mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 11:42:28 +00:00 
			
		
		
		
	fix empty set declaration, add axioms and rewrites
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									4630373a97
								
							
						
					
					
						commit
						4464ab9431
					
				
					 6 changed files with 180 additions and 122 deletions
				
			
		|  | @ -39,6 +39,7 @@ finite_set_decl_plugin::finite_set_decl_plugin(): | |||
|     m_names[OP_FINITE_SET_FILTER] = "set.filter"; | ||||
|     m_names[OP_FINITE_SET_RANGE] = "set.range"; | ||||
|     m_names[OP_FINITE_SET_EXT] = "set.diff"; | ||||
|     m_names[OP_FINITE_SET_MAP_INVERSE] = "set.map.inverse"; | ||||
| } | ||||
| 
 | ||||
| finite_set_decl_plugin::~finite_set_decl_plugin() { | ||||
|  | @ -70,6 +71,7 @@ void finite_set_decl_plugin::init() { | |||
|     sort* arrABsetA[2] = { arrAB, setA }; | ||||
|     sort* arrABoolsetA[2] = { arrABool, setA }; | ||||
|     sort* intintT[2] = { intT, intT }; | ||||
|     sort *arrABsetBsetA[3] = {arrAB, setB, setA}; | ||||
|      | ||||
|     m_sigs.resize(LAST_FINITE_SET_OP); | ||||
|     m_sigs[OP_FINITE_SET_EMPTY]      = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EMPTY],      1, 0, nullptr, setA); | ||||
|  | @ -84,7 +86,7 @@ void finite_set_decl_plugin::init() { | |||
|     m_sigs[OP_FINITE_SET_FILTER]     = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_FILTER], 1, 2, arrABoolsetA, setA); | ||||
|     m_sigs[OP_FINITE_SET_RANGE]      = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_RANGE],      0, 2, intintT, setInt); | ||||
|     m_sigs[OP_FINITE_SET_EXT]        = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EXT], 1, 2, setAsetA, A); | ||||
| //    m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A);
 | ||||
|     m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A); | ||||
| } | ||||
| 
 | ||||
| sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) { | ||||
|  | @ -190,6 +192,7 @@ func_decl * finite_set_decl_plugin::mk_func_decl(decl_kind k, unsigned num_param | |||
|     case OP_FINITE_SET_SIZE: | ||||
|     case OP_FINITE_SET_SUBSET: | ||||
|     case OP_FINITE_SET_MAP: | ||||
|     case OP_FINITE_SET_MAP_INVERSE: | ||||
|     case OP_FINITE_SET_FILTER: | ||||
|     case OP_FINITE_SET_RANGE: | ||||
|     case OP_FINITE_SET_EXT: | ||||
|  | @ -322,3 +325,4 @@ func_decl *finite_set_util::mk_range_decl() { | |||
|     sort *domain[2] = {i, i}; | ||||
|     return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr); | ||||
| } | ||||
| 
 | ||||
|  |  | |||
|  | @ -201,6 +201,10 @@ public: | |||
|         return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP, arr, set); | ||||
|     } | ||||
| 
 | ||||
|     app *mk_map_inverse(expr *arr, expr *a, expr *b) { | ||||
|         return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP_INVERSE, arr, b, a); | ||||
|     } | ||||
| 
 | ||||
|     app * mk_filter(expr* arr, expr* set) { | ||||
|         return m_manager.mk_app(m_fid, OP_FINITE_SET_FILTER, arr, set); | ||||
|     } | ||||
|  |  | |||
|  | @ -42,10 +42,7 @@ void finite_set_axioms::in_empty_axiom(expr *x) { | |||
|     sort *set_sort = u.mk_finite_set_sort(elem_sort); | ||||
|     expr_ref empty_set(u.mk_empty(set_sort), m); | ||||
|     expr_ref x_in_empty(u.mk_in(x, empty_set), m);     | ||||
|      | ||||
|     theory_axiom* ax = alloc(theory_axiom, m, "in-empty", x); | ||||
|     ax->clause.push_back(m.mk_not(x_in_empty)); | ||||
|     m_add_clause(ax); | ||||
|     add_unit("in-empty", x, m.mk_not(x_in_empty)); | ||||
| } | ||||
| 
 | ||||
| // a := set.union(b, c) 
 | ||||
|  | @ -55,7 +52,6 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | |||
|     if (!u.is_union(a, b, c)) | ||||
|         return; | ||||
| 
 | ||||
| 
 | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|  | @ -151,10 +147,10 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | |||
|      | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
| 
 | ||||
|     theory_axiom* ax = alloc(theory_axiom, m, "in-singleton", x, a); | ||||
| 
 | ||||
|     if (x == b) { | ||||
|         // If x and b are syntactically identical, then (x in a) is always true  
 | ||||
| 
 | ||||
|         theory_axiom* ax = alloc(theory_axiom, m, "in-singleton", x, a);      | ||||
|         ax->clause.push_back(x_in_a); | ||||
|         m_add_clause(ax); | ||||
|         return; | ||||
|  | @ -163,35 +159,28 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | |||
|     expr_ref x_eq_b(m.mk_eq(x, b), m); | ||||
|      | ||||
|     // (x in a) => (x == b)
 | ||||
|     ax->clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax->clause.push_back(x_eq_b); | ||||
|     m_add_clause(ax); | ||||
|     ax = alloc(theory_axiom, m, "in-singleton", x, a); | ||||
|     add_binary("in-singleton", x, a, m.mk_not(x_in_a), x_eq_b); | ||||
| 
 | ||||
|     // (x == b) => (x in a)
 | ||||
|     ax->clause.push_back(m.mk_not(x_eq_b)); | ||||
|     ax->clause.push_back(x_in_a); | ||||
|     m_add_clause(ax); | ||||
|     add_binary("in-singleton", x, a, m.mk_not(x_eq_b), x_in_a); | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::in_singleton_axiom(expr* a) { | ||||
|     expr *b = nullptr; | ||||
|     if (!u.is_singleton(a, b)) | ||||
|         return;     | ||||
|      | ||||
| 
 | ||||
| 
 | ||||
|     expr_ref b_in_a(u.mk_in(b, a), m); | ||||
| 
 | ||||
|     auto ax = alloc(theory_axiom, m, "in-singleton"); | ||||
|     ax->clause.push_back(b_in_a); | ||||
|     m_add_clause(ax); | ||||
|     add_unit("in-singleton", a, u.mk_in(b, a)); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| // a := set.range(lo, hi)
 | ||||
| // (x in a) <=> (lo <= x <= hi)
 | ||||
| // we use the rewriter to simplify inequalitiess because the arithmetic solver
 | ||||
| // makes some assumptions that inequalities are in normal form.
 | ||||
| // this complicates proof checking. 
 | ||||
| // Options are to include a proof of the rewrite within the justification
 | ||||
| // fix the arithmetic solver to use the inequalities without rewriting (it really should)
 | ||||
| // the same issue applies to everywhere we apply rewriting when adding theory axioms.
 | ||||
| 
 | ||||
| void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | ||||
|     expr* lo = nullptr, *hi = nullptr; | ||||
|     if (!u.is_range(a, lo, hi)) | ||||
|  | @ -205,16 +194,10 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | |||
|     m_rewriter(x_le_hi); | ||||
|      | ||||
|     // (x in a) => (lo <= x)
 | ||||
|     theory_axiom* ax1 = alloc(theory_axiom, m, "in-range", x, a); | ||||
|     ax1->clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1->clause.push_back(lo_le_x); | ||||
|     m_add_clause(ax1); | ||||
|     add_binary("in-range", x, a, m.mk_not(x_in_a), lo_le_x); | ||||
| 
 | ||||
|     // (x in a) => (x <= hi)
 | ||||
|     theory_axiom* ax2 = alloc(theory_axiom, m, "in-range", x, a); | ||||
|     ax2->clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2->clause.push_back(x_le_hi); | ||||
|     m_add_clause(ax2); | ||||
|     add_binary("in-range", x, a, m.mk_not(x_in_a), x_le_hi); | ||||
| 
 | ||||
|     // (lo <= x) and (x <= hi) => (x in a)
 | ||||
|     theory_axiom* ax3 = alloc(theory_axiom, m, "in-range", x, a); | ||||
|  | @ -246,13 +229,8 @@ void finite_set_axioms::in_range_axiom(expr* r) { | |||
|     ax->clause.push_back(u.mk_in(hi, r)); | ||||
|     m_add_clause(ax); | ||||
| 
 | ||||
|     ax = alloc(theory_axiom, m, "range-bounds", r); | ||||
|     ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r))); | ||||
|     m_add_clause(ax); | ||||
| 
 | ||||
|     ax = alloc(theory_axiom, m, "range-bounds", r); | ||||
|     ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r))); | ||||
|     m_add_clause(ax); | ||||
|     add_unit("range-bounds", r, m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r))); | ||||
|     add_unit("range-bounds", r, m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r))); | ||||
| } | ||||
| 
 | ||||
| // a := set.map(f, b)
 | ||||
|  | @ -262,6 +240,11 @@ void finite_set_axioms::in_map_axiom(expr *x, expr *a) { | |||
|     if (!u.is_map(a, f, b)) | ||||
|         return; | ||||
|      | ||||
|     expr_ref inv(u.mk_map_inverse(x, f, b), m); | ||||
|     expr_ref f1(u.mk_in(x, a), m); | ||||
|     expr_ref f2(u.mk_in(inv, b), m); | ||||
|     add_binary("map-inverse", x, a, m.mk_not(f1), f2); | ||||
|     add_binary("map-inverse", x, b, f1, m.mk_not(f2)); | ||||
|     // For now, we provide a placeholder implementation
 | ||||
|     // The full implementation would require skolemization
 | ||||
|     // to express the inverse relationship properly.
 | ||||
|  | @ -281,12 +264,10 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) { | |||
|     array_util autil(m); | ||||
|     expr_ref fx(autil.mk_select(f, x), m); | ||||
|     expr_ref fx_in_a(u.mk_in(fx, a), m); | ||||
|     m_rewriter(fx); | ||||
|      | ||||
|     // (x in b) => f(x) in a
 | ||||
|     theory_axiom* ax = alloc(theory_axiom, m, "in-map-image", x, a); | ||||
|     ax->clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax->clause.push_back(fx_in_a); | ||||
|     m_add_clause(ax); | ||||
|     add_binary("in-map", x, a, m.mk_not(x_in_b), fx_in_a); | ||||
| } | ||||
| 
 | ||||
| // a := set.filter(p, b)
 | ||||
|  | @ -304,16 +285,10 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | |||
|     expr_ref px(autil.mk_select(p, x), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     theory_axiom* ax1 = alloc(theory_axiom, m, "in-filter", x, a); | ||||
|     ax1->clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1->clause.push_back(x_in_b); | ||||
|     m_add_clause(ax1); | ||||
|     add_binary("in-filter", x, a, m.mk_not(x_in_a), x_in_b); | ||||
| 
 | ||||
|     // (x in a) => p(x)
 | ||||
|     theory_axiom* ax2 = alloc(theory_axiom, m, "in-filter", x, a); | ||||
|     ax2->clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2->clause.push_back(px); | ||||
|     m_add_clause(ax2); | ||||
|     add_binary("in-filter", x, a, m.mk_not(x_in_a), px); | ||||
| 
 | ||||
|     // (x in b) and p(x) => (x in a)
 | ||||
|     theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter", x, a); | ||||
|  | @ -323,23 +298,74 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | |||
|     m_add_clause(ax3); | ||||
| } | ||||
| 
 | ||||
| // a := set.singleton(b)
 | ||||
| // set.size(a) = 1
 | ||||
| void finite_set_axioms::size_singleton_axiom(expr *a) { | ||||
|     expr* b = nullptr; | ||||
|     if (!u.is_singleton(a, b)) | ||||
|         return; | ||||
|      | ||||
|     arith_util arith(m); | ||||
|     expr_ref size_a(u.mk_size(a), m); | ||||
|     expr_ref one(arith.mk_int(1), m); | ||||
|     expr_ref eq(m.mk_eq(size_a, one), m); | ||||
| 
 | ||||
|     theory_axiom* ax = alloc(theory_axiom, m, "size-singleton", a); | ||||
|     ax->clause.push_back(eq); | ||||
| void finite_set_axioms::add_unit(char const* name, expr* e, expr* unit) { | ||||
|     theory_axiom *ax = alloc(theory_axiom, m, name, e); | ||||
|     ax->clause.push_back(unit); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::add_binary(char const* name, expr* x, expr* y, expr* f1, expr* f2) { | ||||
|     theory_axiom *ax = alloc(theory_axiom, m, name, x, y); | ||||
|     ax->clause.push_back(f1); | ||||
|     ax->clause.push_back(f2); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
| 
 | ||||
| // Auxiliary algebraic axioms to ease reasoning about set.size
 | ||||
| // The axioms are not required for completenss for the base fragment
 | ||||
| // as they are handled by creating semi-linear sets.
 | ||||
| void finite_set_axioms::size_ub_axiom(expr *e) { | ||||
|     expr *b = nullptr, *x = nullptr, *y = nullptr; | ||||
|     arith_util a(m); | ||||
|     expr_ref ineq(m); | ||||
| 
 | ||||
|     if (u.is_singleton(e, b))  | ||||
|         add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(1)));     | ||||
|     else if (u.is_empty(e))  | ||||
|         add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(0)));     | ||||
|     else if (u.is_union(e, x, y)) { | ||||
|         ineq = a.mk_le(u.mk_size(e), a.mk_add(u.mk_size(x), u.mk_size(y))); | ||||
|         m_rewriter(ineq); | ||||
|         add_unit("size", e, ineq); | ||||
|     } | ||||
|     else if (u.is_intersect(e, x, y)) {         | ||||
|         ineq = a.mk_le(u.mk_size(e), u.mk_size(x)); | ||||
|         m_rewriter(ineq); | ||||
|         add_unit("size", e, ineq); | ||||
|         ineq = a.mk_le(u.mk_size(e), u.mk_size(y)); | ||||
|         m_rewriter(ineq); | ||||
|         add_unit("size", e, ineq); | ||||
|     } | ||||
|     else if (u.is_difference(e, x, y)) { | ||||
|         ineq = a.mk_le(u.mk_size(e), u.mk_size(x)); | ||||
|         m_rewriter(ineq); | ||||
|         add_unit("size", e, ineq); | ||||
|     } | ||||
|     else if (u.is_filter(e, x, y)) { | ||||
|         ineq = a.mk_le(u.mk_size(e), u.mk_size(y)); | ||||
|         m_rewriter(ineq); | ||||
|         add_unit("size", e, ineq); | ||||
|     } | ||||
|     else if (u.is_map(e, x, y)) { | ||||
|         ineq = a.mk_le(u.mk_size(e), u.mk_size(y)); | ||||
|         m_rewriter(ineq); | ||||
|         add_unit("size", e, ineq); | ||||
|     } | ||||
|     else if (u.is_range(e, x, y)) { | ||||
|         ineq = a.mk_eq(u.mk_size(e), m.mk_ite(a.mk_le(x, y), a.mk_add(a.mk_sub(y, x), a.mk_int(1)), a.mk_int(0))); | ||||
|         m_rewriter(ineq); | ||||
|         add_unit("size", e, ineq); | ||||
|     }     | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::size_lb_axiom(expr* e) { | ||||
|     arith_util a(m); | ||||
|     expr_ref ineq(m); | ||||
|     ineq = a.mk_le(a.mk_int(0), u.mk_size(e)); | ||||
|     m_rewriter(ineq); | ||||
|     add_unit("size-lb", e, ineq); | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::subset_axiom(expr* a) { | ||||
|     expr *b = nullptr, *c = nullptr; | ||||
|     if (!u.is_subset(a, b, c)) | ||||
|  |  | |||
|  | @ -46,6 +46,10 @@ class finite_set_axioms { | |||
| 
 | ||||
|     std::function<void(theory_axiom *)> m_add_clause; | ||||
| 
 | ||||
|     void add_unit(char const* name, expr* x, expr *e); | ||||
| 
 | ||||
|     void add_binary(char const *name, expr *x, expr *y, expr *f1, expr *f2); | ||||
| 
 | ||||
| public: | ||||
| 
 | ||||
|     finite_set_axioms(ast_manager &m) : m(m), u(m), m_rewriter(m) {} | ||||
|  | @ -86,8 +90,8 @@ public: | |||
|     // a := set.range(lo, hi)
 | ||||
|     // (not (set.in (- lo 1) a))
 | ||||
|     // (not (set.in (+ hi 1) a))
 | ||||
|     // (set.in lo a)
 | ||||
|     // (set.in hi a)
 | ||||
|     // lo <= hi => (set.in lo a)
 | ||||
|     // lo <= hi => (set.in hi a)
 | ||||
|     void in_range_axiom(expr *a); | ||||
| 
 | ||||
|     // a := set.map(f, b)
 | ||||
|  | @ -106,9 +110,20 @@ public: | |||
|     // (a) <=> (set.intersect(b, c) = b)
 | ||||
|     void subset_axiom(expr *a); | ||||
| 
 | ||||
|     // a := set.singleton(b)
 | ||||
|     // set.size(a) = 1
 | ||||
|     void size_singleton_axiom(expr *a); | ||||
| 
 | ||||
|     // set.size(empty) = 0
 | ||||
|     // set.size(set.singleton(b)) = 1
 | ||||
|     // set.size(a u b) <= set.size(a) + set.size(b)
 | ||||
|     // set.size(a n b) <= min(set.size(a), set.size(b))
 | ||||
|     // set.size(a \ b) <= set.size(a)
 | ||||
|     // set.size(set.map(f, b)) <= set.size(b)
 | ||||
|     // set.size(set.filter(p, b)) <= set.size(b)
 | ||||
|     // set.size([l..u]) = if(l <= u, u - l + 1, 0)    
 | ||||
|     void size_ub_axiom(expr *a); | ||||
| 
 | ||||
|     // 0 <= set.size(e)
 | ||||
|     void size_lb_axiom(expr *e); | ||||
| 
 | ||||
| 
 | ||||
|     // a != b => set.in (set.diff(a, b) a) != set.in (set.diff(a, b) b)
 | ||||
|     void extensionality_axiom(expr *a, expr *b); | ||||
|  |  | |||
|  | @ -47,14 +47,14 @@ br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, exp | |||
| } | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, expr_ref & result) { | ||||
|     VERIFY(num_args == 2); | ||||
|     // Idempotency: set.union(x, x) -> x
 | ||||
|     if (num_args == 2 && args[0] == args[1]) { | ||||
|     if (args[0] == args[1]) { | ||||
|         result = args[0]; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|      | ||||
|     // Identity: set.union(x, empty) -> x or set.union(empty, x) -> x
 | ||||
|     if (num_args == 2) { | ||||
|     if (u.is_empty(args[0])) { | ||||
|         result = args[1]; | ||||
|         return BR_DONE; | ||||
|  | @ -80,20 +80,22 @@ br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, | |||
|             return BR_DONE; | ||||
|         } | ||||
|     } | ||||
|     } | ||||
|      | ||||
|      | ||||
|     return BR_FAILED; | ||||
| } | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * args, expr_ref & result) { | ||||
|     if (num_args != 2) | ||||
|         return BR_FAILED; | ||||
| 
 | ||||
|     // Idempotency: set.intersect(x, x) -> x
 | ||||
|     if (num_args == 2 && args[0] == args[1]) { | ||||
|     if (args[0] == args[1]) { | ||||
|         result = args[0]; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|      | ||||
|     // Annihilation: set.intersect(x, empty) -> empty or set.intersect(empty, x) -> empty
 | ||||
|     if (num_args == 2) { | ||||
|     if (u.is_empty(args[0])) { | ||||
|         result = args[0]; | ||||
|         return BR_DONE; | ||||
|  | @ -119,6 +121,13 @@ br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * ar | |||
|             return BR_DONE; | ||||
|         } | ||||
|     } | ||||
|     expr *l1, *l2, *u1, *u2; | ||||
|     if (u.is_range(args[0], l1, u1) && u.is_range(args[1], l2, u2)) { | ||||
|         arith_util a(m); | ||||
|         auto max_l = m.mk_ite(a.mk_ge(l1, l2), l1, l2); | ||||
|         auto min_u = m.mk_ite(a.mk_ge(u1, u2), u2, u1); | ||||
|         result = u.mk_range(max_l, min_u); | ||||
|         return BR_REWRITE_FULL; | ||||
|     } | ||||
|      | ||||
|     return BR_FAILED; | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue