
|
||||
#include"ctx_simplify_tactic.h"
|
||||
#include"probe_arith.h"
|
||||
|
@ -72,5 +71,18 @@ tactic * mk_qflra_tactic(ast_manager & m, params_ref const & p) {
|
|||
// using_params(mk_smt_tactic(), pivot_p)),
|
||||
// p);
|
||||
|
||||
#if 0
|
||||
|
||||
params_ref simplex_0, simplex_1, simplex_2;
|
||||
simplex_0.set_uint("lp.simplex_strategy", 0);
|
||||
simplex_1.set_uint("lp.simplex_strategy", 1);
|
||||
simplex_2.set_uint("lp.simplex_strategy", 2);
|
||||
|
||||
return par(using_params(mk_smt_tactic(), simplex_0),
|
||||
using_params(mk_smt_tactic(), simplex_1),
|
||||
using_params(mk_smt_tactic(), simplex_2));
|
||||
#else
|
||||
return using_params(using_params(mk_smt_tactic(), pivot_p), p);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
|
|
@ -34,6 +34,10 @@ Author: Lev Nachmanson
|
|||
namespace lean {
|
||||
unsigned seed = 1;
|
||||
|
||||
random_gen g_rand;
|
||||
static unsigned my_random() {
|
||||
return g_rand();
|
||||
}
|
||||
struct simple_column_namer:public column_namer
|
||||
{
|
||||
std::string get_column_name(unsigned j) const override {
|
||||
|
@ -1077,7 +1081,7 @@ bool get_double_from_args_parser(const char * option, argument_parser & args_par
|
|||
|
||||
void update_settings(argument_parser & args_parser, lp_settings& settings) {
|
||||
unsigned n;
|
||||
settings.m_simplex_strategy = simplex_strategy_enum::no_tableau;
|
||||
settings.m_simplex_strategy = simplex_strategy_enum::lu;
|
||||
if (get_int_from_args_parser("--rep_frq", args_parser, n))
|
||||
settings.report_frequency = n;
|
||||
else
|
||||
|
@ -1104,7 +1108,7 @@ void update_settings(argument_parser & args_parser, lp_settings& settings) {
|
|||
settings.harris_feasibility_tolerance = d;
|
||||
}
|
||||
if (get_int_from_args_parser("--random_seed", args_parser, n)) {
|
||||
settings.random_seed = n;
|
||||
settings.random_seed(n);
|
||||
}
|
||||
if (get_int_from_args_parser("--simplex_strategy", args_parser, n)) {
|
||||
settings.simplex_strategy() = static_cast<simplex_strategy_enum>(n);
|
||||
|
|
|
@ -56,23 +56,27 @@ namespace lean {
|
|||
struct formula_constraint {
|
||||
lconstraint_kind m_kind;
|
||||
std::vector<std::pair<mpq, std::string>> m_coeffs;
|
||||
mpq m_right_side = numeric_traits<mpq>::zero();
|
||||
mpq m_right_side;
|
||||
void add_pair(mpq c, std::string name) {
|
||||
m_coeffs.push_back(make_pair(c, name));
|
||||
}
|
||||
formula_constraint() : m_right_side(numeric_traits<mpq>::zero()) {}
|
||||
};
|
||||
|
||||
lisp_elem m_formula_lisp_elem;
|
||||
|
||||
std::unordered_map<std::string, unsigned> m_name_to_var_index;
|
||||
std::vector<formula_constraint> m_constraints;
|
||||
std::string m_file_name;
|
||||
std::ifstream m_file_stream;
|
||||
std::string m_line;
|
||||
bool m_is_OK = true;
|
||||
unsigned m_line_number = 0;
|
||||
smt_reader(std::string file_name):
|
||||
m_file_name(file_name), m_file_stream(file_name) {
|
||||
std::vector<formula_constraint> m_constraints;
|
||||
bool m_is_OK;
|
||||
unsigned m_line_number;
|
||||
std::string m_file_name;
|
||||
std::ifstream m_file_stream;
|
||||
std::string m_line;
|
||||
smt_reader(std::string file_name):
|
||||
m_is_OK(true),
|
||||
m_line_number(0),
|
||||
m_file_name(file_name),
|
||||
m_file_stream(file_name) {
|
||||
}
|
||||
|
||||
void set_error() {
|
||||
|
@ -364,7 +368,7 @@ namespace lean {
|
|||
if (it!= m_name_to_var_index.end())
|
||||
return it->second;
|
||||
|
||||
unsigned ret= m_name_to_var_index.size();
|
||||
unsigned ret = static_cast<unsigned>(m_name_to_var_index.size());
|
||||
m_name_to_var_index[s] = ret;
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -83,8 +83,8 @@ unsigned string_hash(const char * str, unsigned length, unsigned init_value) {
|
|||
Z3_fallthrough;
|
||||
case 1 :
|
||||
a+=str[0];
|
||||
Z3_fallthrough;
|
||||
/* case 0: nothing left to add */
|
||||
break;
|
||||
}
|
||||
mix(a,b,c);
|
||||
/*-------------------------------------------- report the result */
|
||||
|
|
|
@ -16,8 +16,7 @@ class binary_heap_priority_queue {
|
|||
// indexing for A starts from 1
|
||||
vector<unsigned> m_heap; // keeps the elements of the queue
|
||||
vector<int> m_heap_inverse; // o = m_heap[m_heap_inverse[o]]
|
||||
unsigned m_heap_size = 0;
|
||||
|
||||
unsigned m_heap_size;
|
||||
// is is the child place in heap
|
||||
void swap_with_parent(unsigned i);
|
||||
void put_at(unsigned i, unsigned h);
|
||||
|
@ -29,7 +28,7 @@ public:
|
|||
public:
|
||||
void remove(unsigned o);
|
||||
unsigned size() const { return m_heap_size; }
|
||||
binary_heap_priority_queue(): m_heap(1) {} // the empty constructror
|
||||
binary_heap_priority_queue(): m_heap(1), m_heap_size(0) {} // the empty constructror
|
||||
// n is the initial queue capacity.
|
||||
// The capacity will be enlarged two times automatically if needed
|
||||
binary_heap_priority_queue(unsigned n);
|
||||
|
|
|
@ -83,7 +83,8 @@ template <typename T> void binary_heap_priority_queue<T>::remove(unsigned o) {
|
|||
template <typename T> binary_heap_priority_queue<T>::binary_heap_priority_queue(unsigned n) :
|
||||
m_priorities(n),
|
||||
m_heap(n + 1), // because the indexing for A starts from 1
|
||||
m_heap_inverse(n, -1)
|
||||
m_heap_inverse(n, -1),
|
||||
m_heap_size(0)
|
||||
{ }
|
||||
|
||||
|
||||
|
|
|
@ -20,8 +20,8 @@ template <typename T>
|
|||
class binary_heap_upair_queue {
|
||||
binary_heap_priority_queue<T> m_q;
|
||||
std::unordered_map<upair, unsigned> m_pairs_to_index;
|
||||
vector<upair> m_pairs; // inverse to index
|
||||
vector<unsigned> m_available_spots;
|
||||
svector<upair> m_pairs; // inverse to index
|
||||
svector<unsigned> m_available_spots;
|
||||
public:
|
||||
binary_heap_upair_queue(unsigned size);
|
||||
|
||||
|
|
|
@ -18,12 +18,13 @@ namespace lean {
|
|||
class bound_analyzer_on_row {
|
||||
|
||||
linear_combination_iterator<mpq> & m_it;
|
||||
unsigned m_row_or_term_index;
|
||||
int m_column_of_u = -1; // index of an unlimited from above monoid
|
||||
// -1 means that such a value is not found, -2 means that at least two of such monoids were found
|
||||
int m_column_of_l = -1; // index of an unlimited from below monoid
|
||||
impq m_rs;
|
||||
bound_propagator & m_bp;
|
||||
bound_propagator & m_bp;
|
||||
unsigned m_row_or_term_index;
|
||||
int m_column_of_u; // index of an unlimited from above monoid
|
||||
// -1 means that such a value is not found, -2 means that at least two of such monoids were found
|
||||
int m_column_of_l; // index of an unlimited from below monoid
|
||||
impq m_rs;
|
||||
|
||||
public :
|
||||
// constructor
|
||||
bound_analyzer_on_row(
|
||||
|
@ -34,9 +35,11 @@ public :
|
|||
)
|
||||
:
|
||||
m_it(it),
|
||||
m_bp(bp),
|
||||
m_row_or_term_index(row_or_term_index),
|
||||
m_rs(rs),
|
||||
m_bp(bp)
|
||||
m_column_of_u(-1),
|
||||
m_column_of_l(-1),
|
||||
m_rs(rs)
|
||||
{}
|
||||
|
||||
|
||||
|
@ -250,7 +253,6 @@ public :
|
|||
if (str)
|
||||
strict = true;
|
||||
}
|
||||
|
||||
bound /= l_coeff;
|
||||
if (is_pos(l_coeff)) {
|
||||
limit_j(m_column_of_l, bound, true, false, strict);
|
||||
|
|
|
@ -15,26 +15,26 @@ inline bool is_valid(unsigned j) { return static_cast<int>(j) >= 0;}
|
|||
template <typename T>
|
||||
class column_info {
|
||||
std::string m_name;
|
||||
bool m_low_bound_is_set = false;
|
||||
bool m_low_bound_is_strict = false;
|
||||
bool m_upper_bound_is_set = false;
|
||||
bool m_upper_bound_is_strict = false;
|
||||
T m_low_bound;
|
||||
T m_upper_bound;
|
||||
T m_cost = numeric_traits<T>::zero();
|
||||
T m_fixed_value;
|
||||
bool m_is_fixed = false;
|
||||
unsigned m_column_index = static_cast<unsigned>(-1);
|
||||
bool m_low_bound_is_set;
|
||||
bool m_low_bound_is_strict;
|
||||
bool m_upper_bound_is_set;
|
||||
bool m_upper_bound_is_strict;
|
||||
T m_low_bound;
|
||||
T m_upper_bound;
|
||||
T m_fixed_value;
|
||||
bool m_is_fixed;
|
||||
T m_cost;
|
||||
unsigned m_column_index;
|
||||
public:
|
||||
bool operator==(const column_info & c) const {
|
||||
return m_name == c.m_name &&
|
||||
return m_name == c.m_name &&
|
||||
m_low_bound_is_set == c.m_low_bound_is_set &&
|
||||
m_low_bound_is_strict == c.m_low_bound_is_strict &&
|
||||
m_upper_bound_is_set == c.m_upper_bound_is_set&&
|
||||
m_upper_bound_is_strict == c.m_upper_bound_is_strict&&
|
||||
(!m_low_bound_is_set || m_low_bound == c.m_low_bound) &&
|
||||
(!m_upper_bound_is_set || m_upper_bound == c.m_upper_bound) &&
|
||||
m_cost == c.m_cost&&
|
||||
m_cost == c.m_cost &&
|
||||
m_is_fixed == c.m_is_fixed &&
|
||||
(!m_is_fixed || m_fixed_value == c.m_fixed_value) &&
|
||||
m_column_index == c.m_column_index;
|
||||
|
@ -44,9 +44,24 @@ public:
|
|||
m_column_index = j;
|
||||
}
|
||||
// the default constructor
|
||||
column_info() {}
|
||||
|
||||
column_info(unsigned column_index) : m_column_index(column_index) {
|
||||
column_info():
|
||||
m_low_bound_is_set(false),
|
||||
m_low_bound_is_strict(false),
|
||||
m_upper_bound_is_set (false),
|
||||
m_upper_bound_is_strict (false),
|
||||
m_is_fixed(false),
|
||||
m_cost(numeric_traits<T>::zero()),
|
||||
m_column_index(static_cast<unsigned>(-1))
|
||||
{}
|
||||
|
||||
column_info(unsigned column_index) :
|
||||
m_low_bound_is_set(false),
|
||||
m_low_bound_is_strict(false),
|
||||
m_upper_bound_is_set (false),
|
||||
m_upper_bound_is_strict (false),
|
||||
m_is_fixed(false),
|
||||
m_cost(numeric_traits<T>::zero()),
|
||||
m_column_index(column_index) {
|
||||
}
|
||||
|
||||
column_info(const column_info & ci) {
|
||||
|
|
43
src/util/lp/conversion_helper.h
Normal file
43
src/util/lp/conversion_helper.h
Normal file
|
@ -0,0 +1,43 @@
|
|||
/*
|
||||
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
||||
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
namespace lean {
|
||||
template <typename V>
|
||||
struct conversion_helper {
|
||||
static V get_low_bound(const column_info<mpq> & ci) {
|
||||
return V(ci.get_low_bound(), ci.low_bound_is_strict()? 1 : 0);
|
||||
}
|
||||
|
||||
static V get_upper_bound(const column_info<mpq> & ci) {
|
||||
return V(ci.get_upper_bound(), ci.upper_bound_is_strict()? -1 : 0);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct conversion_helper <double> {
|
||||
static double get_upper_bound(const column_info<mpq> & ci) {
|
||||
if (!ci.upper_bound_is_strict())
|
||||
return ci.get_upper_bound().get_double();
|
||||
double eps = 0.00001;
|
||||
if (!ci.low_bound_is_set())
|
||||
return ci.get_upper_bound().get_double() - eps;
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps);
|
||||
return ci.get_upper_bound().get_double() - eps;
|
||||
}
|
||||
|
||||
static double get_low_bound(const column_info<mpq> & ci) {
|
||||
if (!ci.low_bound_is_strict())
|
||||
return ci.get_low_bound().get_double();
|
||||
double eps = 0.00001;
|
||||
if (!ci.upper_bound_is_set())
|
||||
return ci.get_low_bound().get_double() + eps;
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps);
|
||||
return ci.get_low_bound().get_double() + eps;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
|
@ -16,7 +16,6 @@ template <typename T, typename X> class lp_core_solver_base; // forward definiti
|
|||
template <typename T, typename X>
|
||||
class core_solver_pretty_printer {
|
||||
std::ostream & m_out;
|
||||
template<typename A> using vector = vector<A>;
|
||||
typedef std::string string;
|
||||
lp_core_solver_base<T, X> & m_core_solver;
|
||||
vector<unsigned> m_column_widths;
|
||||
|
@ -34,15 +33,15 @@ class core_solver_pretty_printer {
|
|||
std::string m_cost_title;
|
||||
std::string m_basis_heading_title;
|
||||
std::string m_x_title;
|
||||
std::string m_low_bounds_title = "low";
|
||||
std::string m_upp_bounds_title = "upp";
|
||||
std::string m_exact_norm_title = "exact cn";
|
||||
std::string m_approx_norm_title = "approx cn";
|
||||
std::string m_low_bounds_title;
|
||||
std::string m_upp_bounds_title;
|
||||
std::string m_exact_norm_title;
|
||||
std::string m_approx_norm_title;
|
||||
|
||||
|
||||
unsigned ncols() { return m_core_solver.m_A.column_count(); }
|
||||
unsigned nrows() { return m_core_solver.m_A.row_count(); }
|
||||
unsigned m_artificial_start = std::numeric_limits<unsigned>::max();
|
||||
unsigned m_artificial_start;
|
||||
indexed_vector<T> m_w_buff;
|
||||
indexed_vector<T> m_ed_buff;
|
||||
vector<T> m_exact_column_norms;
|
||||
|
|
|
@ -23,6 +23,12 @@ core_solver_pretty_printer<T, X>::core_solver_pretty_printer(lp_core_solver_base
|
|||
m_rs(ncols(), zero_of_type<X>()),
|
||||
m_w_buff(core_solver.m_w),
|
||||
m_ed_buff(core_solver.m_ed) {
|
||||
m_low_bounds_title = "low";
|
||||
m_upp_bounds_title = "upp";
|
||||
m_exact_norm_title = "exact cn";
|
||||
m_approx_norm_title = "approx cn";
|
||||
m_artificial_start = std::numeric_limits<unsigned>::max();
|
||||
|
||||
m_column_widths.resize(core_solver.m_A.column_count(), 0),
|
||||
init_m_A_and_signs();
|
||||
init_costs();
|
||||
|
|
576
src/util/lp/init_lar_solver.h
Normal file
576
src/util/lp/init_lar_solver.h
Normal file
|
@ -0,0 +1,576 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
// here we are inside lean::lar_solver class
|
||||
|
||||
bool strategy_is_undecided() const {
|
||||
return m_settings.simplex_strategy() == simplex_strategy_enum::undecided;
|
||||
}
|
||||
|
||||
var_index add_var(unsigned ext_j) {
|
||||
var_index i;
|
||||
lean_assert (ext_j < m_terms_start_index);
|
||||
|
||||
if (ext_j >= m_terms_start_index)
|
||||
throw 0; // todo : what is the right way to exit?
|
||||
|
||||
if (try_get_val(m_ext_vars_to_columns, ext_j, i)) {
|
||||
return i;
|
||||
}
|
||||
lean_assert(m_vars_to_ul_pairs.size() == A_r().column_count());
|
||||
i = A_r().column_count();
|
||||
m_vars_to_ul_pairs.push_back (ul_pair(static_cast<unsigned>(-1)));
|
||||
add_non_basic_var_to_core_fields(ext_j);
|
||||
lean_assert(sizes_are_correct());
|
||||
return i;
|
||||
}
|
||||
|
||||
void register_new_ext_var_index(unsigned ext_v) {
|
||||
lean_assert(!contains(m_ext_vars_to_columns, ext_v));
|
||||
unsigned j = static_cast<unsigned>(m_ext_vars_to_columns.size());
|
||||
m_ext_vars_to_columns[ext_v] = j;
|
||||
lean_assert(m_columns_to_ext_vars_or_term_indices.size() == j);
|
||||
m_columns_to_ext_vars_or_term_indices.push_back(ext_v);
|
||||
}
|
||||
|
||||
void add_non_basic_var_to_core_fields(unsigned ext_j) {
|
||||
register_new_ext_var_index(ext_j);
|
||||
m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column);
|
||||
m_columns_with_changed_bound.increase_size_by_one();
|
||||
add_new_var_to_core_fields_for_mpq(false);
|
||||
if (use_lu())
|
||||
add_new_var_to_core_fields_for_doubles(false);
|
||||
}
|
||||
|
||||
void add_new_var_to_core_fields_for_doubles(bool register_in_basis) {
|
||||
unsigned j = A_d().column_count();
|
||||
A_d().add_column();
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_x.size() == j);
|
||||
// lean_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_d_x.resize(j + 1 );
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1);
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_d().add_row();
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size());
|
||||
m_mpq_lar_core_solver.m_d_basis.push_back(j);
|
||||
}else {
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_d_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_d_nbasis.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
void add_new_var_to_core_fields_for_mpq(bool register_in_basis) {
|
||||
unsigned j = A_r().column_count();
|
||||
A_r().add_column();
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_x.size() == j);
|
||||
// lean_assert(m_mpq_lar_core_solver.m_r_low_bounds.size() == j && m_mpq_lar_core_solver.m_r_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_r_x.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_solver.m_inf_set.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_solver.m_costs.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_r_solver.m_d.resize(j + 1);
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_r().add_row();
|
||||
m_mpq_lar_core_solver.m_r_heading.push_back(m_mpq_lar_core_solver.m_r_basis.size());
|
||||
m_mpq_lar_core_solver.m_r_basis.push_back(j);
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_r_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_r_nbasis.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
var_index add_term_undecided(const vector<std::pair<mpq, var_index>> & coeffs,
|
||||
const mpq &m_v) {
|
||||
m_terms.push_back(new lar_term(coeffs, m_v));
|
||||
m_orig_terms.push_back(new lar_term(coeffs, m_v));
|
||||
return m_terms_start_index + m_terms.size() - 1;
|
||||
}
|
||||
|
||||
// terms
|
||||
var_index add_term(const vector<std::pair<mpq, var_index>> & coeffs,
|
||||
const mpq &m_v) {
|
||||
if (strategy_is_undecided())
|
||||
return add_term_undecided(coeffs, m_v);
|
||||
|
||||
m_terms.push_back(new lar_term(coeffs, m_v));
|
||||
m_orig_terms.push_back(new lar_term(coeffs, m_v));
|
||||
unsigned adjusted_term_index = m_terms.size() - 1;
|
||||
var_index ret = m_terms_start_index + adjusted_term_index;
|
||||
if (use_tableau() && !coeffs.empty()) {
|
||||
add_row_for_term(m_orig_terms.back(), ret);
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
}
|
||||
lean_assert(m_ext_vars_to_columns.size() == A_r().column_count());
|
||||
return ret;
|
||||
}
|
||||
|
||||
void add_row_for_term(const lar_term * term, unsigned term_ext_index) {
|
||||
lean_assert(sizes_are_correct());
|
||||
add_row_from_term_no_constraint(term, term_ext_index);
|
||||
lean_assert(sizes_are_correct());
|
||||
}
|
||||
|
||||
void add_row_from_term_no_constraint(const lar_term * term, unsigned term_ext_index) {
|
||||
register_new_ext_var_index(term_ext_index);
|
||||
// j will be a new variable
|
||||
unsigned j = A_r().column_count();
|
||||
ul_pair ul(j);
|
||||
m_vars_to_ul_pairs.push_back(ul);
|
||||
add_basic_var_to_core_fields();
|
||||
if (use_tableau()) {
|
||||
auto it = iterator_on_term_with_basis_var(*term, j);
|
||||
A_r().fill_last_row_with_pivoting(it,
|
||||
m_mpq_lar_core_solver.m_r_solver.m_basis_heading);
|
||||
m_mpq_lar_core_solver.m_r_solver.m_b.resize(A_r().column_count(), zero_of_type<mpq>());
|
||||
} else {
|
||||
fill_last_row_of_A_r(A_r(), term);
|
||||
}
|
||||
m_mpq_lar_core_solver.m_r_x[j] = get_basic_var_value_from_row_directly(A_r().row_count() - 1);
|
||||
if (use_lu())
|
||||
fill_last_row_of_A_d(A_d(), term);
|
||||
}
|
||||
|
||||
void add_basic_var_to_core_fields() {
|
||||
bool use_lu = m_mpq_lar_core_solver.need_to_presolve_with_double_solver();
|
||||
lean_assert(!use_lu || A_r().column_count() == A_d().column_count());
|
||||
m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column);
|
||||
m_columns_with_changed_bound.increase_size_by_one();
|
||||
m_rows_with_changed_bounds.increase_size_by_one();
|
||||
add_new_var_to_core_fields_for_mpq(true);
|
||||
if (use_lu)
|
||||
add_new_var_to_core_fields_for_doubles(true);
|
||||
}
|
||||
|
||||
constraint_index add_var_bound(var_index j, lconstraint_kind kind, const mpq & right_side) {
|
||||
constraint_index ci = m_constraints.size();
|
||||
if (!is_term(j)) { // j is a var
|
||||
auto vc = new lar_var_constraint(j, kind, right_side);
|
||||
m_constraints.push_back(vc);
|
||||
update_column_type_and_bound(j, kind, right_side, ci);
|
||||
} else {
|
||||
add_var_bound_on_constraint_for_term(j, kind, right_side, ci);
|
||||
}
|
||||
lean_assert(sizes_are_correct());
|
||||
return ci;
|
||||
}
|
||||
|
||||
void update_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_index) {
|
||||
switch(m_mpq_lar_core_solver.m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
update_free_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::boxed:
|
||||
update_boxed_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
update_low_bound_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
update_upper_bound_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::fixed:
|
||||
update_fixed_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
default:
|
||||
lean_assert(false); // cannot be here
|
||||
}
|
||||
}
|
||||
|
||||
void add_var_bound_on_constraint_for_term(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(is_term(j));
|
||||
unsigned adjusted_term_index = adjust_term_index(j);
|
||||
unsigned term_j;
|
||||
if (try_get_val(m_ext_vars_to_columns, j, term_j)) {
|
||||
mpq rs = right_side - m_orig_terms[adjusted_term_index]->m_v;
|
||||
m_constraints.push_back(new lar_term_constraint(m_orig_terms[adjusted_term_index], kind, right_side));
|
||||
update_column_type_and_bound(term_j, kind, rs, ci);
|
||||
}
|
||||
else {
|
||||
add_constraint_from_term_and_create_new_column_row(j, m_orig_terms[adjusted_term_index], kind, right_side);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void add_constraint_from_term_and_create_new_column_row(unsigned term_j, const lar_term* term,
|
||||
lconstraint_kind kind, const mpq & right_side) {
|
||||
|
||||
add_row_from_term_no_constraint(term, term_j);
|
||||
unsigned j = A_r().column_count() - 1;
|
||||
update_column_type_and_bound(j, kind, right_side - term->m_v, m_constraints.size());
|
||||
m_constraints.push_back(new lar_term_constraint(term, kind, right_side));
|
||||
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
|
||||
}
|
||||
|
||||
void decide_on_strategy_and_adjust_initial_state() {
|
||||
lean_assert(strategy_is_undecided());
|
||||
if (m_vars_to_ul_pairs.size() > m_settings.column_number_threshold_for_using_lu_in_lar_solver) {
|
||||
m_settings.simplex_strategy() = simplex_strategy_enum::lu;
|
||||
} else {
|
||||
m_settings.simplex_strategy() = simplex_strategy_enum::tableau_rows; // todo: when to switch to tableau_costs?
|
||||
}
|
||||
adjust_initial_state();
|
||||
}
|
||||
|
||||
void adjust_initial_state() {
|
||||
switch (m_settings.simplex_strategy()) {
|
||||
case simplex_strategy_enum::lu:
|
||||
adjust_initial_state_for_lu();
|
||||
break;
|
||||
case simplex_strategy_enum::tableau_rows:
|
||||
adjust_initial_state_for_tableau_rows();
|
||||
break;
|
||||
case simplex_strategy_enum::tableau_costs:
|
||||
lean_assert(false); // not implemented
|
||||
case simplex_strategy_enum::undecided:
|
||||
adjust_initial_state_for_tableau_rows();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void adjust_initial_state_for_lu() {
|
||||
copy_from_mpq_matrix(A_d());
|
||||
unsigned n = A_d().column_count();
|
||||
m_mpq_lar_core_solver.m_d_x.resize(n);
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(n);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(n);
|
||||
m_mpq_lar_core_solver.m_d_heading = m_mpq_lar_core_solver.m_r_heading;
|
||||
m_mpq_lar_core_solver.m_d_basis = m_mpq_lar_core_solver.m_r_basis;
|
||||
|
||||
/*
|
||||
unsigned j = A_d().column_count();
|
||||
A_d().add_column();
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_x.size() == j);
|
||||
// lean_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_d_x.resize(j + 1 );
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1);
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_d().add_row();
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size());
|
||||
m_mpq_lar_core_solver.m_d_basis.push_back(j);
|
||||
}else {
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_d_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_d_nbasis.push_back(j);
|
||||
}*/
|
||||
}
|
||||
|
||||
void adjust_initial_state_for_tableau_rows() {
|
||||
for (unsigned j = 0; j < m_terms.size(); j++) {
|
||||
if (contains(m_ext_vars_to_columns, j + m_terms_start_index))
|
||||
continue;
|
||||
add_row_from_term_no_constraint(m_terms[j], j + m_terms_start_index);
|
||||
}
|
||||
}
|
||||
|
||||
// this fills the last row of A_d and sets the basis column: -1 in the last column of the row
|
||||
void fill_last_row_of_A_d(static_matrix<double, double> & A, const lar_term* ls) {
|
||||
lean_assert(A.row_count() > 0);
|
||||
lean_assert(A.column_count() > 0);
|
||||
unsigned last_row = A.row_count() - 1;
|
||||
lean_assert(A.m_rows[last_row].empty());
|
||||
|
||||
for (auto & t : ls->m_coeffs) {
|
||||
lean_assert(!is_zero(t.second));
|
||||
var_index j = t.first;
|
||||
A.set(last_row, j, - t.second.get_double());
|
||||
}
|
||||
|
||||
unsigned basis_j = A.column_count() - 1;
|
||||
A.set(last_row, basis_j, - 1 );
|
||||
}
|
||||
|
||||
void update_free_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_ind) {
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::upper_bound;
|
||||
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
}
|
||||
set_upper_bound_witness(j, constr_ind);
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::low_bound;
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
}
|
||||
set_low_bound_witness(j, constr_ind);
|
||||
break;
|
||||
case EQ:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
set_upper_bound_witness(j, constr_ind);
|
||||
set_low_bound_witness(j, constr_ind);
|
||||
break;
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
void update_upper_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (up < m_mpq_lar_core_solver.m_r_upper_bounds()[j]) {
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::boxed;
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
set_low_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
set_low_bound_witness(j, ci);
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void update_boxed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::boxed && m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (up < m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
lean_assert(false);
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
if (m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j])
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else if ( low == m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
void update_low_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::low_bound);
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
|
||||
if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void update_fixed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::fixed && m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
|
||||
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_r_low_bounds()[j].y.is_zero() && m_mpq_lar_core_solver.m_r_upper_bounds()[j].y.is_zero()));
|
||||
auto v = numeric_pair<mpq>(right_side, mpq(0));
|
||||
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
if (v <= m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
}
|
||||
break;
|
||||
case LE:
|
||||
{
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
{
|
||||
if (v >= m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index =j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GE:
|
||||
{
|
||||
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
|
|
@ -11,7 +11,7 @@ template <typename T, typename X>
|
|||
struct iterator_on_column:linear_combination_iterator<T> {
|
||||
const vector<column_cell>& m_column; // the offset in term coeffs
|
||||
const static_matrix<T, X> & m_A;
|
||||
int m_i = -1; // the initial offset in the column
|
||||
int m_i; // the initial offset in the column
|
||||
unsigned size() const { return m_column.size(); }
|
||||
iterator_on_column(const vector<column_cell>& column, const static_matrix<T,X> & A) // the offset in term coeffs
|
||||
:
|
||||
|
|
|
@ -8,8 +8,11 @@ namespace lean {
|
|||
template <typename T>
|
||||
struct iterator_on_indexed_vector:linear_combination_iterator<T> {
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_offset = 0;
|
||||
iterator_on_indexed_vector(const indexed_vector<T> & v) : m_v(v){}
|
||||
unsigned m_offset;
|
||||
iterator_on_indexed_vector(const indexed_vector<T> & v) :
|
||||
m_v(v),
|
||||
m_offset(0)
|
||||
{}
|
||||
unsigned size() const { return m_v.m_index.size(); }
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_offset >= m_v.m_index.size())
|
||||
|
|
|
@ -7,12 +7,14 @@
|
|||
namespace lean {
|
||||
template <typename T>
|
||||
struct iterator_on_pivot_row:linear_combination_iterator<T> {
|
||||
bool m_basis_returned = false;
|
||||
bool m_basis_returned;
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_basis_j;
|
||||
iterator_on_indexed_vector<T> m_it;
|
||||
unsigned size() const { return m_it.size(); }
|
||||
iterator_on_pivot_row(const indexed_vector<T> & v, unsigned basis_j) : m_v(v), m_basis_j(basis_j), m_it(v) {}
|
||||
iterator_on_pivot_row(const indexed_vector<T> & v, unsigned basis_j) :
|
||||
m_basis_returned(false),
|
||||
m_v(v), m_basis_j(basis_j), m_it(v) {}
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_basis_returned == false) {
|
||||
m_basis_returned = true;
|
||||
|
|
|
@ -8,8 +8,8 @@ namespace lean {
|
|||
template <typename T>
|
||||
struct iterator_on_row:linear_combination_iterator<T> {
|
||||
const vector<row_cell<T>> & m_row;
|
||||
unsigned m_i= 0; // offset
|
||||
iterator_on_row(const vector<row_cell<T>> & row) : m_row(row)
|
||||
unsigned m_i; // offset
|
||||
iterator_on_row(const vector<row_cell<T>> & row) : m_row(row), m_i(0)
|
||||
{}
|
||||
unsigned size() const { return m_row.size(); }
|
||||
bool next(T & a, unsigned & i) {
|
||||
|
|
|
@ -8,14 +8,15 @@
|
|||
#include "util/lp/lar_term.h"
|
||||
namespace lean {
|
||||
struct iterator_on_term_with_basis_var:linear_combination_iterator<mpq> {
|
||||
std::unordered_map<unsigned, mpq>::const_iterator m_i; // the offset in term coeffs
|
||||
bool m_term_j_returned = false;
|
||||
const lar_term & m_term;
|
||||
unsigned m_term_j;
|
||||
std::unordered_map<unsigned, mpq>::const_iterator m_i; // the offset in term coeffs
|
||||
bool m_term_j_returned;
|
||||
unsigned m_term_j;
|
||||
unsigned size() const {return static_cast<unsigned>(m_term.m_coeffs.size() + 1);}
|
||||
iterator_on_term_with_basis_var(const lar_term & t, unsigned term_j) :
|
||||
m_i(t.m_coeffs.begin()),
|
||||
m_term(t),
|
||||
m_i(t.m_coeffs.begin()),
|
||||
m_term_j_returned(false),
|
||||
m_term_j(term_j) {}
|
||||
|
||||
bool next(mpq & a, unsigned & i) {
|
||||
|
|
|
@ -25,7 +25,7 @@ class lar_core_solver {
|
|||
// to grow and is set to -1 otherwise
|
||||
int m_sign_of_entering_delta;
|
||||
vector<std::pair<mpq, unsigned>> m_infeasible_linear_combination;
|
||||
int m_infeasible_sum_sign = 0; // todo: get rid of this field
|
||||
int m_infeasible_sum_sign; // todo: get rid of this field
|
||||
vector<numeric_pair<mpq>> m_right_sides_dummy;
|
||||
vector<mpq> m_costs_dummy;
|
||||
vector<double> m_d_right_sides_dummy;
|
||||
|
@ -216,8 +216,6 @@ public:
|
|||
|
||||
|
||||
void pop(unsigned k) {
|
||||
m_stacked_simplex_strategy.pop(k);
|
||||
bool use_tableau = m_stacked_simplex_strategy() != simplex_strategy_enum::no_tableau;
|
||||
// rationals
|
||||
if (!settings().use_tableau())
|
||||
m_r_A.pop(k);
|
||||
|
@ -232,7 +230,7 @@ public:
|
|||
m_r_x.resize(m_r_A.column_count());
|
||||
m_r_solver.m_costs.resize(m_r_A.column_count());
|
||||
m_r_solver.m_d.resize(m_r_A.column_count());
|
||||
if(!use_tableau)
|
||||
if(!settings().use_tableau())
|
||||
pop_markowitz_counts(k);
|
||||
m_d_A.pop(k);
|
||||
if (m_d_solver.m_factorization != nullptr) {
|
||||
|
@ -242,13 +240,14 @@ public:
|
|||
|
||||
m_d_x.resize(m_d_A.column_count());
|
||||
pop_basis(k);
|
||||
|
||||
m_stacked_simplex_strategy.pop(k);
|
||||
settings().simplex_strategy() = m_stacked_simplex_strategy;
|
||||
lean_assert(m_r_solver.basis_heading_is_correct());
|
||||
lean_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
}
|
||||
|
||||
bool need_to_presolve_with_double_solver() const {
|
||||
return settings().presolve_with_double_solver_for_lar && !settings().use_tableau();
|
||||
return settings().simplex_strategy() == simplex_strategy_enum::lu;
|
||||
}
|
||||
|
||||
template <typename L>
|
||||
|
@ -368,7 +367,7 @@ public:
|
|||
s.m_x[j] = s.m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (my_random() % 2) {
|
||||
if (settings().random_next() % 2) {
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
} else {
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
|
@ -600,7 +599,7 @@ public:
|
|||
}
|
||||
|
||||
if (no_r_lu()) { // it is the case where m_d_solver gives a degenerated basis, we need to roll back
|
||||
std::cout << "no_r_lu" << std::endl;
|
||||
// std::cout << "no_r_lu" << std::endl;
|
||||
catch_up_in_lu_in_reverse(changes_of_basis, m_r_solver);
|
||||
m_r_solver.find_feasible_solution();
|
||||
m_d_basis = m_r_basis;
|
||||
|
@ -774,8 +773,8 @@ public:
|
|||
}
|
||||
|
||||
|
||||
mpq find_delta_for_strict_bounds() const{
|
||||
mpq delta = numeric_traits<mpq>::one();
|
||||
mpq find_delta_for_strict_bounds(const mpq & initial_delta) const{
|
||||
mpq delta = initial_delta;
|
||||
for (unsigned j = 0; j < m_r_A.column_count(); j++ ) {
|
||||
if (low_bound_is_set(j))
|
||||
update_delta(delta, m_r_low_bounds[j], m_r_x[j]);
|
||||
|
|
|
@ -14,7 +14,8 @@ namespace lean {
|
|||
lar_core_solver::lar_core_solver(
|
||||
lp_settings & settings,
|
||||
const column_namer & column_names
|
||||
):
|
||||
):
|
||||
m_infeasible_sum_sign(0),
|
||||
m_r_solver(m_r_A,
|
||||
m_right_sides_dummy,
|
||||
m_r_x,
|
||||
|
|
|
@ -29,86 +29,38 @@
|
|||
#include "util/lp/iterator_on_term_with_basis_var.h"
|
||||
#include "util/lp/iterator_on_row.h"
|
||||
#include "util/lp/quick_xplain.h"
|
||||
#include "util/lp/conversion_helper.h"
|
||||
namespace lean {
|
||||
template <typename V>
|
||||
struct conversion_helper {
|
||||
static V get_low_bound(const column_info<mpq> & ci) {
|
||||
return V(ci.get_low_bound(), ci.low_bound_is_strict()? 1 : 0);
|
||||
}
|
||||
|
||||
static V get_upper_bound(const column_info<mpq> & ci) {
|
||||
return V(ci.get_upper_bound(), ci.upper_bound_is_strict()? -1 : 0);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct conversion_helper <double> {
|
||||
static double get_upper_bound(const column_info<mpq> & ci) {
|
||||
if (!ci.upper_bound_is_strict())
|
||||
return ci.get_upper_bound().get_double();
|
||||
double eps = 0.00001;
|
||||
if (!ci.low_bound_is_set())
|
||||
return ci.get_upper_bound().get_double() - eps;
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps);
|
||||
return ci.get_upper_bound().get_double() - eps;
|
||||
}
|
||||
|
||||
static double get_low_bound(const column_info<mpq> & ci) {
|
||||
if (!ci.low_bound_is_strict())
|
||||
return ci.get_low_bound().get_double();
|
||||
double eps = 0.00001;
|
||||
if (!ci.upper_bound_is_set())
|
||||
return ci.get_low_bound().get_double() + eps;
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps);
|
||||
return ci.get_low_bound().get_double() + eps;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct constraint_index_and_column_struct {
|
||||
int m_ci = -1;
|
||||
int m_j = -1;
|
||||
constraint_index_and_column_struct() {}
|
||||
constraint_index_and_column_struct(unsigned ci, unsigned j):
|
||||
m_ci(static_cast<int>(ci)),
|
||||
m_j(static_cast<int>(j))
|
||||
{}
|
||||
bool operator==(const constraint_index_and_column_struct & a) const { return a.m_ci == m_ci && a.m_j == m_j; }
|
||||
bool operator!=(const constraint_index_and_column_struct & a) const { return ! (*this == a);}
|
||||
};
|
||||
|
||||
class lar_solver : public column_namer {
|
||||
//////////////////// fields //////////////////////////
|
||||
lp_settings m_settings;
|
||||
stacked_value<lp_status> m_status = OPTIMAL;
|
||||
std::unordered_map<unsigned, var_index> m_ext_vars_to_columns;
|
||||
stacked_value<lp_status> m_status;
|
||||
stacked_value<simplex_strategy_enum> m_simplex_strategy;
|
||||
std::unordered_map<unsigned, var_index> m_ext_vars_to_columns;
|
||||
vector<unsigned> m_columns_to_ext_vars_or_term_indices;
|
||||
stacked_vector<ul_pair> m_vars_to_ul_pairs;
|
||||
vector<lar_base_constraint*> m_constraints;
|
||||
stacked_value<unsigned> m_constraint_count;
|
||||
indexed_vector<mpq> m_incoming_buffer;
|
||||
// the set of column indices j such that bounds have changed for j
|
||||
int_set m_columns_with_changed_bound;
|
||||
int_set m_rows_with_changed_bounds;
|
||||
int_set m_basic_columns_with_changed_cost;
|
||||
stacked_value<int> m_infeasible_column_index = -1; // such can be found at the initialization step
|
||||
int_set m_basic_columns_with_changed_cost;
|
||||
stacked_value<int> m_infeasible_column_index; // such can be found at the initialization step
|
||||
stacked_value<unsigned> m_term_count;
|
||||
public: // debug remove later
|
||||
vector<lar_term*> m_terms;
|
||||
private:
|
||||
vector<lar_term*> m_orig_terms;
|
||||
const var_index m_terms_start_index = 1000000;
|
||||
const var_index m_terms_start_index;
|
||||
indexed_vector<mpq> m_column_buffer;
|
||||
std::function<column_type (unsigned)> m_column_type_function = [this] (unsigned j) {return m_mpq_lar_core_solver.m_column_types()[j];};
|
||||
|
||||
std::function<column_type (unsigned)> m_column_type_function;
|
||||
public:
|
||||
lar_core_solver m_mpq_lar_core_solver;
|
||||
unsigned constraint_count() const {
|
||||
return m_constraints.size();
|
||||
}
|
||||
const lar_base_constraint& get_constraint(unsigned ci) const {
|
||||
return *(m_constraints[ci]);
|
||||
}
|
||||
unsigned constraint_count() const {
|
||||
return m_constraints.size();
|
||||
}
|
||||
const lar_base_constraint& get_constraint(unsigned ci) const {
|
||||
return *(m_constraints[ci]);
|
||||
}
|
||||
|
||||
////////////////// methods ////////////////////////////////
|
||||
static_matrix<mpq, numeric_pair<mpq>> & A_r() { return m_mpq_lar_core_solver.m_r_A;}
|
||||
|
@ -128,10 +80,12 @@ public:
|
|||
}
|
||||
|
||||
|
||||
lar_solver() : m_mpq_lar_core_solver(
|
||||
m_settings,
|
||||
*this
|
||||
) {}
|
||||
lar_solver() : m_status(OPTIMAL),
|
||||
m_infeasible_column_index(-1),
|
||||
m_terms_start_index(1000000),
|
||||
m_column_type_function ([this] (unsigned j) {return m_mpq_lar_core_solver.m_column_types()[j];}),
|
||||
m_mpq_lar_core_solver(m_settings, *this)
|
||||
{}
|
||||
|
||||
void set_propagate_bounds_on_pivoted_rows_mode(bool v) {
|
||||
m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows = v? (& m_rows_with_changed_bounds) : nullptr;
|
||||
|
@ -146,25 +100,8 @@ public:
|
|||
delete t;
|
||||
}
|
||||
|
||||
var_index add_var(unsigned ext_j) {
|
||||
var_index i;
|
||||
lean_assert (ext_j < m_terms_start_index);
|
||||
|
||||
if (ext_j >= m_terms_start_index)
|
||||
throw 0; // todo : what is the right was to exit?
|
||||
|
||||
if (try_get_val(m_ext_vars_to_columns, ext_j, i)) {
|
||||
return i;
|
||||
}
|
||||
lean_assert(m_vars_to_ul_pairs.size() == A_r().column_count());
|
||||
i = A_r().column_count();
|
||||
m_vars_to_ul_pairs.push_back (ul_pair(static_cast<unsigned>(-1)));
|
||||
register_new_ext_var_index(ext_j);
|
||||
add_non_basic_var_to_core_fields();
|
||||
lean_assert(sizes_are_correct());
|
||||
return i;
|
||||
}
|
||||
|
||||
#include "util/lp/init_lar_solver.h"
|
||||
|
||||
numeric_pair<mpq> const& get_value(var_index vi) const { return m_mpq_lar_core_solver.m_r_x[vi]; }
|
||||
|
||||
bool is_term(var_index j) const {
|
||||
|
@ -177,98 +114,16 @@ public:
|
|||
}
|
||||
|
||||
|
||||
bool need_to_presolve_with_doubles() const { return m_mpq_lar_core_solver.need_to_presolve_with_double_solver(); }
|
||||
|
||||
void add_row_from_term_no_constraint(const lar_term * term) {
|
||||
// j will be a new variable
|
||||
unsigned j = A_r().column_count();
|
||||
ul_pair ul(j);
|
||||
m_vars_to_ul_pairs.push_back(ul);
|
||||
add_basic_var_to_core_fields();
|
||||
if (use_tableau()) {
|
||||
auto it = iterator_on_term_with_basis_var(*term, j);
|
||||
A_r().fill_last_row_with_pivoting(it,
|
||||
m_mpq_lar_core_solver.m_r_solver.m_basis_heading);
|
||||
m_mpq_lar_core_solver.m_r_solver.m_b.resize(A_r().column_count(), zero_of_type<mpq>());
|
||||
} else {
|
||||
fill_last_row_of_A_r(A_r(), term);
|
||||
}
|
||||
m_mpq_lar_core_solver.m_r_x[j] = get_basic_var_value_from_row_directly(A_r().row_count() - 1);
|
||||
if (need_to_presolve_with_doubles())
|
||||
fill_last_row_of_A_d(A_d(), term);
|
||||
}
|
||||
bool use_lu() const { return m_settings.simplex_strategy() == simplex_strategy_enum::lu; }
|
||||
|
||||
void add_constraint_from_term_and_create_new_column_row(unsigned term_j, const lar_term* term,
|
||||
lconstraint_kind kind, const mpq & right_side) {
|
||||
|
||||
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
|
||||
// j will be a new variable
|
||||
unsigned j = A_r().column_count();
|
||||
ul_pair ul(j);
|
||||
m_vars_to_ul_pairs.push_back(ul);
|
||||
add_basic_var_to_core_fields();
|
||||
if (!m_settings.use_tableau()) {
|
||||
fill_last_row_of_A_r(A_r(), term);
|
||||
}
|
||||
else {
|
||||
auto it = iterator_on_term_with_basis_var(*term, j);
|
||||
A_r().fill_last_row_with_pivoting(it,
|
||||
m_mpq_lar_core_solver.m_r_solver.m_basis_heading);
|
||||
m_mpq_lar_core_solver.m_r_solver.m_b.resize(A_r().column_count(), zero_of_type<mpq>());
|
||||
}
|
||||
m_mpq_lar_core_solver.m_r_x[A_r().column_count() - 1] = get_basic_var_value_from_row_directly(A_r().row_count() - 1);
|
||||
fill_last_row_of_A_d(A_d(), term);
|
||||
register_new_ext_var_index(term_j);
|
||||
|
||||
// m_constraints.size() is the index of the constrained that is about to be added
|
||||
update_column_type_and_bound(j, kind, right_side - term->m_v, m_constraints.size());
|
||||
m_constraints.push_back(new lar_term_constraint(term, kind, right_side));
|
||||
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
|
||||
}
|
||||
|
||||
void add_var_bound_on_constraint_for_term(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(is_term(j));
|
||||
unsigned adjusted_term_index = adjust_term_index(j);
|
||||
unsigned term_j;
|
||||
if (try_get_val(m_ext_vars_to_columns, j, term_j)) {
|
||||
mpq rs = right_side - m_orig_terms[adjusted_term_index]->m_v;
|
||||
m_constraints.push_back(new lar_term_constraint(m_orig_terms[adjusted_term_index], kind, right_side));
|
||||
update_column_type_and_bound(term_j, kind, rs, ci);
|
||||
}
|
||||
else {
|
||||
add_constraint_from_term_and_create_new_column_row(j, m_orig_terms[adjusted_term_index], kind, right_side);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void add_row_for_term(const lar_term * term) {
|
||||
lean_assert(sizes_are_correct());
|
||||
add_row_from_term_no_constraint(term);
|
||||
lean_assert(sizes_are_correct());
|
||||
}
|
||||
|
||||
bool sizes_are_correct() const {
|
||||
lean_assert(!m_mpq_lar_core_solver.need_to_presolve_with_double_solver() || A_r().column_count() == A_d().column_count());
|
||||
lean_assert(strategy_is_undecided() || !m_mpq_lar_core_solver.need_to_presolve_with_double_solver() || A_r().column_count() == A_d().column_count());
|
||||
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_column_types.size());
|
||||
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
|
||||
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_x.size());
|
||||
return true;
|
||||
}
|
||||
|
||||
constraint_index add_var_bound(var_index j, lconstraint_kind kind, const mpq & right_side) {
|
||||
lean_assert(sizes_are_correct());
|
||||
constraint_index ci = m_constraints.size();
|
||||
if (!is_term(j)) { // j is a var
|
||||
auto vc = new lar_var_constraint(j, kind, right_side);
|
||||
m_constraints.push_back(vc);
|
||||
update_column_type_and_bound(j, kind, right_side, ci);
|
||||
} else {
|
||||
add_var_bound_on_constraint_for_term(j, kind, right_side, ci);
|
||||
}
|
||||
lean_assert(sizes_are_correct());
|
||||
return ci;
|
||||
}
|
||||
|
||||
|
||||
void print_implied_bound(const implied_bound& be, std::ostream & out) const {
|
||||
out << "implied bound\n";
|
||||
|
@ -490,10 +345,10 @@ public:
|
|||
// new linear_combination_iterator_on_vector<mpq>(m_terms[adjust_term_index(term_index)]->coeffs_as_vector());
|
||||
}
|
||||
|
||||
unsigned adjust_column_index_to_term_index(unsigned j) const {
|
||||
unsigned ext_var_or_term = m_columns_to_ext_vars_or_term_indices[j];
|
||||
return ext_var_or_term < m_terms_start_index ? j : ext_var_or_term;
|
||||
}
|
||||
unsigned adjust_column_index_to_term_index(unsigned j) const {
|
||||
unsigned ext_var_or_term = m_columns_to_ext_vars_or_term_indices[j];
|
||||
return ext_var_or_term < m_terms_start_index ? j : ext_var_or_term;
|
||||
}
|
||||
|
||||
void propagate_bounds_on_a_term(const lar_term& t, bound_propagator & bp, unsigned term_offset) {
|
||||
lean_assert(false); // not implemented
|
||||
|
@ -561,6 +416,9 @@ public:
|
|||
void set_status(lp_status s) {m_status = s;}
|
||||
|
||||
lp_status find_feasible_solution() {
|
||||
if (strategy_is_undecided())
|
||||
decide_on_strategy_and_adjust_initial_state();
|
||||
|
||||
m_mpq_lar_core_solver.m_r_solver.m_look_for_feasible_solution_only = true;
|
||||
return solve();
|
||||
}
|
||||
|
@ -599,7 +457,8 @@ public:
|
|||
return ret;
|
||||
}
|
||||
void push() {
|
||||
lean_assert(sizes_are_correct());
|
||||
m_simplex_strategy = m_settings.simplex_strategy();
|
||||
m_simplex_strategy.push();
|
||||
m_status.push();
|
||||
m_vars_to_ul_pairs.push();
|
||||
m_infeasible_column_index.push();
|
||||
|
@ -608,7 +467,6 @@ public:
|
|||
m_term_count.push();
|
||||
m_constraint_count = m_constraints.size();
|
||||
m_constraint_count.push();
|
||||
lean_assert(sizes_are_correct());
|
||||
}
|
||||
|
||||
static void clean_large_elements_after_pop(unsigned n, int_set& set) {
|
||||
|
@ -627,8 +485,7 @@ public:
|
|||
|
||||
|
||||
void pop(unsigned k) {
|
||||
lean_assert(sizes_are_correct());
|
||||
int n_was = static_cast<int>(m_ext_vars_to_columns.size());
|
||||
int n_was = static_cast<int>(m_ext_vars_to_columns.size());
|
||||
m_status.pop(k);
|
||||
m_infeasible_column_index.pop(k);
|
||||
unsigned n = m_vars_to_ul_pairs.peek_size(k);
|
||||
|
@ -645,7 +502,8 @@ public:
|
|||
unsigned m = A_r().row_count();
|
||||
clean_large_elements_after_pop(m, m_rows_with_changed_bounds);
|
||||
clean_inf_set_of_r_solver_after_pop();
|
||||
lean_assert(!use_tableau() || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
|
||||
lean_assert(m_settings.simplex_strategy() == simplex_strategy_enum::undecided ||
|
||||
(!use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
|
||||
|
||||
|
||||
lean_assert(ax_is_correct());
|
||||
|
@ -662,7 +520,9 @@ public:
|
|||
}
|
||||
m_terms.resize(m_term_count);
|
||||
m_orig_terms.resize(m_term_count);
|
||||
lean_assert(sizes_are_correct());
|
||||
m_simplex_strategy.pop(k);
|
||||
m_settings.simplex_strategy() = m_simplex_strategy;
|
||||
lean_assert(sizes_are_correct());
|
||||
lean_assert((!m_settings.use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
|
||||
}
|
||||
|
||||
|
@ -676,6 +536,9 @@ public:
|
|||
|
||||
bool maximize_term_on_tableau(const vector<std::pair<mpq, var_index>> & term,
|
||||
impq &term_max) {
|
||||
if (settings().simplex_strategy() == simplex_strategy_enum::undecided)
|
||||
decide_on_strategy_and_adjust_initial_state();
|
||||
|
||||
m_mpq_lar_core_solver.solve();
|
||||
if (m_mpq_lar_core_solver.m_r_solver.get_status() == UNBOUNDED)
|
||||
return false;
|
||||
|
@ -747,13 +610,13 @@ public:
|
|||
bool maximize_term_on_corrected_r_solver(const vector<std::pair<mpq, var_index>> & term,
|
||||
impq &term_max) {
|
||||
settings().backup_costs = false;
|
||||
switch (settings().m_simplex_strategy) {
|
||||
switch (settings().simplex_strategy()) {
|
||||
case simplex_strategy_enum::tableau_rows:
|
||||
prepare_costs_for_r_solver(term);
|
||||
settings().m_simplex_strategy = simplex_strategy_enum::tableau_costs;
|
||||
settings().simplex_strategy() = simplex_strategy_enum::tableau_costs;
|
||||
{
|
||||
bool ret = maximize_term_on_tableau(term, term_max);
|
||||
settings().m_simplex_strategy = simplex_strategy_enum::tableau_rows;
|
||||
settings().simplex_strategy() = simplex_strategy_enum::tableau_rows;
|
||||
set_costs_to_zero(term);
|
||||
m_mpq_lar_core_solver.m_r_solver.set_status(OPTIMAL);
|
||||
return ret;
|
||||
|
@ -767,7 +630,7 @@ public:
|
|||
return ret;
|
||||
}
|
||||
|
||||
case simplex_strategy_enum::no_tableau:
|
||||
case simplex_strategy_enum::lu:
|
||||
lean_assert(false); // not implemented
|
||||
return false;
|
||||
default:
|
||||
|
@ -786,24 +649,6 @@ public:
|
|||
|
||||
|
||||
|
||||
var_index add_term(const vector<std::pair<mpq, var_index>> & coeffs,
|
||||
const mpq &m_v) {
|
||||
|
||||
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
|
||||
m_terms.push_back(new lar_term(coeffs, m_v));
|
||||
m_orig_terms.push_back(new lar_term(coeffs, m_v));
|
||||
unsigned adjusted_term_index = m_terms.size() - 1;
|
||||
if (use_tableau() && !coeffs.empty()) {
|
||||
register_new_ext_var_index(m_terms_start_index + adjusted_term_index);
|
||||
add_row_for_term(m_orig_terms.back());
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
}
|
||||
lean_assert(m_ext_vars_to_columns.size() == A_r().column_count());
|
||||
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
|
||||
return m_terms_start_index + adjusted_term_index;
|
||||
}
|
||||
|
||||
const lar_term & get_term(unsigned j) const {
|
||||
lean_assert(j >= m_terms_start_index);
|
||||
return *m_terms[j - m_terms_start_index];
|
||||
|
@ -818,78 +663,6 @@ public:
|
|||
A_d().pop(k);
|
||||
}
|
||||
|
||||
void add_new_var_to_core_fields_for_mpq(bool register_in_basis) {
|
||||
unsigned j = A_r().column_count();
|
||||
A_r().add_column();
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_x.size() == j);
|
||||
// lean_assert(m_mpq_lar_core_solver.m_r_low_bounds.size() == j && m_mpq_lar_core_solver.m_r_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_r_x.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_solver.m_inf_set.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_solver.m_costs.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_r_solver.m_d.resize(j + 1);
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_r().add_row();
|
||||
m_mpq_lar_core_solver.m_r_heading.push_back(m_mpq_lar_core_solver.m_r_basis.size());
|
||||
m_mpq_lar_core_solver.m_r_basis.push_back(j);
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_r_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_r_nbasis.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
void add_new_var_to_core_fields_for_doubles(bool register_in_basis) {
|
||||
unsigned j = A_d().column_count();
|
||||
A_d().add_column();
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_x.size() == j);
|
||||
// lean_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_d_x.resize(j + 1 );
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1);
|
||||
lean_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_d().add_row();
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size());
|
||||
m_mpq_lar_core_solver.m_d_basis.push_back(j);
|
||||
}else {
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_d_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_d_nbasis.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
void add_basic_var_to_core_fields() {
|
||||
bool need_to_presolve_with_doubles = m_mpq_lar_core_solver.need_to_presolve_with_double_solver();
|
||||
lean_assert(!need_to_presolve_with_doubles || A_r().column_count() == A_d().column_count());
|
||||
m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column);
|
||||
m_columns_with_changed_bound.increase_size_by_one();
|
||||
m_rows_with_changed_bounds.increase_size_by_one();
|
||||
add_new_var_to_core_fields_for_mpq(true);
|
||||
if (need_to_presolve_with_doubles)
|
||||
add_new_var_to_core_fields_for_doubles(true);
|
||||
}
|
||||
|
||||
void add_non_basic_var_to_core_fields() {
|
||||
lean_assert(!m_mpq_lar_core_solver.need_to_presolve_with_double_solver() || A_r().column_count() == A_d().column_count());
|
||||
m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column);
|
||||
m_columns_with_changed_bound.increase_size_by_one();
|
||||
add_new_var_to_core_fields_for_mpq(false);
|
||||
if (m_mpq_lar_core_solver.need_to_presolve_with_double_solver())
|
||||
add_new_var_to_core_fields_for_doubles(false);
|
||||
}
|
||||
|
||||
void register_new_ext_var_index(unsigned s) {
|
||||
lean_assert(!contains(m_ext_vars_to_columns, s));
|
||||
unsigned j = static_cast<unsigned>(m_ext_vars_to_columns.size());
|
||||
m_ext_vars_to_columns[s] = j;
|
||||
lean_assert(m_columns_to_ext_vars_or_term_indices.size() == j);
|
||||
m_columns_to_ext_vars_or_term_indices.push_back(s);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void set_upper_bound_witness(var_index j, constraint_index ci) {
|
||||
ul_pair ul = m_vars_to_ul_pairs[j];
|
||||
|
@ -903,312 +676,6 @@ public:
|
|||
m_vars_to_ul_pairs[j] = ul;
|
||||
}
|
||||
|
||||
void update_free_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_ind) {
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::upper_bound;
|
||||
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
}
|
||||
set_upper_bound_witness(j, constr_ind);
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::low_bound;
|
||||
lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
}
|
||||
set_low_bound_witness(j, constr_ind);
|
||||
break;
|
||||
case EQ:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
set_upper_bound_witness(j, constr_ind);
|
||||
set_low_bound_witness(j, constr_ind);
|
||||
break;
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
void update_upper_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (up < m_mpq_lar_core_solver.m_r_upper_bounds()[j]) {
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::boxed;
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
set_low_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
set_low_bound_witness(j, ci);
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void update_boxed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::boxed && m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (up < m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
lean_assert(false);
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
if (m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j])
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else if ( low == m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
void update_low_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::low_bound);
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
|
||||
if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void update_fixed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::fixed && m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
|
||||
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_r_low_bounds()[j].y.is_zero() && m_mpq_lar_core_solver.m_r_upper_bounds()[j].y.is_zero()));
|
||||
auto v = numeric_pair<mpq>(right_side, mpq(0));
|
||||
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
if (v <= m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
}
|
||||
break;
|
||||
case LE:
|
||||
{
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
{
|
||||
if (v >= m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index =j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GE:
|
||||
{
|
||||
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
lean_unreachable();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void update_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_index) {
|
||||
switch(m_mpq_lar_core_solver.m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
update_free_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::boxed:
|
||||
update_boxed_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
update_low_bound_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
update_upper_bound_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::fixed:
|
||||
update_fixed_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
default:
|
||||
lean_assert(false); // cannot be here
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void substitute_terms(const mpq & mult,
|
||||
const vector<std::pair<mpq, var_index>>& left_side_with_terms,
|
||||
|
@ -1247,8 +714,9 @@ public:
|
|||
|
||||
bool use_tableau() const { return m_settings.use_tableau(); }
|
||||
|
||||
bool use_tableau_costs() const { return m_settings.simplex_strategy() == simplex_strategy_enum::tableau_costs; }
|
||||
|
||||
bool use_tableau_costs() const {
|
||||
return m_settings.simplex_strategy() == simplex_strategy_enum::tableau_costs;
|
||||
}
|
||||
|
||||
void detect_rows_of_column_with_bound_change(unsigned j) {
|
||||
if (m_mpq_lar_core_solver.m_r_heading[j] >= 0) { // it is a basic column
|
||||
|
@ -1485,23 +953,6 @@ public:
|
|||
unsigned basis_j = A.column_count() - 1;
|
||||
A.set(last_row, basis_j, mpq(1));
|
||||
}
|
||||
// this fills the last row of A_d and sets the basis column: -1 in the last column of the row
|
||||
void fill_last_row_of_A_d(static_matrix<double, double> & A, const lar_term* ls) {
|
||||
lean_assert(A.row_count() > 0);
|
||||
lean_assert(A.column_count() > 0);
|
||||
unsigned last_row = A.row_count() - 1;
|
||||
lean_assert(A.m_rows[last_row].empty());
|
||||
|
||||
for (auto & t : ls->m_coeffs) {
|
||||
lean_assert(!is_zero(t.second));
|
||||
var_index j = t.first;
|
||||
A.set(last_row, j, - t.second.get_double());
|
||||
}
|
||||
|
||||
unsigned basis_j = A.column_count() - 1;
|
||||
A.set(last_row, basis_j, - 1 );
|
||||
}
|
||||
|
||||
|
||||
template <typename U, typename V>
|
||||
void create_matrix_A(static_matrix<U, V> & matr) {
|
||||
|
@ -1518,8 +969,8 @@ public:
|
|||
|
||||
template <typename U, typename V>
|
||||
void copy_from_mpq_matrix(static_matrix<U, V> & matr) {
|
||||
lean_assert(matr.row_count() == A_r().row_count());
|
||||
lean_assert(matr.column_count() == A_r().column_count());
|
||||
matr.m_rows.resize(A_r().row_count());
|
||||
matr.m_columns.resize(A_r().column_count());
|
||||
for (unsigned i = 0; i < matr.row_count(); i++) {
|
||||
for (auto & it : A_r().m_rows[i]) {
|
||||
matr.set(i, it.m_j, convert_struct<U, mpq>::convert(it.get_val()));
|
||||
|
@ -1691,10 +1142,8 @@ public:
|
|||
|
||||
bool explanation_is_correct(const vector<std::pair<mpq, unsigned>>& explanation) const {
|
||||
#ifdef LEAN_DEBUG
|
||||
#if 0
|
||||
// disabled as 'kind' is not assigned
|
||||
lconstraint_kind kind;
|
||||
the_relations_are_of_same_type(explanation, kind);
|
||||
lean_assert(the_relations_are_of_same_type(explanation, kind));
|
||||
lean_assert(the_left_sides_sum_to_zero(explanation));
|
||||
mpq rs = sum_of_right_sides_of_explanation(explanation);
|
||||
switch (kind) {
|
||||
|
@ -1712,7 +1161,6 @@ public:
|
|||
lean_assert(false);
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
@ -1737,58 +1185,6 @@ public:
|
|||
return ret;
|
||||
}
|
||||
|
||||
// template <typename U, typename V>
|
||||
// void prepare_core_solver_fields_with_signature(static_matrix<U, V> & A, vector<V> & x,
|
||||
// vector<V> & low_bound,
|
||||
// vector<V> & upper_bound, const lar_solution_signature & signature) {
|
||||
// create_matrix_A_r(A);
|
||||
// fill_bounds_for_core_solver(low_bound, upper_bound);
|
||||
// if (m_status == INFEASIBLE) {
|
||||
// lean_assert(false); // not implemented
|
||||
// }
|
||||
|
||||
// resize_and_init_x_with_signature(x, low_bound, upper_bound, signature);
|
||||
// lean_assert(A.column_count() == x.size());
|
||||
// }
|
||||
|
||||
// void find_solution_signature_with_doubles(lar_solution_signature & signature) {
|
||||
// static_matrix<double, double> A;
|
||||
// vector<double> x, low_bounds, upper_bounds;
|
||||
// lean_assert(false); // not implemented
|
||||
// // prepare_core_solver_fields<double, double>(A, x, low_bounds, upper_bounds);
|
||||
// vector<double> column_scale_vector;
|
||||
// vector<double> right_side_vector(A.row_count(), 0);
|
||||
|
||||
// scaler<double, double > scaler(right_side_vector,
|
||||
// A,
|
||||
// m_settings.scaling_minimum,
|
||||
// m_settings.scaling_maximum,
|
||||
// column_scale_vector,
|
||||
// m_settings);
|
||||
// if (!scaler.scale()) {
|
||||
// // the scale did not succeed, unscaling
|
||||
// A.clear();
|
||||
// create_matrix_A_r(A);
|
||||
// for (auto & s : column_scale_vector)
|
||||
// s = 1.0;
|
||||
// }
|
||||
// vector<double> costs(A.column_count());
|
||||
// auto core_solver = lp_primal_core_solver<double, double>(A,
|
||||
// right_side_vector,
|
||||
// x,
|
||||
// m_mpq_lar_core_solver.m_basis,
|
||||
// m_mpq_lar_core_solver.m_nbasis,
|
||||
// m_mpq_lar_core_solver.m_heading,
|
||||
// costs,
|
||||
// m_mpq_lar_core_solver.m_column_types(),
|
||||
// low_bounds,
|
||||
// upper_bounds,
|
||||
// m_settings,
|
||||
// *this);
|
||||
// core_solver.find_feasible_solution();
|
||||
// extract_signature_from_lp_core_solver(core_solver, signature);
|
||||
// }
|
||||
|
||||
bool has_lower_bound(var_index var, constraint_index& ci, mpq& value, bool& is_strict) {
|
||||
|
||||
if (var >= m_vars_to_ul_pairs.size()) {
|
||||
|
@ -1865,12 +1261,29 @@ public:
|
|||
|
||||
|
||||
void get_model(std::unordered_map<var_index, mpq> & variable_values) const {
|
||||
mpq delta = mpq(1, 2); // start from 0.5 to have less clashes
|
||||
lean_assert(m_status == OPTIMAL);
|
||||
mpq delta = m_mpq_lar_core_solver.find_delta_for_strict_bounds();
|
||||
for (unsigned i = 0; i < m_mpq_lar_core_solver.m_r_x.size(); i++ ) {
|
||||
const numeric_pair<mpq> & rp = m_mpq_lar_core_solver.m_r_x[i];
|
||||
variable_values[i] = rp.x + delta * rp.y;
|
||||
}
|
||||
unsigned i;
|
||||
do {
|
||||
|
||||
// different pairs have to produce different singleton values
|
||||
std::unordered_set<impq> set_of_different_pairs;
|
||||
std::unordered_set<mpq> set_of_different_singles;
|
||||
delta = m_mpq_lar_core_solver.find_delta_for_strict_bounds(delta);
|
||||
for (i = 0; i < m_mpq_lar_core_solver.m_r_x.size(); i++ ) {
|
||||
const numeric_pair<mpq> & rp = m_mpq_lar_core_solver.m_r_x[i];
|
||||
set_of_different_pairs.insert(rp);
|
||||
mpq x = rp.x + delta * rp.y;
|
||||
set_of_different_singles.insert(x);
|
||||
if (set_of_different_pairs.size()
|
||||
!= set_of_different_singles.size()) {
|
||||
delta /= mpq(2);
|
||||
break;
|
||||
}
|
||||
|
||||
variable_values[i] = x;
|
||||
}
|
||||
} while (i != m_mpq_lar_core_solver.m_r_x.size());
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ struct linear_combination_iterator {
|
|||
template <typename T>
|
||||
struct linear_combination_iterator_on_vector : linear_combination_iterator<T> {
|
||||
vector<std::pair<T, unsigned>> & m_vector;
|
||||
int m_offset = 0;
|
||||
int m_offset;
|
||||
bool next(T & a, unsigned & i) {
|
||||
if(m_offset >= m_vector.size())
|
||||
return false;
|
||||
|
@ -40,7 +40,10 @@ struct linear_combination_iterator_on_vector : linear_combination_iterator<T> {
|
|||
linear_combination_iterator<T> * clone() {
|
||||
return new linear_combination_iterator_on_vector(m_vector);
|
||||
}
|
||||
linear_combination_iterator_on_vector(vector<std::pair<T, unsigned>> & vec): m_vector(vec) {}
|
||||
linear_combination_iterator_on_vector(vector<std::pair<T, unsigned>> & vec):
|
||||
m_vector(vec),
|
||||
m_offset(0)
|
||||
{}
|
||||
unsigned size() const { return m_vector.size(); }
|
||||
};
|
||||
|
||||
|
|
|
@ -17,7 +17,8 @@ namespace lean {
|
|||
|
||||
template <typename T, typename X> // X represents the type of the x variable and the bounds
|
||||
class lp_core_solver_base {
|
||||
unsigned m_total_iterations = 0;
|
||||
unsigned m_total_iterations;
|
||||
unsigned m_iters_with_no_cost_growing;
|
||||
unsigned inc_total_iterations() { ++m_settings.st().m_total_iterations; return m_total_iterations++; }
|
||||
private:
|
||||
lp_status m_status;
|
||||
|
@ -25,40 +26,39 @@ public:
|
|||
bool current_x_is_feasible() const { return m_inf_set.size() == 0; }
|
||||
bool current_x_is_infeasible() const { return m_inf_set.size() != 0; }
|
||||
int_set m_inf_set;
|
||||
bool m_using_infeas_costs = false;
|
||||
bool m_using_infeas_costs;
|
||||
|
||||
|
||||
vector<unsigned> m_columns_nz; // m_columns_nz[i] keeps an approximate value of non zeroes the i-th column
|
||||
vector<unsigned> m_rows_nz; // m_rows_nz[i] keeps an approximate value of non zeroes in the i-th row
|
||||
indexed_vector<T> m_pivot_row_of_B_1; // the pivot row of the reverse of B
|
||||
indexed_vector<T> m_pivot_row; // this is the real pivot row of the simplex tableu
|
||||
vector<unsigned> m_columns_nz; // m_columns_nz[i] keeps an approximate value of non zeroes the i-th column
|
||||
vector<unsigned> m_rows_nz; // m_rows_nz[i] keeps an approximate value of non zeroes in the i-th row
|
||||
indexed_vector<T> m_pivot_row_of_B_1; // the pivot row of the reverse of B
|
||||
indexed_vector<T> m_pivot_row; // this is the real pivot row of the simplex tableu
|
||||
static_matrix<T, X> & m_A; // the matrix A
|
||||
vector<X> & m_b; // the right side
|
||||
vector<unsigned> & m_basis;
|
||||
vector<unsigned>& m_nbasis;
|
||||
vector<int>& m_basis_heading;
|
||||
vector<X> & m_x; // a feasible solution, the fist time set in the constructor
|
||||
vector<T> & m_costs;
|
||||
lp_settings & m_settings;
|
||||
vector<T> m_y; // the buffer for yB = cb
|
||||
vector<X> & m_b; // the right side
|
||||
vector<unsigned> & m_basis;
|
||||
vector<unsigned>& m_nbasis;
|
||||
vector<int>& m_basis_heading;
|
||||
vector<X> & m_x; // a feasible solution, the fist time set in the constructor
|
||||
vector<T> & m_costs;
|
||||
lp_settings & m_settings;
|
||||
vector<T> m_y; // the buffer for yB = cb
|
||||
// a device that is able to solve Bx=c, xB=d, and change the basis
|
||||
lu<T, X> * m_factorization = nullptr;
|
||||
const column_namer & m_column_names;
|
||||
indexed_vector<T> m_w; // the vector featuring in 24.3 of the Chvatal book
|
||||
vector<T> m_d; // the vector of reduced costs
|
||||
indexed_vector<T> m_ed; // the solution of B*m_ed = a
|
||||
unsigned m_iters_with_no_cost_growing = 0;
|
||||
lu<T, X> * m_factorization;
|
||||
const column_namer & m_column_names;
|
||||
indexed_vector<T> m_w; // the vector featuring in 24.3 of the Chvatal book
|
||||
vector<T> m_d; // the vector of reduced costs
|
||||
indexed_vector<T> m_ed; // the solution of B*m_ed = a
|
||||
const vector<column_type> & m_column_types;
|
||||
const vector<X> & m_low_bounds;
|
||||
const vector<X> & m_upper_bounds;
|
||||
vector<T> m_column_norms; // the approximate squares of column norms that help choosing a profitable column
|
||||
vector<X> m_copy_of_xB;
|
||||
unsigned m_basis_sort_counter = 0;
|
||||
vector<T> m_steepest_edge_coefficients;
|
||||
vector<unsigned> m_trace_of_basis_change_vector; // the even positions are entering, the odd positions are leaving
|
||||
bool m_tracing_basis_changes = false;
|
||||
int_set* m_pivoted_rows = nullptr;
|
||||
bool m_look_for_feasible_solution_only = false;
|
||||
const vector<X> & m_low_bounds;
|
||||
const vector<X> & m_upper_bounds;
|
||||
vector<T> m_column_norms; // the approximate squares of column norms that help choosing a profitable column
|
||||
vector<X> m_copy_of_xB;
|
||||
unsigned m_basis_sort_counter;
|
||||
vector<T> m_steepest_edge_coefficients;
|
||||
vector<unsigned> m_trace_of_basis_change_vector; // the even positions are entering, the odd positions are leaving
|
||||
bool m_tracing_basis_changes;
|
||||
int_set* m_pivoted_rows;
|
||||
bool m_look_for_feasible_solution_only;
|
||||
void start_tracing_basis_changes() {
|
||||
m_trace_of_basis_change_vector.resize(0);
|
||||
m_tracing_basis_changes = true;
|
||||
|
@ -348,7 +348,7 @@ public:
|
|||
if (x_is_at_bound(j))
|
||||
break; // we should preserve x if possible
|
||||
// snap randomly
|
||||
if (my_random() % 2 == 1)
|
||||
if (m_settings.random_next() % 2 == 1)
|
||||
m_x[j] = m_low_bounds[j];
|
||||
else
|
||||
m_x[j] = m_upper_bounds[j];
|
||||
|
@ -678,6 +678,13 @@ public:
|
|||
lean_assert(is_zero(this->m_costs[j]));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
unsigned & iters_with_no_cost_growing() {
|
||||
return m_iters_with_no_cost_growing;
|
||||
}
|
||||
|
||||
const unsigned & iters_with_no_cost_growing() const {
|
||||
return m_iters_with_no_cost_growing;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
@ -22,8 +22,11 @@ lp_core_solver_base(static_matrix<T, X> & A,
|
|||
const vector<column_type> & column_types,
|
||||
const vector<X> & low_bound_values,
|
||||
const vector<X> & upper_bound_values):
|
||||
m_total_iterations(0),
|
||||
m_iters_with_no_cost_growing(0),
|
||||
m_status(FEASIBLE),
|
||||
m_inf_set(A.column_count()),
|
||||
m_using_infeas_costs(false),
|
||||
m_pivot_row_of_B_1(A.row_count()),
|
||||
m_pivot_row(A.column_count()),
|
||||
m_A(A),
|
||||
|
@ -45,7 +48,11 @@ lp_core_solver_base(static_matrix<T, X> & A,
|
|||
m_upper_bounds(upper_bound_values),
|
||||
m_column_norms(m_n()),
|
||||
m_copy_of_xB(m_m()),
|
||||
m_steepest_edge_coefficients(A.column_count()) {
|
||||
m_basis_sort_counter(0),
|
||||
m_steepest_edge_coefficients(A.column_count()),
|
||||
m_tracing_basis_changes(false),
|
||||
m_pivoted_rows(nullptr),
|
||||
m_look_for_feasible_solution_only(false) {
|
||||
lean_assert(bounds_for_boxed_are_set_correctly());
|
||||
init();
|
||||
init_basis_heading_and_non_basic_columns_vector();
|
||||
|
@ -57,10 +64,9 @@ allocate_basis_heading() { // the rest of initilization will be handled by the f
|
|||
lean_assert(basis_heading_is_correct());
|
||||
}
|
||||
template <typename T, typename X> void lp_core_solver_base<T, X>::
|
||||
init() {
|
||||
my_random_init(m_settings.random_seed);
|
||||
init() {
|
||||
allocate_basis_heading();
|
||||
if (!use_tableau())
|
||||
if (m_settings.use_lu())
|
||||
init_factorization(m_factorization, m_A, m_basis, m_settings);
|
||||
}
|
||||
|
||||
|
@ -527,13 +533,19 @@ update_basis_and_x(int entering, int leaving, X const & tt) {
|
|||
init_factorization(m_factorization, m_A, m_basis, m_settings);
|
||||
if (!find_x_by_solving()) {
|
||||
restore_x(entering, tt);
|
||||
lean_assert(!A_mult_x_is_off());
|
||||
if(A_mult_x_is_off()) {
|
||||
m_status = FLOATING_POINT_ERROR;
|
||||
m_iters_with_no_cost_growing++;
|
||||
return false;
|
||||
}
|
||||
|
||||
init_factorization(m_factorization, m_A, m_basis, m_settings);
|
||||
m_iters_with_no_cost_growing++;
|
||||
if (m_factorization->get_status() != LU_status::OK) {
|
||||
std::stringstream s;
|
||||
s << "failing refactor on off_result for entering = " << entering << ", leaving = " << leaving << " total_iterations = " << total_iterations();
|
||||
throw_exception(s.str());
|
||||
// s << "failing refactor on off_result for entering = " << entering << ", leaving = " << leaving << " total_iterations = " << total_iterations();
|
||||
m_status = FLOATING_POINT_ERROR;
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -429,7 +429,7 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::basis_change_a
|
|||
if (snap_runaway_nonbasic_column(m_p)) {
|
||||
if (!this->find_x_by_solving()) {
|
||||
revert_to_previous_basis();
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
this->iters_with_no_cost_growing()++;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -437,7 +437,7 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::basis_change_a
|
|||
if (!problem_is_dual_feasible()) {
|
||||
// todo : shift the costs!!!!
|
||||
revert_to_previous_basis();
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
this->iters_with_no_cost_growing()++;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -537,7 +537,7 @@ template <typename T, typename X> unsigned lp_dual_core_solver<T, X>::get_number
|
|||
if (this->m_m() > 300) {
|
||||
s = (unsigned)((s / 100.0) * this->m_settings.percent_of_entering_to_check);
|
||||
}
|
||||
return my_random() % s + 1;
|
||||
return this->m_settings.random_next() % s + 1;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::delta_keeps_the_sign(int initial_delta_sign, const T & delta) {
|
||||
|
@ -715,7 +715,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::update_xb_afte
|
|||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::one_iteration() {
|
||||
unsigned number_of_rows_to_try = get_number_of_rows_to_try_for_leaving();
|
||||
unsigned offset_in_rows = my_random() % this->m_m();
|
||||
unsigned offset_in_rows = this->m_settings.random_next() % this->m_m();
|
||||
if (this->get_status() == TENTATIVE_DUAL_UNBOUNDED) {
|
||||
number_of_rows_to_try = this->m_m();
|
||||
} else {
|
||||
|
@ -730,14 +730,14 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::solve() { // s
|
|||
lean_assert(problem_is_dual_feasible());
|
||||
lean_assert(this->basis_heading_is_correct());
|
||||
this->set_total_iterations(0);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
do {
|
||||
if (this->print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over("", *this->m_settings.get_message_ostream())){
|
||||
return;
|
||||
}
|
||||
one_iteration();
|
||||
} while (this->get_status() != FLOATING_POINT_ERROR && this->get_status() != DUAL_UNBOUNDED && this->get_status() != OPTIMAL &&
|
||||
this->m_iters_with_no_cost_growing <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
this->iters_with_no_cost_growing() <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&& this->total_iterations() <= this->m_settings.max_total_number_of_iterations);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -11,7 +11,7 @@ namespace lean {
|
|||
|
||||
template <typename T, typename X>
|
||||
class lp_dual_simplex: public lp_solver<T, X> {
|
||||
lp_dual_core_solver<T, X> * m_core_solver = nullptr;
|
||||
lp_dual_core_solver<T, X> * m_core_solver;
|
||||
vector<T> m_b_copy;
|
||||
vector<T> m_low_bounds; // We don't have a convention here that all low bounds are zeros. At least it does not hold for the first stage solver
|
||||
vector<column_type> m_column_types_of_core_solver;
|
||||
|
@ -24,6 +24,7 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
lp_dual_simplex() : m_core_solver(nullptr) {}
|
||||
|
||||
|
||||
void decide_on_status_after_stage1();
|
||||
|
|
|
@ -3,7 +3,6 @@ def_module_params('lp',
|
|||
params=(
|
||||
('rep_freq', UINT, 0, 'the report frequency, in how many iterations print the cost and other info '),
|
||||
('min', BOOL, False, 'minimize cost'),
|
||||
('presolve_with_dbl', BOOL, True, 'presolve with double'),
|
||||
('print_stats', BOOL, False, 'print statistic'),
|
||||
('simplex_strategy', UINT, 0, 'simplex strategy for the solver'),
|
||||
('bprop_on_pivoted_rows', BOOL, True, 'propagate bounds on rows changed by the pivot operation')
|
||||
|
|
|
@ -32,21 +32,21 @@ class lp_primal_core_solver:public lp_core_solver_base<T, X> {
|
|||
public:
|
||||
// m_sign_of_entering is set to 1 if the entering variable needs
|
||||
// to grow and is set to -1 otherwise
|
||||
unsigned m_column_norm_update_counter;
|
||||
T m_enter_price_eps;
|
||||
int m_sign_of_entering_delta;
|
||||
unsigned m_column_norm_update_counter;
|
||||
T m_enter_price_eps;
|
||||
int m_sign_of_entering_delta;
|
||||
vector<breakpoint<X>> m_breakpoints;
|
||||
binary_heap_priority_queue<X> m_breakpoint_indices_queue;
|
||||
indexed_vector<T> m_beta; // see Swietanowski working vector beta for column norms
|
||||
T m_epsilon_of_reduced_cost = T(1)/T(10000000);
|
||||
vector<T> m_costs_backup;
|
||||
T m_converted_harris_eps;
|
||||
unsigned m_inf_row_index_for_tableau;
|
||||
bool m_bland_mode_tableau;
|
||||
int_set m_left_basis_tableau;
|
||||
unsigned m_bland_mode_threshold = 1000;
|
||||
unsigned m_left_basis_repeated;
|
||||
vector<unsigned> m_leaving_candidates;
|
||||
T m_epsilon_of_reduced_cost;
|
||||
vector<T> m_costs_backup;
|
||||
T m_converted_harris_eps;
|
||||
unsigned m_inf_row_index_for_tableau;
|
||||
bool m_bland_mode_tableau;
|
||||
int_set m_left_basis_tableau;
|
||||
unsigned m_bland_mode_threshold;
|
||||
unsigned m_left_basis_repeated;
|
||||
vector<unsigned> m_leaving_candidates;
|
||||
// T m_converted_harris_eps = convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance);
|
||||
std::list<unsigned> m_non_basis_list;
|
||||
void sort_non_basis();
|
||||
|
@ -76,10 +76,10 @@ public:
|
|||
// choices.clear();
|
||||
// choices.push_back(i);
|
||||
// len = row_len;
|
||||
// if (my_random() % 10) break;
|
||||
// if (m_settings.random_next() % 10) break;
|
||||
// } else if (row_len == len) {
|
||||
// choices.push_back(i);
|
||||
// if (my_random() % 10) break;
|
||||
// if (m_settings.random_next() % 10) break;
|
||||
// }
|
||||
// }
|
||||
|
||||
|
@ -89,7 +89,7 @@ public:
|
|||
// if (choices.size() == 1)
|
||||
// return choices[0];
|
||||
|
||||
// unsigned k = my_random() % choices.size();
|
||||
// unsigned k = this->m_settings.random_next() % choices.size();
|
||||
// return choices[k];
|
||||
// #endif
|
||||
// }
|
||||
|
@ -287,7 +287,7 @@ public:
|
|||
choices.clear();
|
||||
choices.push_back(&rc);
|
||||
} else if (damage == num_of_non_free_basics &&
|
||||
this->m_A.m_columns[j].size() <= len && (my_random() % 2)) {
|
||||
this->m_A.m_columns[j].size() <= len && (this->m_settings.random_next() % 2)) {
|
||||
choices.push_back(&rc);
|
||||
len = this->m_A.m_columns[j].size();
|
||||
}
|
||||
|
@ -299,7 +299,7 @@ public:
|
|||
return -1;
|
||||
}
|
||||
const row_cell<T>* rc = choices.size() == 1? choices[0] :
|
||||
choices[my_random() % choices.size()];
|
||||
choices[this->m_settings.random_next() % choices.size()];
|
||||
|
||||
a_ent = rc->m_value;
|
||||
return rc->m_j;
|
||||
|
@ -423,7 +423,7 @@ public:
|
|||
|
||||
void find_feasible_solution();
|
||||
|
||||
bool is_tiny() const {return this->m_m < 10 && this->m_n < 20;}
|
||||
// bool is_tiny() const {return this->m_m < 10 && this->m_n < 20;}
|
||||
|
||||
void one_iteration();
|
||||
void one_iteration_tableau();
|
||||
|
@ -905,7 +905,9 @@ public:
|
|||
column_type_array,
|
||||
low_bound_values,
|
||||
upper_bound_values),
|
||||
m_beta(A.row_count()) {
|
||||
m_beta(A.row_count()),
|
||||
m_epsilon_of_reduced_cost(T(1)/T(10000000)),
|
||||
m_bland_mode_threshold(1000) {
|
||||
|
||||
if (!(numeric_traits<T>::precise())) {
|
||||
m_converted_harris_eps = convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance);
|
||||
|
|
|
@ -199,7 +199,7 @@ int lp_primal_core_solver<T, X>::choose_entering_column_presize(unsigned number_
|
|||
entering_iter = non_basis_iter;
|
||||
if (number_of_benefitial_columns_to_go_over)
|
||||
number_of_benefitial_columns_to_go_over--;
|
||||
} else if (t == j_nz && my_random() % 2 == 0) {
|
||||
} else if (t == j_nz && this->m_settings.random_next() % 2 == 0) {
|
||||
entering_iter = non_basis_iter;
|
||||
}
|
||||
}// while (number_of_benefitial_columns_to_go_over && initial_offset_in_non_basis != offset_in_nb);
|
||||
|
@ -268,7 +268,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::advance_on_so
|
|||
if (slope_at_entering * m_sign_of_entering_delta > - m_epsilon_of_reduced_cost) { // the slope started to increase infeasibility
|
||||
break;
|
||||
} else {
|
||||
if ((numeric_traits<T>::precise() == false) || ( numeric_traits<T>::is_zero(slope_at_entering) && my_random() % 2 == 0)) {
|
||||
if ((numeric_traits<T>::precise() == false) || ( numeric_traits<T>::is_zero(slope_at_entering) && this->m_settings.random_next() % 2 == 0)) {
|
||||
// it is not cost benefitial to advance the delta more, so just break to increas the randomness
|
||||
break;
|
||||
}
|
||||
|
@ -307,7 +307,7 @@ find_leaving_on_harris_theta(X const & harris_theta, X & t) {
|
|||
// we also know that harris_theta is limited, so we will find a leaving
|
||||
zero_harris_eps();
|
||||
unsigned steps = this->m_ed.m_index.size();
|
||||
unsigned k = my_random() % steps;
|
||||
unsigned k = this->m_settings.random_next() % steps;
|
||||
unsigned initial_k = k;
|
||||
do {
|
||||
unsigned i = this->m_ed.m_index[k];
|
||||
|
@ -398,7 +398,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
return find_leaving_and_t_with_breakpoints(entering, t);
|
||||
bool unlimited = true;
|
||||
unsigned steps = this->m_ed.m_index.size();
|
||||
unsigned k = my_random() % steps;
|
||||
unsigned k = this->m_settings.random_next() % steps;
|
||||
unsigned initial_k = k;
|
||||
unsigned row_min_nz = this->m_n() + 1;
|
||||
m_leaving_candidates.clear();
|
||||
|
@ -454,7 +454,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
t = ratio;
|
||||
return entering;
|
||||
}
|
||||
k = my_random() % m_leaving_candidates.size();
|
||||
k = this->m_settings.random_next() % m_leaving_candidates.size();
|
||||
return m_leaving_candidates[k];
|
||||
}
|
||||
|
||||
|
@ -628,7 +628,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::backup_an
|
|||
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run() {
|
||||
this->m_basis_sort_counter = 0; // to initiate the sort of the basis
|
||||
this->set_total_iterations(0);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
init_inf_set();
|
||||
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only)
|
||||
return;
|
||||
|
@ -664,7 +664,7 @@ void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving(int entering
|
|||
this->init_lu();
|
||||
if (!this->find_x_by_solving()) {
|
||||
this->restore_x(entering, t * m_sign_of_entering_delta);
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
this->iters_with_no_cost_growing()++;
|
||||
LP_OUT(this->m_settings, "failing in advance_on_entering_equal_leaving for entering = " << entering << std::endl);
|
||||
return;
|
||||
}
|
||||
|
@ -679,7 +679,7 @@ void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving(int entering
|
|||
if (need_to_switch_costs() ||!this->current_x_is_feasible()) {
|
||||
init_reduced_costs();
|
||||
}
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
}
|
||||
|
||||
template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_entering_and_leaving(int entering, int leaving, X & t) {
|
||||
|
@ -699,14 +699,14 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
if (!pivot_compare_result){;}
|
||||
else if (pivot_compare_result == 2) { // the sign is changed, cannot continue
|
||||
this->set_status(UNSTABLE);
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
this->iters_with_no_cost_growing()++;
|
||||
return;
|
||||
} else {
|
||||
lean_assert(pivot_compare_result == 1);
|
||||
this->init_lu();
|
||||
if (this->m_factorization == nullptr || this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(UNSTABLE);
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
this->iters_with_no_cost_growing()++;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -728,7 +728,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
}
|
||||
|
||||
if (!is_zero(t)) {
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
init_infeasibility_after_update_x_if_inf(leaving);
|
||||
}
|
||||
|
||||
|
@ -783,7 +783,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_e
|
|||
this->init_lu();
|
||||
init_reduced_costs();
|
||||
if (refresh_result == 2) {
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
this->iters_with_no_cost_growing()++;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -833,7 +833,7 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::get_num
|
|||
if (ret == 0) {
|
||||
return 0;
|
||||
}
|
||||
return std::max(static_cast<unsigned>(my_random() % ret), 1u);
|
||||
return std::max(static_cast<unsigned>(this->m_settings.random_next() % ret), 1u);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::print_column_norms(std::ostream & out) {
|
||||
|
@ -934,7 +934,7 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
|
|||
&&
|
||||
this->get_status() != INFEASIBLE
|
||||
&&
|
||||
this->m_iters_with_no_cost_growing <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
this->iters_with_no_cost_growing() <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&&
|
||||
this->total_iterations() <= this->m_settings.max_total_number_of_iterations
|
||||
&&
|
||||
|
@ -961,7 +961,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_column_
|
|||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
this->m_column_norms[j] = T(static_cast<int>(this->m_A.m_columns[j].size() + 1))
|
||||
|
||||
+ T(static_cast<int>(my_random() % 10000)) / T(100000);
|
||||
+ T(static_cast<int>(this->m_settings.random_next() % 10000)) / T(100000);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -11,6 +11,7 @@
|
|||
#include "util/lp/lp_primal_core_solver.hpp"
|
||||
#include "util/lp/lp_primal_core_solver_tableau.hpp"
|
||||
namespace lean {
|
||||
|
||||
template void lp_primal_core_solver<double, double>::find_feasible_solution();
|
||||
template void lean::lp_primal_core_solver<lean::mpq, lean::numeric_pair<lean::mpq> >::find_feasible_solution();
|
||||
|
||||
|
@ -22,4 +23,5 @@ template void lean::lp_primal_core_solver<double, double>::clear_breakpoints();
|
|||
template bool lean::lp_primal_core_solver<lean::mpq, lean::mpq>::update_basis_and_x_tableau(int, int, lean::mpq const&);
|
||||
template bool lean::lp_primal_core_solver<double, double>::update_basis_and_x_tableau(int, int, double const&);
|
||||
template bool lean::lp_primal_core_solver<lean::mpq, lean::numeric_pair<lean::mpq> >::update_basis_and_x_tableau(int, int, lean::numeric_pair<lean::mpq> const&);
|
||||
|
||||
}
|
||||
|
|
|
@ -62,7 +62,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::choose_enteri
|
|||
if (number_of_benefitial_columns_to_go_over)
|
||||
number_of_benefitial_columns_to_go_over--;
|
||||
}
|
||||
else if (t == j_nz && my_random() % 2 == 0) {
|
||||
else if (t == j_nz && this->m_settings.random_next() % 2 == 0) {
|
||||
entering_iter = non_basis_iter;
|
||||
}
|
||||
}// while (number_of_benefitial_columns_to_go_over && initial_offset_in_non_basis != offset_in_nb);
|
||||
|
@ -169,7 +169,7 @@ unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
|||
&&
|
||||
this->get_status() != INFEASIBLE
|
||||
&&
|
||||
this->m_iters_with_no_cost_growing <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
this->iters_with_no_cost_growing() <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&&
|
||||
this->total_iterations() <= this->m_settings.max_total_number_of_iterations
|
||||
&&
|
||||
|
@ -202,7 +202,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
}
|
||||
this->update_basis_and_x_tableau(entering, leaving, t);
|
||||
lean_assert(this->A_mult_x_is_off() == false);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
} else {
|
||||
this->pivot_column_tableau(entering, this->m_basis_heading[leaving]);
|
||||
this->change_basis(entering, leaving);
|
||||
|
@ -233,7 +233,7 @@ void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving_tableau(int
|
|||
if (need_to_switch_costs()) {
|
||||
init_reduced_costs_tableau();
|
||||
}
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
}
|
||||
template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_and_t_tableau(unsigned entering, X & t) {
|
||||
unsigned k = 0;
|
||||
|
@ -293,7 +293,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
}
|
||||
if (m_leaving_candidates.size() == 1)
|
||||
return m_leaving_candidates[0];
|
||||
k = my_random() % m_leaving_candidates.size();
|
||||
k = this->m_settings.random_next() % m_leaving_candidates.size();
|
||||
return m_leaving_candidates[k];
|
||||
}
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tableau() {
|
||||
|
@ -302,7 +302,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tab
|
|||
lean_assert(basis_columns_are_set_correctly());
|
||||
this->m_basis_sort_counter = 0; // to initiate the sort of the basis
|
||||
this->set_total_iterations(0);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
lean_assert(this->inf_set_is_correct());
|
||||
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only)
|
||||
return;
|
||||
|
@ -315,7 +315,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tab
|
|||
this->m_column_norm_update_counter = 0;
|
||||
init_column_norms();
|
||||
}
|
||||
if (this->m_settings.m_simplex_strategy == simplex_strategy_enum::tableau_rows)
|
||||
if (this->m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
|
||||
init_tableau_rows();
|
||||
lean_assert(this->reduced_costs_are_correct_tableau());
|
||||
lean_assert(!this->need_to_pivot_to_basis_tableau());
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
class lp_primal_simplex: public lp_solver<T, X> {
|
||||
lp_primal_core_solver<T, X> * m_core_solver = nullptr;
|
||||
lp_primal_core_solver<T, X> * m_core_solver;
|
||||
vector<X> m_low_bounds;
|
||||
private:
|
||||
unsigned original_rows() { return this->m_external_rows_to_core_solver_rows.size(); }
|
||||
|
@ -28,7 +28,7 @@ private:
|
|||
|
||||
void set_scaled_costs();
|
||||
public:
|
||||
lp_primal_simplex() {}
|
||||
lp_primal_simplex(): m_core_solver(nullptr) {}
|
||||
|
||||
column_info<T> * get_or_create_column_info(unsigned column);
|
||||
|
||||
|
|
|
@ -25,9 +25,10 @@ enum class column_type {
|
|||
};
|
||||
|
||||
enum class simplex_strategy_enum {
|
||||
undecided = 3,
|
||||
tableau_rows = 0,
|
||||
tableau_costs = 1,
|
||||
no_tableau = 2
|
||||
lu = 2
|
||||
};
|
||||
|
||||
std::string column_type_to_string(column_type t);
|
||||
|
@ -70,8 +71,6 @@ template <typename X> bool is_epsilon_small(const X & v, const double& eps);
|
|||
|
||||
int get_millisecond_count();
|
||||
int get_millisecond_span(int start_time);
|
||||
unsigned my_random();
|
||||
void my_random_init(long unsigned seed);
|
||||
|
||||
|
||||
class lp_resource_limit {
|
||||
|
@ -105,49 +104,50 @@ private:
|
|||
default_lp_resource_limit m_default_resource_limit;
|
||||
lp_resource_limit* m_resource_limit;
|
||||
// used for debug output
|
||||
std::ostream* m_debug_out = &std::cout;
|
||||
std::ostream* m_debug_out;
|
||||
// used for messages, for example, the computation progress messages
|
||||
std::ostream* m_message_out = &std::cout;
|
||||
std::ostream* m_message_out;
|
||||
|
||||
stats m_stats;
|
||||
random_gen m_rand;
|
||||
|
||||
public:
|
||||
unsigned reps_in_scaler = 20;
|
||||
unsigned reps_in_scaler;
|
||||
// when the absolute value of an element is less than pivot_epsilon
|
||||
// in pivoting, we treat it as a zero
|
||||
double pivot_epsilon = 0.00000001;
|
||||
double pivot_epsilon;
|
||||
// see Chatal, page 115
|
||||
double positive_price_epsilon = 1e-7;
|
||||
double positive_price_epsilon;
|
||||
// a quatation "if some choice of the entering vairable leads to an eta matrix
|
||||
// whose diagonal element in the eta column is less than e2 (entering_diag_epsilon) in magnitude, the this choice is rejected ...
|
||||
double entering_diag_epsilon = 1e-8;
|
||||
int c_partial_pivoting = 10; // this is the constant c from page 410
|
||||
unsigned depth_of_rook_search = 4;
|
||||
bool using_partial_pivoting = true;
|
||||
double entering_diag_epsilon;
|
||||
int c_partial_pivoting; // this is the constant c from page 410
|
||||
unsigned depth_of_rook_search;
|
||||
bool using_partial_pivoting;
|
||||
// dissertation of Achim Koberstein
|
||||
// if Bx - b is different at any component more that refactor_epsilon then we refactor
|
||||
double refactor_tolerance = 1e-4;
|
||||
double pivot_tolerance = 1e-6;
|
||||
double zero_tolerance = 1e-12;
|
||||
double drop_tolerance = 1e-14;
|
||||
double tolerance_for_artificials = 1e-4;
|
||||
double can_be_taken_to_basis_tolerance = 0.00001;
|
||||
double refactor_tolerance;
|
||||
double pivot_tolerance;
|
||||
double zero_tolerance;
|
||||
double drop_tolerance;
|
||||
double tolerance_for_artificials;
|
||||
double can_be_taken_to_basis_tolerance;
|
||||
|
||||
unsigned percent_of_entering_to_check = 5; // we try to find a profitable column in a percentage of the columns
|
||||
bool use_scaling = true;
|
||||
double scaling_maximum = 1;
|
||||
double scaling_minimum = 0.5;
|
||||
double harris_feasibility_tolerance = 1e-7; // page 179 of Istvan Maros
|
||||
double ignore_epsilon_of_harris = 10e-5;
|
||||
unsigned max_number_of_iterations_with_no_improvements = 2000000;
|
||||
unsigned max_total_number_of_iterations = 20000000;
|
||||
double time_limit = std::numeric_limits<double>::max(); // the maximum time limit of the total run time in seconds
|
||||
unsigned percent_of_entering_to_check; // we try to find a profitable column in a percentage of the columns
|
||||
bool use_scaling;
|
||||
double scaling_maximum;
|
||||
double scaling_minimum;
|
||||
double harris_feasibility_tolerance; // page 179 of Istvan Maros
|
||||
double ignore_epsilon_of_harris;
|
||||
unsigned max_number_of_iterations_with_no_improvements;
|
||||
unsigned max_total_number_of_iterations;
|
||||
double time_limit; // the maximum time limit of the total run time in seconds
|
||||
// dual section
|
||||
double dual_feasibility_tolerance = 1e-7; // // page 71 of the PhD thesis of Achim Koberstein
|
||||
double primal_feasibility_tolerance = 1e-7; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double relative_primal_feasibility_tolerance = 1e-9; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double dual_feasibility_tolerance; // // page 71 of the PhD thesis of Achim Koberstein
|
||||
double primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double relative_primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
|
||||
|
||||
bool m_bound_propagation = true;
|
||||
bool m_bound_propagation;
|
||||
|
||||
bool bound_progation() const {
|
||||
return m_bound_propagation;
|
||||
|
@ -157,7 +157,52 @@ public:
|
|||
return m_bound_propagation;
|
||||
}
|
||||
|
||||
lp_settings() : m_default_resource_limit(*this), m_resource_limit(&m_default_resource_limit) {}
|
||||
lp_settings() : m_default_resource_limit(*this),
|
||||
m_resource_limit(&m_default_resource_limit),
|
||||
m_debug_out( &std::cout),
|
||||
m_message_out(&std::cout),
|
||||
reps_in_scaler(20),
|
||||
pivot_epsilon(0.00000001),
|
||||
positive_price_epsilon(1e-7),
|
||||
entering_diag_epsilon ( 1e-8),
|
||||
c_partial_pivoting ( 10), // this is the constant c from page 410
|
||||
depth_of_rook_search ( 4),
|
||||
using_partial_pivoting ( true),
|
||||
// dissertation of Achim Koberstein
|
||||
// if Bx - b is different at any component more that refactor_epsilon then we refactor
|
||||
refactor_tolerance ( 1e-4),
|
||||
pivot_tolerance ( 1e-6),
|
||||
zero_tolerance ( 1e-12),
|
||||
drop_tolerance ( 1e-14),
|
||||
tolerance_for_artificials ( 1e-4),
|
||||
can_be_taken_to_basis_tolerance ( 0.00001),
|
||||
|
||||
percent_of_entering_to_check ( 5),// we try to find a profitable column in a percentage of the columns
|
||||
use_scaling ( true),
|
||||
scaling_maximum ( 1),
|
||||
scaling_minimum ( 0.5),
|
||||
harris_feasibility_tolerance ( 1e-7), // page 179 of Istvan Maros
|
||||
ignore_epsilon_of_harris ( 10e-5),
|
||||
max_number_of_iterations_with_no_improvements ( 2000000),
|
||||
max_total_number_of_iterations ( 20000000),
|
||||
time_limit ( std::numeric_limits<double>::max()), // the maximum time limit of the total run time in seconds
|
||||
// dual section
|
||||
dual_feasibility_tolerance ( 1e-7), // // page 71 of the PhD thesis of Achim Koberstein
|
||||
primal_feasibility_tolerance ( 1e-7), // page 71 of the PhD thesis of Achim Koberstein
|
||||
relative_primal_feasibility_tolerance ( 1e-9), // page 71 of the PhD thesis of Achim Koberstein
|
||||
m_bound_propagation ( true),
|
||||
presolve_with_double_solver_for_lar(true),
|
||||
m_simplex_strategy(simplex_strategy_enum::tableau_rows),
|
||||
report_frequency(1000),
|
||||
print_statistics(false),
|
||||
column_norms_update_frequency(12000),
|
||||
scale_with_ratio(true),
|
||||
density_threshold(0.7),
|
||||
use_breakpoints_in_feasibility_search(false),
|
||||
max_row_length_for_bound_propagation(300),
|
||||
backup_costs(true),
|
||||
column_number_threshold_for_using_lu_in_lar_solver(4000)
|
||||
{}
|
||||
|
||||
void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; }
|
||||
bool get_cancel_flag() const { return m_resource_limit->get_cancel_flag(); }
|
||||
|
@ -226,8 +271,8 @@ public:
|
|||
return is_eps_small_general<T>(t, tolerance_for_artificials);
|
||||
}
|
||||
// the method of lar solver to use
|
||||
bool presolve_with_double_solver_for_lar = true;
|
||||
simplex_strategy_enum m_simplex_strategy = simplex_strategy_enum::tableau_rows;
|
||||
bool presolve_with_double_solver_for_lar;
|
||||
simplex_strategy_enum m_simplex_strategy;
|
||||
simplex_strategy_enum simplex_strategy() const {
|
||||
return m_simplex_strategy;
|
||||
}
|
||||
|
@ -236,27 +281,33 @@ public:
|
|||
return m_simplex_strategy;
|
||||
}
|
||||
|
||||
bool use_lu() const {
|
||||
return m_simplex_strategy == simplex_strategy_enum::lu;
|
||||
}
|
||||
|
||||
bool use_tableau() const {
|
||||
return m_simplex_strategy != simplex_strategy_enum::no_tableau;
|
||||
return m_simplex_strategy == simplex_strategy_enum::tableau_rows ||
|
||||
m_simplex_strategy == simplex_strategy_enum::tableau_costs;
|
||||
}
|
||||
|
||||
bool use_tableau_rows() const {
|
||||
return m_simplex_strategy == simplex_strategy_enum::tableau_rows;
|
||||
}
|
||||
|
||||
int report_frequency = 1000;
|
||||
bool print_statistics = false;
|
||||
unsigned column_norms_update_frequency = 12000;
|
||||
bool scale_with_ratio = true;
|
||||
double density_threshold = 0.7; // need to tune it up, todo
|
||||
int report_frequency;
|
||||
bool print_statistics;
|
||||
unsigned column_norms_update_frequency;
|
||||
bool scale_with_ratio;
|
||||
double density_threshold; // need to tune it up, todo
|
||||
#ifdef LEAN_DEBUG
|
||||
static unsigned ddd; // used for debugging
|
||||
#endif
|
||||
bool use_breakpoints_in_feasibility_search = false;
|
||||
unsigned random_seed = 1;
|
||||
static unsigned long random_next;
|
||||
unsigned max_row_length_for_bound_propagation = 300;
|
||||
bool backup_costs = true;
|
||||
bool use_breakpoints_in_feasibility_search;
|
||||
unsigned random_next() { return m_rand(); }
|
||||
void random_seed(unsigned s) { m_rand.set_seed(s); }
|
||||
unsigned max_row_length_for_bound_propagation;
|
||||
bool backup_costs;
|
||||
unsigned column_number_threshold_for_using_lu_in_lar_solver;
|
||||
}; // end of lp_settings class
|
||||
|
||||
|
||||
|
|
|
@ -67,15 +67,6 @@ int get_millisecond_span(int start_time) {
|
|||
|
||||
|
||||
|
||||
void my_random_init(long unsigned seed) {
|
||||
lp_settings::random_next = seed;
|
||||
}
|
||||
|
||||
unsigned my_random() {
|
||||
lp_settings::random_next = lp_settings::random_next * 1103515245 + 12345;
|
||||
return((unsigned)(lp_settings::random_next/65536) % 32768);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(T * a, vector<T> &b, unsigned n) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
|
@ -126,7 +117,6 @@ bool vectors_are_equal(const vector<T> & a, const vector<T> &b) {
|
|||
}
|
||||
return true;
|
||||
}
|
||||
unsigned long lp_settings::random_next = 1;
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned lp_settings::ddd = 0;
|
||||
#endif
|
||||
|
|
|
@ -39,10 +39,10 @@ protected:
|
|||
T get_column_cost_value(unsigned j, column_info<T> * ci) const;
|
||||
public:
|
||||
unsigned m_total_iterations;
|
||||
static_matrix<T, X>* m_A = nullptr; // this is the matrix of constraints
|
||||
static_matrix<T, X>* m_A; // this is the matrix of constraints
|
||||
vector<T> m_b; // the right side vector
|
||||
unsigned m_first_stage_iterations = 0;
|
||||
unsigned m_second_stage_iterations = 0;
|
||||
unsigned m_first_stage_iterations;
|
||||
unsigned m_second_stage_iterations;
|
||||
std::unordered_map<unsigned, lp_constraint<T, X>> m_constraints;
|
||||
std::unordered_map<var_index, column_info<T>*> m_map_from_var_index_to_column_info;
|
||||
std::unordered_map<unsigned, std::unordered_map<unsigned, T> > m_A_values;
|
||||
|
@ -52,8 +52,8 @@ public:
|
|||
std::unordered_map<unsigned, unsigned> m_core_solver_columns_to_external_columns;
|
||||
vector<T> m_column_scale;
|
||||
std::unordered_map<unsigned, std::string> m_name_map;
|
||||
unsigned m_artificials = 0;
|
||||
unsigned m_slacks = 0;
|
||||
unsigned m_artificials;
|
||||
unsigned m_slacks;
|
||||
vector<column_type> m_column_types;
|
||||
vector<T> m_costs;
|
||||
vector<T> m_x;
|
||||
|
@ -63,10 +63,17 @@ public:
|
|||
vector<int> m_heading;
|
||||
|
||||
|
||||
lp_status m_status = lp_status::UNKNOWN;
|
||||
lp_status m_status;
|
||||
|
||||
lp_settings m_settings;
|
||||
lp_solver() {}
|
||||
lp_solver():
|
||||
m_A(nullptr), // this is the matrix of constraints
|
||||
m_first_stage_iterations (0),
|
||||
m_second_stage_iterations (0),
|
||||
m_artificials (0),
|
||||
m_slacks (0),
|
||||
m_status(lp_status::UNKNOWN)
|
||||
{}
|
||||
|
||||
unsigned row_count() const { return this->m_A->row_count(); }
|
||||
|
||||
|
@ -232,14 +239,6 @@ protected:
|
|||
out << "extended A[" << this->m_A->row_count() << "," << this->m_A->column_count() << "]" << std::endl;
|
||||
}
|
||||
|
||||
struct row_tighten_stats {
|
||||
unsigned n_of_new_bounds = 0;
|
||||
unsigned n_of_fixed = 0;
|
||||
bool is_obsolete = false;
|
||||
};
|
||||
|
||||
|
||||
|
||||
public:
|
||||
lp_settings & settings() { return m_settings;}
|
||||
void print_model(std::ostream & s) const {
|
||||
|
|
|
@ -110,25 +110,25 @@ enum class LU_status { OK, Degenerated};
|
|||
// Using Suhl-Suhl method described in the dissertation of Achim Koberstein, Chapter 5
|
||||
template <typename T, typename X>
|
||||
class lu {
|
||||
LU_status m_status = LU_status::OK;
|
||||
LU_status m_status;
|
||||
public:
|
||||
// the fields
|
||||
unsigned m_dim;
|
||||
unsigned m_dim;
|
||||
static_matrix<T, X> const &m_A;
|
||||
permutation_matrix<T, X> m_Q;
|
||||
permutation_matrix<T, X> m_R;
|
||||
permutation_matrix<T, X> m_r_wave;
|
||||
sparse_matrix<T, X> m_U;
|
||||
permutation_matrix<T, X> m_Q;
|
||||
permutation_matrix<T, X> m_R;
|
||||
permutation_matrix<T, X> m_r_wave;
|
||||
sparse_matrix<T, X> m_U;
|
||||
square_dense_submatrix<T, X>* m_dense_LU;
|
||||
|
||||
vector<tail_matrix<T, X> *> m_tail;
|
||||
lp_settings & m_settings;
|
||||
bool m_failure = false;
|
||||
indexed_vector<T> m_row_eta_work_vector;
|
||||
indexed_vector<T> m_w_for_extension;
|
||||
indexed_vector<T> m_y_copy;
|
||||
indexed_vector<unsigned> m_ii; //to optimize the work with the m_index fields
|
||||
unsigned m_refactor_counter = 0;
|
||||
lp_settings & m_settings;
|
||||
bool m_failure;
|
||||
indexed_vector<T> m_row_eta_work_vector;
|
||||
indexed_vector<T> m_w_for_extension;
|
||||
indexed_vector<T> m_y_copy;
|
||||
indexed_vector<unsigned> m_ii; //to optimize the work with the m_index fields
|
||||
unsigned m_refactor_counter;
|
||||
// constructor
|
||||
// if A is an m by n matrix then basis has length m and values in [0,n); the values are all different
|
||||
// they represent the set of m columns
|
||||
|
|
|
@ -111,6 +111,7 @@ template <typename T, typename X>
|
|||
lu<T, X>::lu(static_matrix<T, X> const & A,
|
||||
vector<unsigned>& basis,
|
||||
lp_settings & settings):
|
||||
m_status(LU_status::OK),
|
||||
m_dim(A.row_count()),
|
||||
m_A(A),
|
||||
m_Q(m_dim),
|
||||
|
@ -118,7 +119,9 @@ lu<T, X>::lu(static_matrix<T, X> const & A,
|
|||
m_r_wave(m_dim),
|
||||
m_U(A, basis), // create the square matrix that eventually will be factorized
|
||||
m_settings(settings),
|
||||
m_row_eta_work_vector(A.row_count()){
|
||||
m_failure(false),
|
||||
m_row_eta_work_vector(A.row_count()),
|
||||
m_refactor_counter(0) {
|
||||
lean_assert(!(numeric_traits<T>::precise() && settings.use_tableau()));
|
||||
#ifdef LEAN_DEBUG
|
||||
debug_test_of_basis(A, basis);
|
||||
|
@ -602,13 +605,13 @@ void lu<T, X>::process_column(int j) {
|
|||
unsigned pi, pj;
|
||||
bool success = m_U.get_pivot_for_column(pi, pj, m_settings.c_partial_pivoting, j);
|
||||
if (!success) {
|
||||
LP_OUT(m_settings, "get_pivot returned false: cannot find the pivot for column " << j << std::endl);
|
||||
// LP_OUT(m_settings, "get_pivot returned false: cannot find the pivot for column " << j << std::endl);
|
||||
m_failure = true;
|
||||
return;
|
||||
}
|
||||
|
||||
if (static_cast<int>(pi) == -1) {
|
||||
LP_OUT(m_settings, "cannot find the pivot for column " << j << std::endl);
|
||||
// LP_OUT(m_settings, "cannot find the pivot for column " << j << std::endl);
|
||||
m_failure = true;
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -93,22 +93,28 @@ template <typename T, typename X>
|
|||
class mps_reader {
|
||||
enum row_type { Cost, Less_or_equal, Greater_or_equal, Equal };
|
||||
struct bound {
|
||||
bool m_low_is_set = true;
|
||||
T m_low;
|
||||
bool m_upper_is_set = false;
|
||||
T m_upper;
|
||||
bool m_value_is_fixed = false;
|
||||
T m_fixed_value;
|
||||
bool m_free = false;
|
||||
T m_low;
|
||||
T m_upper;
|
||||
bool m_low_is_set;
|
||||
bool m_upper_is_set;
|
||||
bool m_value_is_fixed;
|
||||
T m_fixed_value;
|
||||
bool m_free;
|
||||
// constructor
|
||||
bound() : m_low(numeric_traits<T>::zero()) {} // it seems all mps files I have seen have the default low value 0 on a variable
|
||||
bound() : m_low(numeric_traits<T>::zero()),
|
||||
m_low_is_set(true),
|
||||
m_upper_is_set(false),
|
||||
m_value_is_fixed(false),
|
||||
m_free(false) {} // it seems all mps files I have seen have the default low value 0 on a variable
|
||||
};
|
||||
|
||||
struct column {
|
||||
std::string m_name;
|
||||
bound * m_bound = nullptr;
|
||||
bound * m_bound;
|
||||
unsigned m_index;
|
||||
column(std::string name, unsigned index): m_name(name), m_index(index) {
|
||||
column(std::string name, unsigned index): m_name(name),
|
||||
m_bound(nullptr),
|
||||
m_index(index) {
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -116,15 +122,21 @@ class mps_reader {
|
|||
row_type m_type;
|
||||
std::string m_name;
|
||||
std::unordered_map<std::string, T> m_row_columns;
|
||||
T m_right_side = numeric_traits<T>::zero();
|
||||
unsigned m_index;
|
||||
T m_range = numeric_traits<T>::zero();
|
||||
row(row_type type, std::string name, unsigned index) : m_type(type), m_name(name), m_index(index) {
|
||||
T m_right_side;
|
||||
T m_range;
|
||||
row(row_type type, std::string name, unsigned index) :
|
||||
m_type(type),
|
||||
m_name(name),
|
||||
m_index(index),
|
||||
m_right_side(zero_of_type<T>()),
|
||||
m_range(zero_of_type<T>())
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
bool m_is_OK;
|
||||
std::string m_file_name;
|
||||
bool m_is_OK = true;
|
||||
std::unordered_map<std::string, row *> m_rows;
|
||||
std::unordered_map<std::string, column *> m_columns;
|
||||
std::unordered_map<std::string, unsigned> m_names_to_var_index;
|
||||
|
@ -133,9 +145,9 @@ class mps_reader {
|
|||
std::string m_cost_row_name;
|
||||
std::ifstream m_file_stream;
|
||||
// needed to adjust the index row
|
||||
unsigned m_cost_line_count = 0;
|
||||
unsigned m_line_number = 0;
|
||||
std::ostream * m_message_stream = & std::cout;
|
||||
unsigned m_cost_line_count;
|
||||
unsigned m_line_number;
|
||||
std::ostream * m_message_stream;
|
||||
|
||||
void set_m_ok_to_false() {
|
||||
*m_message_stream << "setting m_is_OK to false" << std::endl;
|
||||
|
@ -737,8 +749,12 @@ public:
|
|||
}
|
||||
|
||||
mps_reader(std::string file_name):
|
||||
m_file_name(file_name), m_file_stream(file_name) {
|
||||
}
|
||||
m_is_OK(true),
|
||||
m_file_name(file_name),
|
||||
m_file_stream(file_name),
|
||||
m_cost_line_count(0),
|
||||
m_line_number(0),
|
||||
m_message_stream(& std::cout) {}
|
||||
void read() {
|
||||
if (!m_file_stream.is_open()){
|
||||
set_m_ok_to_false();
|
||||
|
@ -784,7 +800,7 @@ public:
|
|||
auto it = m_names_to_var_index.find(s);
|
||||
if (it != m_names_to_var_index.end())
|
||||
return it->second;
|
||||
unsigned ret = m_names_to_var_index.size();
|
||||
unsigned ret = static_cast<unsigned>(m_names_to_var_index.size());
|
||||
m_names_to_var_index[s] = ret;
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -101,16 +101,14 @@ struct numeric_pair {
|
|||
|
||||
numeric_pair(T xp, T yp) : x(xp), y(yp) {}
|
||||
|
||||
|
||||
template <typename X>
|
||||
numeric_pair(const X & n) : x(n), y(0) {
|
||||
}
|
||||
|
||||
template <typename X>
|
||||
numeric_pair(const numeric_pair<X> & n) : x(n.x), y(n.y) {}
|
||||
numeric_pair(const numeric_pair<T> & n) : x(n.x), y(n.y) {}
|
||||
|
||||
template <typename X, typename Y>
|
||||
numeric_pair(X xp, Y yp) : numeric_pair(convert_struct<T, X>::convert(xp), convert_struct<T, Y>::convert(yp)) {}
|
||||
numeric_pair(X xp, Y yp) : x(convert_struct<T, X>::convert(xp)), y(convert_struct<T, Y>::convert(yp)) {}
|
||||
|
||||
bool operator<(const numeric_pair& a) const {
|
||||
return x < a.x || (x == a.x && y < a.y);
|
||||
|
|
|
@ -132,42 +132,4 @@ class permutation_matrix : public tail_matrix<T, X> {
|
|||
|
||||
}; // end of the permutation class
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
class permutation_generator {
|
||||
unsigned m_n;
|
||||
permutation_generator* m_lower;
|
||||
bool m_done = false;
|
||||
permutation_matrix<T, X> m_current;
|
||||
unsigned m_last;
|
||||
public:
|
||||
permutation_generator(unsigned n);
|
||||
permutation_generator(const permutation_generator & o);
|
||||
bool move_next();
|
||||
|
||||
~permutation_generator() {
|
||||
if (m_lower != nullptr) {
|
||||
delete m_lower;
|
||||
}
|
||||
}
|
||||
|
||||
permutation_matrix<T, X> *current() {
|
||||
return &m_current;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename X>
|
||||
inline unsigned number_of_inversions(permutation_matrix<T, X> & p);
|
||||
|
||||
template <typename T, typename X>
|
||||
int sign(permutation_matrix<T, X> & p) {
|
||||
return is_even(number_of_inversions(p))? 1: -1;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
T det_val_on_perm(permutation_matrix<T, X>* u, const matrix<T, X>& m);
|
||||
|
||||
template <typename T, typename X>
|
||||
T determinant(const matrix<T, X>& m);
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -320,100 +320,4 @@ template <typename T, typename X> bool permutation_matrix<T, X>::is_identity() c
|
|||
}
|
||||
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
permutation_generator<T, X>::permutation_generator(unsigned n): m_n(n), m_current(n) {
|
||||
lean_assert(n > 0);
|
||||
if (n > 1) {
|
||||
m_lower = new permutation_generator(n - 1);
|
||||
} else {
|
||||
m_lower = nullptr;
|
||||
}
|
||||
|
||||
m_last = 0;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
permutation_generator<T, X>::permutation_generator(const permutation_generator & o): m_n(o.m_n), m_done(o.m_done), m_current(o.m_current), m_last(o.m_last) {
|
||||
if (m_lower != nullptr) {
|
||||
m_lower = new permutation_generator(o.m_lower);
|
||||
} else {
|
||||
m_lower = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool
|
||||
permutation_generator<T, X>::move_next() {
|
||||
if (m_done) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_lower == nullptr) {
|
||||
if (m_last == 0) {
|
||||
m_last++;
|
||||
return true;
|
||||
} else {
|
||||
m_done = true;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (m_last < m_n && m_last > 0) {
|
||||
m_current[m_last - 1] = m_current[m_last];
|
||||
m_current[m_last] = m_n - 1;
|
||||
m_last++;
|
||||
return true;
|
||||
} else {
|
||||
if (m_lower -> move_next()) {
|
||||
auto lower_curr = m_lower -> current();
|
||||
for ( unsigned i = 1; i < m_n; i++ ){
|
||||
m_current[i] = (*lower_curr)[i - 1];
|
||||
}
|
||||
m_current[0] = m_n - 1;
|
||||
m_last = 1;
|
||||
return true;
|
||||
} else {
|
||||
m_done = true;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
inline unsigned number_of_inversions(permutation_matrix<T, X> & p) {
|
||||
unsigned ret = 0;
|
||||
unsigned n = p.size();
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
for (unsigned j = i + 1; j < n; j++) {
|
||||
if (p[i] > p[j]) {
|
||||
ret++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
T det_val_on_perm(permutation_matrix<T, X>* u, const matrix<T, X>& m) {
|
||||
unsigned n = m.row_count();
|
||||
T ret = numeric_traits<T>::one();
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
unsigned j = (*u)[i];
|
||||
ret *= m(i, j);
|
||||
}
|
||||
return ret * sign(*u);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
T determinant(const matrix<T, X>& m) {
|
||||
lean_assert(m.column_count() == m.row_count());
|
||||
unsigned n = m.row_count();
|
||||
permutation_generator<T, X> allp(n);
|
||||
T ret = numeric_traits<T>::zero();
|
||||
while (allp.move_next()){
|
||||
ret += det_val_on_perm(allp.current(), m);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -46,11 +46,6 @@ template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq>
|
|||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_reverse_from_left_to_T(vector<lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_reverse_from_right_to_T(vector<lean::mpq >&);
|
||||
template void lean::permutation_matrix<double, double>::multiply_by_permutation_from_right(lean::permutation_matrix<double, double>&);
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template bool lean::permutation_generator<double, double>::move_next();
|
||||
template lean::permutation_generator<double, double>::permutation_generator(unsigned int);
|
||||
#endif
|
||||
template lean::permutation_matrix<double, double>::permutation_matrix(unsigned int);
|
||||
template void lean::permutation_matrix<double, double>::apply_reverse_from_left_to_X(vector<double> &);
|
||||
template void lean::permutation_matrix< lean::mpq, lean::mpq>::apply_reverse_from_left_to_X(vector<lean::mpq> &);
|
||||
|
|
|
@ -16,12 +16,14 @@ namespace lean {
|
|||
template <typename T> struct numeric_pair; // forward definition
|
||||
class lar_core_solver; // forward definition
|
||||
class random_updater {
|
||||
unsigned range = 100000;
|
||||
struct interval {
|
||||
bool upper_bound_is_set = false;
|
||||
bool upper_bound_is_set;
|
||||
numeric_pair<mpq> upper_bound;
|
||||
bool low_bound_is_set = false;
|
||||
bool low_bound_is_set;
|
||||
numeric_pair<mpq> low_bound;
|
||||
interval() : upper_bound_is_set(false),
|
||||
low_bound_is_set(false) {}
|
||||
|
||||
void set_low_bound(const numeric_pair<mpq> & v) {
|
||||
if (low_bound_is_set) {
|
||||
low_bound = std::max(v, low_bound);
|
||||
|
@ -58,6 +60,7 @@ class random_updater {
|
|||
};
|
||||
std::set<var_index> m_var_set;
|
||||
lar_core_solver & m_core_solver;
|
||||
unsigned range;
|
||||
linear_combination_iterator<mpq>* m_column_j; // the actual column
|
||||
interval find_shift_interval(unsigned j);
|
||||
interval get_interval_of_non_basic_var(unsigned j);
|
||||
|
|
|
@ -12,7 +12,9 @@ namespace lean {
|
|||
|
||||
random_updater::random_updater(
|
||||
lar_core_solver & lar_core_solver,
|
||||
const vector<unsigned> & column_indices) : m_core_solver(lar_core_solver) {
|
||||
const vector<unsigned> & column_indices) :
|
||||
m_core_solver(lar_core_solver),
|
||||
range(100000) {
|
||||
for (unsigned j : column_indices)
|
||||
add_column_to_sets(j);
|
||||
}
|
||||
|
@ -134,7 +136,7 @@ void random_updater::shift_var(unsigned j, interval & r) {
|
|||
}
|
||||
|
||||
numeric_pair<mpq> random_updater::get_random_from_interval(interval & r) {
|
||||
unsigned rand = my_random();
|
||||
unsigned rand = m_core_solver.settings().random_next();
|
||||
if ((!r.low_bound_is_set) && (!r.upper_bound_is_set))
|
||||
return numeric_pair<mpq>(rand % range, 0);
|
||||
if (r.low_bound_is_set && (!r.upper_bound_is_set))
|
||||
|
|
|
@ -30,10 +30,10 @@ class sparse_matrix
|
|||
#endif
|
||||
{
|
||||
struct col_header {
|
||||
unsigned m_shortened_markovitz = 0;
|
||||
unsigned m_shortened_markovitz;
|
||||
vector<indexed_value<T>> m_values; // the actual column values
|
||||
|
||||
col_header() {}
|
||||
col_header(): m_shortened_markovitz(0) {}
|
||||
|
||||
void shorten_markovich_by_one() {
|
||||
m_shortened_markovitz++;
|
||||
|
@ -44,17 +44,17 @@ class sparse_matrix
|
|||
}
|
||||
};
|
||||
|
||||
unsigned m_n_of_active_elems = 0;
|
||||
unsigned m_n_of_active_elems;
|
||||
binary_heap_upair_queue<unsigned> m_pivot_queue;
|
||||
public:
|
||||
vector<vector<indexed_value<T>>> m_rows;
|
||||
vector<col_header> m_columns;
|
||||
permutation_matrix<T, X> m_row_permutation;
|
||||
permutation_matrix<T, X> m_column_permutation;
|
||||
vector<col_header> m_columns;
|
||||
permutation_matrix<T, X> m_row_permutation;
|
||||
permutation_matrix<T, X> m_column_permutation;
|
||||
// m_work_pivot_vector[j] = offset of elementh of j-th column in the row we are pivoting to
|
||||
// if the column is not present then m_work_pivot_vector[j] is -1
|
||||
vector<int> m_work_pivot_vector;
|
||||
vector<bool> m_processed;
|
||||
vector<int> m_work_pivot_vector;
|
||||
vector<bool> m_processed;
|
||||
unsigned get_n_of_active_elems() const { return m_n_of_active_elems; }
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
|
|
|
@ -36,6 +36,7 @@ void sparse_matrix<T, X>::copy_B(static_matrix<T, X> const &A, vector<unsigned>
|
|||
// constructor that copies columns of the basis from A
|
||||
template <typename T, typename X>
|
||||
sparse_matrix<T, X>::sparse_matrix(static_matrix<T, X> const &A, vector<unsigned> & basis) :
|
||||
m_n_of_active_elems(0),
|
||||
m_pivot_queue(A.row_count()),
|
||||
m_row_permutation(A.row_count()),
|
||||
m_column_permutation(A.row_count()),
|
||||
|
|
|
@ -20,7 +20,7 @@ public:
|
|||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
T operator[] (unsigned i) const {
|
||||
for (auto t : m_data) {
|
||||
for (auto &t : m_data) {
|
||||
if (t.first == i) return t.second;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
|
|
|
@ -42,7 +42,7 @@ public:
|
|||
unsigned m_index_start;
|
||||
unsigned m_dim;
|
||||
vector<T> m_v;
|
||||
sparse_matrix<T, X> * m_parent = nullptr;
|
||||
sparse_matrix<T, X> * m_parent;
|
||||
permutation_matrix<T, X> m_row_permutation;
|
||||
indexed_vector<T> m_work_vector;
|
||||
public:
|
||||
|
|
|
@ -29,7 +29,6 @@ template <typename T, typename X> void static_matrix<T, X>::scan_row_ii_to_offse
|
|||
|
||||
|
||||
template <typename T, typename X> bool static_matrix<T, X>::pivot_row_to_row_given_cell(unsigned i, column_cell & c, unsigned pivot_col) {
|
||||
// std::cout << "ddd = " << ++lp_settings::ddd<< std::endl;
|
||||
unsigned ii = c.m_i;
|
||||
lean_assert(i < row_count() && ii < column_count());
|
||||
lean_assert(i != ii);
|
||||
|
|
|
@ -32,14 +32,14 @@ inline bool compare(const std::pair<mpq, var_index> & a, const std::pair<mpq, va
|
|||
}
|
||||
|
||||
class ul_pair {
|
||||
constraint_index m_low_bound_witness = static_cast<constraint_index>(-1);
|
||||
constraint_index m_upper_bound_witness = static_cast<constraint_index>(-1);
|
||||
constraint_index m_low_bound_witness;
|
||||
constraint_index m_upper_bound_witness;
|
||||
public:
|
||||
constraint_index& low_bound_witness() {return m_low_bound_witness;}
|
||||
constraint_index low_bound_witness() const {return m_low_bound_witness;}
|
||||
constraint_index& upper_bound_witness() { return m_upper_bound_witness;}
|
||||
constraint_index upper_bound_witness() const {return m_upper_bound_witness;}
|
||||
row_index m_i = static_cast<row_index>(-1);
|
||||
row_index m_i;
|
||||
bool operator!=(const ul_pair & p) const {
|
||||
return !(*this == p);
|
||||
}
|
||||
|
@ -50,8 +50,15 @@ public:
|
|||
m_i == p.m_i;
|
||||
}
|
||||
// empty constructor
|
||||
ul_pair(){}
|
||||
ul_pair(row_index ri) : m_i(ri) {}
|
||||
ul_pair() :
|
||||
m_low_bound_witness(static_cast<constraint_index>(-1)),
|
||||
m_upper_bound_witness(static_cast<constraint_index>(-1)),
|
||||
m_i(static_cast<row_index>(-1))
|
||||
{}
|
||||
ul_pair(row_index ri) :
|
||||
m_low_bound_witness(static_cast<constraint_index>(-1)),
|
||||
m_upper_bound_witness(static_cast<constraint_index>(-1)),
|
||||
m_i(ri) {}
|
||||
ul_pair(const ul_pair & o): m_low_bound_witness(o.m_low_bound_witness), m_upper_bound_witness(o.m_upper_bound_witness), m_i(o.m_i) {}
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in a new issue