3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 02:15:19 +00:00

redo egraph

This commit is contained in:
Nikolaj Bjorner 2020-09-28 18:31:10 -07:00
parent 20be286391
commit 4562c07ceb
11 changed files with 373 additions and 1 deletions

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,27 @@
<?xml version="1.0" encoding="utf-8"?>
<package xmlns="http://schemas.microsoft.com/packaging/2010/07/nuspec.xsd">
<metadata>
<id>Microsoft.Z3.x64</id>
<version>4.8.9</version>
<authors>Microsoft</authors>
<description>
Z3 is a satisfiability modulo theories solver from Microsoft Research.
Linux Dependencies:
libgomp.so.1 installed
</description>
<copyright>&#169; Microsoft Corporation. All rights reserved.</copyright>
<tags>smt constraint solver theorem prover</tags>
<iconUrl>https://raw.githubusercontent.com/Z3Prover/z3/79734f26aee55309077de1f26e9b6f50ecd99ceb/resources/icon.jpg</iconUrl>
<projectUrl>https://github.com/Z3Prover/z3</projectUrl>
<licenseUrl>https://raw.githubusercontent.com/Z3Prover/z3/79734f26aee55309077de1f26e9b6f50ecd99ceb/LICENSE.txt</licenseUrl>
<repository
type="git"
url="https://github.com/Z3Prover/z3.git"
branch="master"
commit="79734f26aee55309077de1f26e9b6f50ecd99ceb"
/>
<requireLicenseAcceptance>true</requireLicenseAcceptance>
<language>en</language>
</metadata>
</package>

View file

@ -0,0 +1,10 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<None Include="$(MSBuildThisFileDirectory)..\runtimes\win-x64\native\libz3.dll">
<Visible>false</Visible>
<Link>libz3.dll</Link>
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</None>
</ItemGroup>
</Project>

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

297
src/sat/smt/ar_solver.h Normal file
View file

@ -0,0 +1,297 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
ar_solver.h
Abstract:
Theory plugin for arrays
Author:
Nikolaj Bjorner (nbjorner) 2020-09-08
--*/
#pragma once
#include "sat/smt/sat_th.h"
#include "ast/array_decl_plugin.h"
namespace euf {
class solver;
}
namespace array {
class solver : public euf::th_euf_solver {
typedef rational numeral;
typedef euf::theory_var theory_var;
typedef euf::theory_id theory_id;
typedef sat::literal literal;
typedef sat::bool_var bool_var;
typedef sat::literal_vector literal_vector;
typedef svector<euf::theory_var> vars;
typedef std::pair<numeral, unsigned> value_sort_pair;
typedef pair_hash<obj_hash<numeral>, unsigned_hash> value_sort_pair_hash;
typedef map<value_sort_pair, theory_var, value_sort_pair_hash, default_eq<value_sort_pair> > value2var;
typedef union_find<solver, euf::solver> bv_union_find;
typedef std::pair<theory_var, unsigned> var_pos;
friend class ackerman;
struct stats {
unsigned m_num_diseq_static, m_num_diseq_dynamic, m_num_bit2core, m_num_th2core_eq, m_num_conflicts;
unsigned m_ackerman;
void reset() { memset(this, 0, sizeof(stats)); }
stats() { reset(); }
};
struct bv_justification {
enum kind_t { eq2bit, bit2eq };
kind_t m_kind;
theory_var m_v1;
theory_var m_v2;
sat::literal m_consequent;
sat::literal m_antecedent;
bv_justification(theory_var v1, theory_var v2, sat::literal c, sat::literal a) :
m_kind(kind_t::eq2bit), m_v1(v1), m_v2(v2), m_consequent(c), m_antecedent(a) {}
bv_justification(theory_var v1, theory_var v2):
m_kind(kind_t::bit2eq), m_v1(v1), m_v2(v2) {}
sat::ext_constraint_idx to_index() const {
return sat::constraint_base::mem2base(this);
}
static bv_justification& from_index(size_t idx) {
return *reinterpret_cast<bv_justification*>(sat::constraint_base::from_index(idx)->mem());
}
static size_t get_obj_size() { return sat::constraint_base::obj_size(sizeof(bv_justification)); }
};
sat::justification mk_eq2bit_justification(theory_var v1, theory_var v2, sat::literal c, sat::literal a);
sat::ext_justification_idx mk_bit2eq_justification(theory_var v1, theory_var v2);
void log_drat(bv_justification const& c);
/**
\brief Structure used to store the position of a bitvector variable that
contains the true_literal/false_literal.
Remark: the implementation assumes that bitvector variables containing
complementary bits are never merged. I assert a disequality (not (= x y))
whenever x and y contain complementary bits. However, this is too expensive
when the bit is the true_literal or false_literal. The number of disequalities
is too big. To avoid this problem, each equivalence class has a set
of its true_literal and false_literal bits in the form of svector<zero_one_bit>.
Before merging two classes we just check if the merge is valid by traversing these
vectors.
*/
struct zero_one_bit {
theory_var m_owner; //!< variable that owns the bit: useful for backtracking
unsigned m_idx:31;
unsigned m_is_true:1;
zero_one_bit(theory_var v = euf::null_theory_var, unsigned idx = UINT_MAX, bool is_true = false):
m_owner(v), m_idx(idx), m_is_true(is_true) {}
};
typedef svector<zero_one_bit> zero_one_bits;
struct bit_atom;
struct def_atom;
class atom {
public:
virtual ~atom() {}
virtual bool is_bit() const = 0;
bit_atom& to_bit();
def_atom& to_def();
};
struct var_pos_occ {
var_pos m_vp;
var_pos_occ * m_next;
var_pos_occ(theory_var v = euf::null_theory_var, unsigned idx = 0, var_pos_occ * next = nullptr):m_vp(v, idx), m_next(next) {}
};
class var_pos_it {
var_pos_occ* m_first;
public:
var_pos_it(var_pos_occ* c) : m_first(c) {}
var_pos operator*() { return m_first->m_vp; }
var_pos_it& operator++() { m_first = m_first->m_next; return *this; }
var_pos_it operator++(int) { var_pos_it tmp = *this; ++* this; return tmp; }
bool operator==(var_pos_it const& other) const { return m_first == other.m_first; }
bool operator!=(var_pos_it const& other) const { return !(*this == other); }
};
struct bit_atom : public atom {
var_pos_occ * m_occs;
bit_atom():m_occs(nullptr) {}
~bit_atom() override {}
bool is_bit() const override { return true; }
var_pos_it begin() const { return var_pos_it(m_occs); }
var_pos_it end() const { return var_pos_it(nullptr); }
};
struct def_atom : public atom {
literal m_var;
literal m_def;
def_atom(literal v, literal d):m_var(v), m_def(d) {}
~def_atom() override {}
bool is_bit() const override { return false; }
};
class bit_trail;
class add_var_pos_trail;
class mk_atom_trail;
typedef ptr_vector<atom> bool_var2atom;
bv_util bv;
arith_util m_autil;
stats m_stats;
ackerman m_ackerman;
bit_blaster m_bb;
bv_union_find m_find;
vector<literal_vector> m_bits; // per var, the bits of a given variable.
unsigned_vector m_wpos; // per var, watch position for fixed variable detection.
vector<zero_one_bits> m_zero_one_bits; // per var, see comment in the struct zero_one_bit
bool_var2atom m_bool_var2atom;
value2var m_fixed_var_table;
mutable vector<rational> m_power2;
literal_vector m_tmp_literals;
svector<var_pos> m_prop_queue;
unsigned_vector m_prop_queue_lim;
unsigned m_prop_queue_head { 0 };
sat::solver* m_solver;
sat::solver& s() { return *m_solver; }
// internalize
void insert_bv2a(bool_var bv, atom * a) { m_bool_var2atom.setx(bv, a, 0); }
void erase_bv2a(bool_var bv) { m_bool_var2atom[bv] = 0; }
atom * get_bv2a(bool_var bv) const { return m_bool_var2atom.get(bv, 0); }
bool visit(expr* e) override;
bool visited(expr* e) override;
bool post_visit(expr* e, bool sign, bool root) override;
unsigned get_bv_size(euf::enode* n);
unsigned get_bv_size(theory_var v);
theory_var get_var(euf::enode* n);
euf::enode* get_arg(euf::enode* n, unsigned idx);
inline theory_var get_arg_var(euf::enode* n, unsigned idx);
void get_bits(theory_var v, expr_ref_vector& r);
void get_bits(euf::enode* n, expr_ref_vector& r);
void get_arg_bits(app* n, unsigned idx, expr_ref_vector& r);
void fixed_var_eh(theory_var v);
bool is_bv(theory_var v) const { return bv.is_bv(var2expr(v)); }
sat::status status() const { return sat::status::th(m_is_redundant, get_id()); }
void register_true_false_bit(theory_var v, unsigned i);
void add_bit(theory_var v, sat::literal lit);
void set_bit_eh(theory_var v, literal l, unsigned idx);
void init_bits(expr* e, expr_ref_vector const & bits);
void mk_bits(theory_var v);
void add_def(sat::literal def, sat::literal l);
void internalize_unary(app* n, std::function<void(unsigned, expr* const*, expr_ref_vector&)>& fn);
void internalize_binary(app* n, std::function<void(unsigned, expr* const*, expr* const*, expr_ref_vector&)>& fn);
void internalize_ac_binary(app* n, std::function<void(unsigned, expr* const*, expr* const*, expr_ref_vector&)>& fn);
void internalize_par_unary(app* n, std::function<void(unsigned, expr* const*, unsigned p, expr_ref_vector&)>& fn);
void internalize_novfl(app* n, std::function<void(unsigned, expr* const*, expr* const*, expr_ref&)>& fn);
void internalize_num(app * n, theory_var v);
void internalize_concat(app * n);
void internalize_bv2int(app* n);
void internalize_int2bv(app* n);
void internalize_mkbv(app* n);
void internalize_xor3(app* n);
void internalize_carry(app* n);
void internalize_sub(app* n);
void internalize_extract(app* n);
void internalize_bit2bool(app* n);
template<bool Signed>
void internalize_le(app* n);
void assert_bv2int_axiom(app * n);
void assert_int2bv_axiom(app* n);
void assert_ackerman(theory_var v1, theory_var v2);
// solving
theory_var find(theory_var v) const { return m_find.find(v); }
void find_wpos(theory_var v);
void find_new_diseq_axioms(bit_atom& a, theory_var v, unsigned idx);
void mk_new_diseq_axiom(theory_var v1, theory_var v2, unsigned idx);
bool get_fixed_value(theory_var v, numeral& result) const;
void add_fixed_eq(theory_var v1, theory_var v2);
svector<theory_var> m_merge_aux[2]; //!< auxiliary vector used in merge_zero_one_bits
bool merge_zero_one_bits(theory_var r1, theory_var r2);
void assign_bit(literal consequent, theory_var v1, theory_var v2, unsigned idx, literal antecedent, bool propagate_eqc);
void propagate_bits(var_pos entry);
numeral const& power2(unsigned i) const;
// invariants
bool check_zero_one_bits(theory_var v);
public:
solver(euf::solver& ctx, theory_id id);
~solver() override {}
void set_solver(sat::solver* s) override { m_solver = s; }
void set_lookahead(sat::lookahead* s) override { }
void init_search() override {}
double get_reward(literal l, sat::ext_constraint_idx idx, sat::literal_occs_fun& occs) const override;
bool is_extended_binary(sat::ext_justification_idx idx, literal_vector& r) override;
bool is_external(bool_var v) override;
bool propagate(literal l, sat::ext_constraint_idx idx) override;
void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector & r, bool probing) override;
void asserted(literal l) override;
sat::check_result check() override;
void push() override;
void pop(unsigned n) override;
void pre_simplify() override;
void simplify() override;
bool set_root(literal l, literal r) override;
void flush_roots() override;
void clauses_modifed() override;
lbool get_phase(bool_var v) override;
std::ostream& display(std::ostream& out) const override;
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override;
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override;
void collect_statistics(statistics& st) const override;
euf::th_solver* clone(sat::solver* s, euf::solver& ctx) override;
extension* copy(sat::solver* s) override;
void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override {}
void gc() override {}
void pop_reinit() override;
bool validate() override;
void init_use_list(sat::ext_use_list& ul) override;
bool is_blocked(literal l, sat::ext_constraint_idx) override;
bool check_model(sat::model const& m) const override;
unsigned max_var(unsigned w) const override;
void new_eq_eh(euf::th_eq const& eq) override;
bool unit_propagate() override;
void add_value(euf::enode* n, expr_ref_vector& values) override;
bool extract_pb(std::function<void(unsigned sz, literal const* c, unsigned k)>& card,
std::function<void(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k)>& pb) override { return false; }
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override { return false; }
sat::literal internalize(expr* e, bool sign, bool root, bool learned) override;
void internalize(expr* e, bool redundant) override;
euf::theory_var mk_var(euf::enode* n) override;
void apply_sort_cnstr(euf::enode * n, sort * s) override;
void merge_eh(theory_var, theory_var, theory_var v1, theory_var v2);
void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) { SASSERT(check_zero_one_bits(r1)); }
void unmerge_eh(theory_var v1, theory_var v2);
trail_stack<euf::solver>& get_trail_stack();
// disagnostics
std::ostream& display(std::ostream& out, theory_var v) const;
typedef std::pair<solver const*, theory_var> pp_var;
pp_var pp(theory_var v) const { return pp_var(this, v); }
};
inline std::ostream& operator<<(std::ostream& out, solver::pp_var const& p) { return p.first->display(out, p.second); }
}

View file

@ -169,7 +169,6 @@ namespace bv {
bool solver::check_mul_zero(app* n, expr_ref_vector const& arg_values, expr* mul_value, expr* arg_value) {
SASSERT(mul_value != arg_value);
SASSERT(!(bv.is_zero(mul_value) && bv.is_zero(arg_value)));
if (bv.is_zero(arg_value)) {
unsigned sz = n->get_num_args();
expr_ref_vector args(m, sz, n->get_args());
@ -180,6 +179,7 @@ namespace bv {
set_delay_internalize(r, internalize_mode::init_bits_only_i); // do not bit-blast this multiplier.
expr_ref eq(m.mk_eq(r, arg_value), m);
args[i] = n->get_arg(i);
std::cout << eq << "@" << s().scope_lvl() << "\n";
add_unit(b_internalize(eq));
}
return false;
@ -298,6 +298,8 @@ namespace bv {
set_delay_internalize(rhs, internalize_mode::no_delay_i);
expr_ref eq(m.mk_eq(lhs, rhs), m);
add_unit(b_internalize(eq));
TRACE("bv", tout << "low-bits: " << eq << "\n";);
std::cout << "low bits\n";
return false;
}

View file

@ -0,0 +1,36 @@
#include "util/vector.h"
#pragma once
class compressed_limit_trail {
unsigned_vector m_lim;
unsigned m_scopes{ 0 };
unsigned m_last{ 0 };
public:
void push(unsigned n) {
if (m_last == n)
m_scopes++;
else {
for (; m_scopes > 0; --m_scopes)
m_lim.push_back(m_last);
m_last = n;
}
}
unsigned pop(unsigned n) {
SASSERT(n > 0);
SASSERT(m_scopes + m_lim.size() >= n);
if (n <= m_scopes) {
m_scopes -= n;
return m_last;
}
else {
n -= m_scopes;
m_scopes = 0;
m_last = m_lim[m_lim.size() - n];
m_lim.shrink(m_lim.size() - n);
return m_last;
}
}
};