mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 11:42:28 +00:00 
			
		
		
		
	fix empty set declaration, add axioms and rewrites
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									4630373a97
								
							
						
					
					
						commit
						4464ab9431
					
				
					 6 changed files with 180 additions and 122 deletions
				
			
		|  | @ -27,7 +27,7 @@ Revision History: | ||||||
| finite_set_decl_plugin::finite_set_decl_plugin(): | finite_set_decl_plugin::finite_set_decl_plugin(): | ||||||
|     m_init(false) { |     m_init(false) { | ||||||
|     m_names.resize(LAST_FINITE_SET_OP, nullptr); |     m_names.resize(LAST_FINITE_SET_OP, nullptr); | ||||||
|     m_names[OP_FINITE_SET_EMPTY] = "set.empty "; |     m_names[OP_FINITE_SET_EMPTY] = "set.empty"; | ||||||
|     m_names[OP_FINITE_SET_SINGLETON] = "set.singleton"; |     m_names[OP_FINITE_SET_SINGLETON] = "set.singleton"; | ||||||
|     m_names[OP_FINITE_SET_UNION] = "set.union"; |     m_names[OP_FINITE_SET_UNION] = "set.union"; | ||||||
|     m_names[OP_FINITE_SET_INTERSECT] = "set.intersect"; |     m_names[OP_FINITE_SET_INTERSECT] = "set.intersect"; | ||||||
|  | @ -39,6 +39,7 @@ finite_set_decl_plugin::finite_set_decl_plugin(): | ||||||
|     m_names[OP_FINITE_SET_FILTER] = "set.filter"; |     m_names[OP_FINITE_SET_FILTER] = "set.filter"; | ||||||
|     m_names[OP_FINITE_SET_RANGE] = "set.range"; |     m_names[OP_FINITE_SET_RANGE] = "set.range"; | ||||||
|     m_names[OP_FINITE_SET_EXT] = "set.diff"; |     m_names[OP_FINITE_SET_EXT] = "set.diff"; | ||||||
|  |     m_names[OP_FINITE_SET_MAP_INVERSE] = "set.map.inverse"; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| finite_set_decl_plugin::~finite_set_decl_plugin() { | finite_set_decl_plugin::~finite_set_decl_plugin() { | ||||||
|  | @ -70,6 +71,7 @@ void finite_set_decl_plugin::init() { | ||||||
|     sort* arrABsetA[2] = { arrAB, setA }; |     sort* arrABsetA[2] = { arrAB, setA }; | ||||||
|     sort* arrABoolsetA[2] = { arrABool, setA }; |     sort* arrABoolsetA[2] = { arrABool, setA }; | ||||||
|     sort* intintT[2] = { intT, intT }; |     sort* intintT[2] = { intT, intT }; | ||||||
|  |     sort *arrABsetBsetA[3] = {arrAB, setB, setA}; | ||||||
|      |      | ||||||
|     m_sigs.resize(LAST_FINITE_SET_OP); |     m_sigs.resize(LAST_FINITE_SET_OP); | ||||||
|     m_sigs[OP_FINITE_SET_EMPTY]      = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EMPTY],      1, 0, nullptr, setA); |     m_sigs[OP_FINITE_SET_EMPTY]      = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EMPTY],      1, 0, nullptr, setA); | ||||||
|  | @ -84,7 +86,7 @@ void finite_set_decl_plugin::init() { | ||||||
|     m_sigs[OP_FINITE_SET_FILTER]     = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_FILTER], 1, 2, arrABoolsetA, setA); |     m_sigs[OP_FINITE_SET_FILTER]     = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_FILTER], 1, 2, arrABoolsetA, setA); | ||||||
|     m_sigs[OP_FINITE_SET_RANGE]      = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_RANGE],      0, 2, intintT, setInt); |     m_sigs[OP_FINITE_SET_RANGE]      = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_RANGE],      0, 2, intintT, setInt); | ||||||
|     m_sigs[OP_FINITE_SET_EXT]        = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EXT], 1, 2, setAsetA, A); |     m_sigs[OP_FINITE_SET_EXT]        = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EXT], 1, 2, setAsetA, A); | ||||||
| //    m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A);
 |     m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) { | sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) { | ||||||
|  | @ -190,6 +192,7 @@ func_decl * finite_set_decl_plugin::mk_func_decl(decl_kind k, unsigned num_param | ||||||
|     case OP_FINITE_SET_SIZE: |     case OP_FINITE_SET_SIZE: | ||||||
|     case OP_FINITE_SET_SUBSET: |     case OP_FINITE_SET_SUBSET: | ||||||
|     case OP_FINITE_SET_MAP: |     case OP_FINITE_SET_MAP: | ||||||
|  |     case OP_FINITE_SET_MAP_INVERSE: | ||||||
|     case OP_FINITE_SET_FILTER: |     case OP_FINITE_SET_FILTER: | ||||||
|     case OP_FINITE_SET_RANGE: |     case OP_FINITE_SET_RANGE: | ||||||
|     case OP_FINITE_SET_EXT: |     case OP_FINITE_SET_EXT: | ||||||
|  | @ -322,3 +325,4 @@ func_decl *finite_set_util::mk_range_decl() { | ||||||
|     sort *domain[2] = {i, i}; |     sort *domain[2] = {i, i}; | ||||||
|     return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr); |     return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr); | ||||||
| } | } | ||||||
|  | 
 | ||||||
|  |  | ||||||
|  | @ -201,6 +201,10 @@ public: | ||||||
|         return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP, arr, set); |         return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP, arr, set); | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|  |     app *mk_map_inverse(expr *arr, expr *a, expr *b) { | ||||||
|  |         return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP_INVERSE, arr, b, a); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|     app * mk_filter(expr* arr, expr* set) { |     app * mk_filter(expr* arr, expr* set) { | ||||||
|         return m_manager.mk_app(m_fid, OP_FINITE_SET_FILTER, arr, set); |         return m_manager.mk_app(m_fid, OP_FINITE_SET_FILTER, arr, set); | ||||||
|     } |     } | ||||||
|  |  | ||||||
|  | @ -41,11 +41,8 @@ void finite_set_axioms::in_empty_axiom(expr *x) { | ||||||
|     sort* elem_sort = x->get_sort(); |     sort* elem_sort = x->get_sort(); | ||||||
|     sort *set_sort = u.mk_finite_set_sort(elem_sort); |     sort *set_sort = u.mk_finite_set_sort(elem_sort); | ||||||
|     expr_ref empty_set(u.mk_empty(set_sort), m); |     expr_ref empty_set(u.mk_empty(set_sort), m); | ||||||
|     expr_ref x_in_empty(u.mk_in(x, empty_set), m); |     expr_ref x_in_empty(u.mk_in(x, empty_set), m);     | ||||||
|      |     add_unit("in-empty", x, m.mk_not(x_in_empty)); | ||||||
|     theory_axiom* ax = alloc(theory_axiom, m, "in-empty", x); |  | ||||||
|     ax->clause.push_back(m.mk_not(x_in_empty)); |  | ||||||
|     m_add_clause(ax); |  | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.union(b, c) 
 | // a := set.union(b, c) 
 | ||||||
|  | @ -55,7 +52,6 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | ||||||
|     if (!u.is_union(a, b, c)) |     if (!u.is_union(a, b, c)) | ||||||
|         return; |         return; | ||||||
| 
 | 
 | ||||||
| 
 |  | ||||||
|     expr_ref x_in_a(u.mk_in(x, a), m); |     expr_ref x_in_a(u.mk_in(x, a), m); | ||||||
|     expr_ref x_in_b(u.mk_in(x, b), m); |     expr_ref x_in_b(u.mk_in(x, b), m); | ||||||
|     expr_ref x_in_c(u.mk_in(x, c), m); |     expr_ref x_in_c(u.mk_in(x, c), m); | ||||||
|  | @ -151,10 +147,10 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | ||||||
|      |      | ||||||
|     expr_ref x_in_a(u.mk_in(x, a), m); |     expr_ref x_in_a(u.mk_in(x, a), m); | ||||||
| 
 | 
 | ||||||
|     theory_axiom* ax = alloc(theory_axiom, m, "in-singleton", x, a); |  | ||||||
|     if (x == b) { |  | ||||||
|         // If x and b are syntactically identical, then (x in a) is always true
 |  | ||||||
| 
 | 
 | ||||||
|  |     if (x == b) { | ||||||
|  |         // If x and b are syntactically identical, then (x in a) is always true  
 | ||||||
|  |         theory_axiom* ax = alloc(theory_axiom, m, "in-singleton", x, a);      | ||||||
|         ax->clause.push_back(x_in_a); |         ax->clause.push_back(x_in_a); | ||||||
|         m_add_clause(ax); |         m_add_clause(ax); | ||||||
|         return; |         return; | ||||||
|  | @ -163,35 +159,28 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | ||||||
|     expr_ref x_eq_b(m.mk_eq(x, b), m); |     expr_ref x_eq_b(m.mk_eq(x, b), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x == b)
 |     // (x in a) => (x == b)
 | ||||||
|     ax->clause.push_back(m.mk_not(x_in_a)); |     add_binary("in-singleton", x, a, m.mk_not(x_in_a), x_eq_b); | ||||||
|     ax->clause.push_back(x_eq_b); |  | ||||||
|     m_add_clause(ax); |  | ||||||
|     ax = alloc(theory_axiom, m, "in-singleton", x, a); |  | ||||||
| 
 | 
 | ||||||
|     // (x == b) => (x in a)
 |     // (x == b) => (x in a)
 | ||||||
|     ax->clause.push_back(m.mk_not(x_eq_b)); |     add_binary("in-singleton", x, a, m.mk_not(x_eq_b), x_in_a); | ||||||
|     ax->clause.push_back(x_in_a); |  | ||||||
|     m_add_clause(ax); |  | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| void finite_set_axioms::in_singleton_axiom(expr* a) { | void finite_set_axioms::in_singleton_axiom(expr* a) { | ||||||
|     expr *b = nullptr; |     expr *b = nullptr; | ||||||
|     if (!u.is_singleton(a, b)) |     if (!u.is_singleton(a, b)) | ||||||
|         return; |         return;     | ||||||
|      |     add_unit("in-singleton", a, u.mk_in(b, a)); | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
|     expr_ref b_in_a(u.mk_in(b, a), m); |  | ||||||
| 
 |  | ||||||
|     auto ax = alloc(theory_axiom, m, "in-singleton"); |  | ||||||
|     ax->clause.push_back(b_in_a); |  | ||||||
|     m_add_clause(ax); |  | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| // a := set.range(lo, hi)
 | // a := set.range(lo, hi)
 | ||||||
| // (x in a) <=> (lo <= x <= hi)
 | // (x in a) <=> (lo <= x <= hi)
 | ||||||
|  | // we use the rewriter to simplify inequalitiess because the arithmetic solver
 | ||||||
|  | // makes some assumptions that inequalities are in normal form.
 | ||||||
|  | // this complicates proof checking. 
 | ||||||
|  | // Options are to include a proof of the rewrite within the justification
 | ||||||
|  | // fix the arithmetic solver to use the inequalities without rewriting (it really should)
 | ||||||
|  | // the same issue applies to everywhere we apply rewriting when adding theory axioms.
 | ||||||
|  | 
 | ||||||
| void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | ||||||
|     expr* lo = nullptr, *hi = nullptr; |     expr* lo = nullptr, *hi = nullptr; | ||||||
|     if (!u.is_range(a, lo, hi)) |     if (!u.is_range(a, lo, hi)) | ||||||
|  | @ -205,16 +194,10 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | ||||||
|     m_rewriter(x_le_hi); |     m_rewriter(x_le_hi); | ||||||
|      |      | ||||||
|     // (x in a) => (lo <= x)
 |     // (x in a) => (lo <= x)
 | ||||||
|     theory_axiom* ax1 = alloc(theory_axiom, m, "in-range", x, a); |     add_binary("in-range", x, a, m.mk_not(x_in_a), lo_le_x); | ||||||
|     ax1->clause.push_back(m.mk_not(x_in_a)); |  | ||||||
|     ax1->clause.push_back(lo_le_x); |  | ||||||
|     m_add_clause(ax1); |  | ||||||
| 
 | 
 | ||||||
|     // (x in a) => (x <= hi)
 |     // (x in a) => (x <= hi)
 | ||||||
|     theory_axiom* ax2 = alloc(theory_axiom, m, "in-range", x, a); |     add_binary("in-range", x, a, m.mk_not(x_in_a), x_le_hi); | ||||||
|     ax2->clause.push_back(m.mk_not(x_in_a)); |  | ||||||
|     ax2->clause.push_back(x_le_hi); |  | ||||||
|     m_add_clause(ax2); |  | ||||||
| 
 | 
 | ||||||
|     // (lo <= x) and (x <= hi) => (x in a)
 |     // (lo <= x) and (x <= hi) => (x in a)
 | ||||||
|     theory_axiom* ax3 = alloc(theory_axiom, m, "in-range", x, a); |     theory_axiom* ax3 = alloc(theory_axiom, m, "in-range", x, a); | ||||||
|  | @ -246,13 +229,8 @@ void finite_set_axioms::in_range_axiom(expr* r) { | ||||||
|     ax->clause.push_back(u.mk_in(hi, r)); |     ax->clause.push_back(u.mk_in(hi, r)); | ||||||
|     m_add_clause(ax); |     m_add_clause(ax); | ||||||
| 
 | 
 | ||||||
|     ax = alloc(theory_axiom, m, "range-bounds", r); |     add_unit("range-bounds", r, m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r))); | ||||||
|     ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r))); |     add_unit("range-bounds", r, m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r))); | ||||||
|     m_add_clause(ax); |  | ||||||
| 
 |  | ||||||
|     ax = alloc(theory_axiom, m, "range-bounds", r); |  | ||||||
|     ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r))); |  | ||||||
|     m_add_clause(ax); |  | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.map(f, b)
 | // a := set.map(f, b)
 | ||||||
|  | @ -262,6 +240,11 @@ void finite_set_axioms::in_map_axiom(expr *x, expr *a) { | ||||||
|     if (!u.is_map(a, f, b)) |     if (!u.is_map(a, f, b)) | ||||||
|         return; |         return; | ||||||
|      |      | ||||||
|  |     expr_ref inv(u.mk_map_inverse(x, f, b), m); | ||||||
|  |     expr_ref f1(u.mk_in(x, a), m); | ||||||
|  |     expr_ref f2(u.mk_in(inv, b), m); | ||||||
|  |     add_binary("map-inverse", x, a, m.mk_not(f1), f2); | ||||||
|  |     add_binary("map-inverse", x, b, f1, m.mk_not(f2)); | ||||||
|     // For now, we provide a placeholder implementation
 |     // For now, we provide a placeholder implementation
 | ||||||
|     // The full implementation would require skolemization
 |     // The full implementation would require skolemization
 | ||||||
|     // to express the inverse relationship properly.
 |     // to express the inverse relationship properly.
 | ||||||
|  | @ -281,12 +264,10 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) { | ||||||
|     array_util autil(m); |     array_util autil(m); | ||||||
|     expr_ref fx(autil.mk_select(f, x), m); |     expr_ref fx(autil.mk_select(f, x), m); | ||||||
|     expr_ref fx_in_a(u.mk_in(fx, a), m); |     expr_ref fx_in_a(u.mk_in(fx, a), m); | ||||||
|  |     m_rewriter(fx); | ||||||
|      |      | ||||||
|     // (x in b) => f(x) in a
 |     // (x in b) => f(x) in a
 | ||||||
|     theory_axiom* ax = alloc(theory_axiom, m, "in-map-image", x, a); |     add_binary("in-map", x, a, m.mk_not(x_in_b), fx_in_a); | ||||||
|     ax->clause.push_back(m.mk_not(x_in_b)); |  | ||||||
|     ax->clause.push_back(fx_in_a); |  | ||||||
|     m_add_clause(ax); |  | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.filter(p, b)
 | // a := set.filter(p, b)
 | ||||||
|  | @ -304,16 +285,10 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | ||||||
|     expr_ref px(autil.mk_select(p, x), m); |     expr_ref px(autil.mk_select(p, x), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x in b)
 |     // (x in a) => (x in b)
 | ||||||
|     theory_axiom* ax1 = alloc(theory_axiom, m, "in-filter", x, a); |     add_binary("in-filter", x, a, m.mk_not(x_in_a), x_in_b); | ||||||
|     ax1->clause.push_back(m.mk_not(x_in_a)); |  | ||||||
|     ax1->clause.push_back(x_in_b); |  | ||||||
|     m_add_clause(ax1); |  | ||||||
| 
 | 
 | ||||||
|     // (x in a) => p(x)
 |     // (x in a) => p(x)
 | ||||||
|     theory_axiom* ax2 = alloc(theory_axiom, m, "in-filter", x, a); |     add_binary("in-filter", x, a, m.mk_not(x_in_a), px); | ||||||
|     ax2->clause.push_back(m.mk_not(x_in_a)); |  | ||||||
|     ax2->clause.push_back(px); |  | ||||||
|     m_add_clause(ax2); |  | ||||||
| 
 | 
 | ||||||
|     // (x in b) and p(x) => (x in a)
 |     // (x in b) and p(x) => (x in a)
 | ||||||
|     theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter", x, a); |     theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter", x, a); | ||||||
|  | @ -323,23 +298,74 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | ||||||
|     m_add_clause(ax3); |     m_add_clause(ax3); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.singleton(b)
 | void finite_set_axioms::add_unit(char const* name, expr* e, expr* unit) { | ||||||
| // set.size(a) = 1
 |     theory_axiom *ax = alloc(theory_axiom, m, name, e); | ||||||
| void finite_set_axioms::size_singleton_axiom(expr *a) { |     ax->clause.push_back(unit); | ||||||
|     expr* b = nullptr; |  | ||||||
|     if (!u.is_singleton(a, b)) |  | ||||||
|         return; |  | ||||||
|      |  | ||||||
|     arith_util arith(m); |  | ||||||
|     expr_ref size_a(u.mk_size(a), m); |  | ||||||
|     expr_ref one(arith.mk_int(1), m); |  | ||||||
|     expr_ref eq(m.mk_eq(size_a, one), m); |  | ||||||
| 
 |  | ||||||
|     theory_axiom* ax = alloc(theory_axiom, m, "size-singleton", a); |  | ||||||
|     ax->clause.push_back(eq); |  | ||||||
|     m_add_clause(ax); |     m_add_clause(ax); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
|  | void finite_set_axioms::add_binary(char const* name, expr* x, expr* y, expr* f1, expr* f2) { | ||||||
|  |     theory_axiom *ax = alloc(theory_axiom, m, name, x, y); | ||||||
|  |     ax->clause.push_back(f1); | ||||||
|  |     ax->clause.push_back(f2); | ||||||
|  |     m_add_clause(ax); | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | // Auxiliary algebraic axioms to ease reasoning about set.size
 | ||||||
|  | // The axioms are not required for completenss for the base fragment
 | ||||||
|  | // as they are handled by creating semi-linear sets.
 | ||||||
|  | void finite_set_axioms::size_ub_axiom(expr *e) { | ||||||
|  |     expr *b = nullptr, *x = nullptr, *y = nullptr; | ||||||
|  |     arith_util a(m); | ||||||
|  |     expr_ref ineq(m); | ||||||
|  | 
 | ||||||
|  |     if (u.is_singleton(e, b))  | ||||||
|  |         add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(1)));     | ||||||
|  |     else if (u.is_empty(e))  | ||||||
|  |         add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(0)));     | ||||||
|  |     else if (u.is_union(e, x, y)) { | ||||||
|  |         ineq = a.mk_le(u.mk_size(e), a.mk_add(u.mk_size(x), u.mk_size(y))); | ||||||
|  |         m_rewriter(ineq); | ||||||
|  |         add_unit("size", e, ineq); | ||||||
|  |     } | ||||||
|  |     else if (u.is_intersect(e, x, y)) {         | ||||||
|  |         ineq = a.mk_le(u.mk_size(e), u.mk_size(x)); | ||||||
|  |         m_rewriter(ineq); | ||||||
|  |         add_unit("size", e, ineq); | ||||||
|  |         ineq = a.mk_le(u.mk_size(e), u.mk_size(y)); | ||||||
|  |         m_rewriter(ineq); | ||||||
|  |         add_unit("size", e, ineq); | ||||||
|  |     } | ||||||
|  |     else if (u.is_difference(e, x, y)) { | ||||||
|  |         ineq = a.mk_le(u.mk_size(e), u.mk_size(x)); | ||||||
|  |         m_rewriter(ineq); | ||||||
|  |         add_unit("size", e, ineq); | ||||||
|  |     } | ||||||
|  |     else if (u.is_filter(e, x, y)) { | ||||||
|  |         ineq = a.mk_le(u.mk_size(e), u.mk_size(y)); | ||||||
|  |         m_rewriter(ineq); | ||||||
|  |         add_unit("size", e, ineq); | ||||||
|  |     } | ||||||
|  |     else if (u.is_map(e, x, y)) { | ||||||
|  |         ineq = a.mk_le(u.mk_size(e), u.mk_size(y)); | ||||||
|  |         m_rewriter(ineq); | ||||||
|  |         add_unit("size", e, ineq); | ||||||
|  |     } | ||||||
|  |     else if (u.is_range(e, x, y)) { | ||||||
|  |         ineq = a.mk_eq(u.mk_size(e), m.mk_ite(a.mk_le(x, y), a.mk_add(a.mk_sub(y, x), a.mk_int(1)), a.mk_int(0))); | ||||||
|  |         m_rewriter(ineq); | ||||||
|  |         add_unit("size", e, ineq); | ||||||
|  |     }     | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | void finite_set_axioms::size_lb_axiom(expr* e) { | ||||||
|  |     arith_util a(m); | ||||||
|  |     expr_ref ineq(m); | ||||||
|  |     ineq = a.mk_le(a.mk_int(0), u.mk_size(e)); | ||||||
|  |     m_rewriter(ineq); | ||||||
|  |     add_unit("size-lb", e, ineq); | ||||||
|  | } | ||||||
|  | 
 | ||||||
| void finite_set_axioms::subset_axiom(expr* a) { | void finite_set_axioms::subset_axiom(expr* a) { | ||||||
|     expr *b = nullptr, *c = nullptr; |     expr *b = nullptr, *c = nullptr; | ||||||
|     if (!u.is_subset(a, b, c)) |     if (!u.is_subset(a, b, c)) | ||||||
|  | @ -367,7 +393,7 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | ||||||
|     expr_ref diff_in_a(u.mk_in(diff_ab, a), m); |     expr_ref diff_in_a(u.mk_in(diff_ab, a), m); | ||||||
|     expr_ref diff_in_b(u.mk_in(diff_ab, b), m); |     expr_ref diff_in_b(u.mk_in(diff_ab, b), m); | ||||||
|      |      | ||||||
|     // (a != b) => (x in diff_ab != x in diff_ba)
 |     // (a != b) => (x in diff_ab != x in diff_ba) 
 | ||||||
|     theory_axiom* ax = alloc(theory_axiom, m, "extensionality", a, b); |     theory_axiom* ax = alloc(theory_axiom, m, "extensionality", a, b); | ||||||
|     ax->clause.push_back(a_eq_b); |     ax->clause.push_back(a_eq_b); | ||||||
|     ax->clause.push_back(m.mk_not(diff_in_a)); |     ax->clause.push_back(m.mk_not(diff_in_a)); | ||||||
|  |  | ||||||
|  | @ -46,6 +46,10 @@ class finite_set_axioms { | ||||||
| 
 | 
 | ||||||
|     std::function<void(theory_axiom *)> m_add_clause; |     std::function<void(theory_axiom *)> m_add_clause; | ||||||
| 
 | 
 | ||||||
|  |     void add_unit(char const* name, expr* x, expr *e); | ||||||
|  | 
 | ||||||
|  |     void add_binary(char const *name, expr *x, expr *y, expr *f1, expr *f2); | ||||||
|  | 
 | ||||||
| public: | public: | ||||||
| 
 | 
 | ||||||
|     finite_set_axioms(ast_manager &m) : m(m), u(m), m_rewriter(m) {} |     finite_set_axioms(ast_manager &m) : m(m), u(m), m_rewriter(m) {} | ||||||
|  | @ -86,8 +90,8 @@ public: | ||||||
|     // a := set.range(lo, hi)
 |     // a := set.range(lo, hi)
 | ||||||
|     // (not (set.in (- lo 1) a))
 |     // (not (set.in (- lo 1) a))
 | ||||||
|     // (not (set.in (+ hi 1) a))
 |     // (not (set.in (+ hi 1) a))
 | ||||||
|     // (set.in lo a)
 |     // lo <= hi => (set.in lo a)
 | ||||||
|     // (set.in hi a)
 |     // lo <= hi => (set.in hi a)
 | ||||||
|     void in_range_axiom(expr *a); |     void in_range_axiom(expr *a); | ||||||
| 
 | 
 | ||||||
|     // a := set.map(f, b)
 |     // a := set.map(f, b)
 | ||||||
|  | @ -106,9 +110,20 @@ public: | ||||||
|     // (a) <=> (set.intersect(b, c) = b)
 |     // (a) <=> (set.intersect(b, c) = b)
 | ||||||
|     void subset_axiom(expr *a); |     void subset_axiom(expr *a); | ||||||
| 
 | 
 | ||||||
|     // a := set.singleton(b)
 | 
 | ||||||
|     // set.size(a) = 1
 |     // set.size(empty) = 0
 | ||||||
|     void size_singleton_axiom(expr *a); |     // set.size(set.singleton(b)) = 1
 | ||||||
|  |     // set.size(a u b) <= set.size(a) + set.size(b)
 | ||||||
|  |     // set.size(a n b) <= min(set.size(a), set.size(b))
 | ||||||
|  |     // set.size(a \ b) <= set.size(a)
 | ||||||
|  |     // set.size(set.map(f, b)) <= set.size(b)
 | ||||||
|  |     // set.size(set.filter(p, b)) <= set.size(b)
 | ||||||
|  |     // set.size([l..u]) = if(l <= u, u - l + 1, 0)    
 | ||||||
|  |     void size_ub_axiom(expr *a); | ||||||
|  | 
 | ||||||
|  |     // 0 <= set.size(e)
 | ||||||
|  |     void size_lb_axiom(expr *e); | ||||||
|  | 
 | ||||||
| 
 | 
 | ||||||
|     // a != b => set.in (set.diff(a, b) a) != set.in (set.diff(a, b) b)
 |     // a != b => set.in (set.diff(a, b) a) != set.in (set.diff(a, b) b)
 | ||||||
|     void extensionality_axiom(expr *a, expr *b); |     void extensionality_axiom(expr *a, expr *b); | ||||||
|  |  | ||||||
|  | @ -47,78 +47,87 @@ br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, exp | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, expr_ref & result) { | br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, expr_ref & result) { | ||||||
|  |     VERIFY(num_args == 2); | ||||||
|     // Idempotency: set.union(x, x) -> x
 |     // Idempotency: set.union(x, x) -> x
 | ||||||
|     if (num_args == 2 && args[0] == args[1]) { |     if (args[0] == args[1]) { | ||||||
|         result = args[0]; |         result = args[0]; | ||||||
|         return BR_DONE; |         return BR_DONE; | ||||||
|     } |     } | ||||||
|      |      | ||||||
|     // Identity: set.union(x, empty) -> x or set.union(empty, x) -> x
 |     // Identity: set.union(x, empty) -> x or set.union(empty, x) -> x
 | ||||||
|     if (num_args == 2) { |     if (u.is_empty(args[0])) { | ||||||
|         if (u.is_empty(args[0])) { |         result = args[1]; | ||||||
|             result = args[1]; |         return BR_DONE; | ||||||
|             return BR_DONE; |     } | ||||||
|         } |     if (u.is_empty(args[1])) { | ||||||
|         if (u.is_empty(args[1])) { |         result = args[0]; | ||||||
|  |         return BR_DONE; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // Absorption: set.union(x, set.intersect(x, y)) -> x
 | ||||||
|  |     expr *a1, *a2; | ||||||
|  |     if (u.is_intersect(args[1], a1, a2)) { | ||||||
|  |         if (args[0] == a1 || args[0] == a2) { | ||||||
|             result = args[0]; |             result = args[0]; | ||||||
|             return BR_DONE; |             return BR_DONE; | ||||||
|         } |         } | ||||||
|          |     } | ||||||
|         // Absorption: set.union(x, set.intersect(x, y)) -> x
 | 
 | ||||||
|         expr* a1, *a2; |     // Absorption: set.union(set.intersect(x, y), x) -> x
 | ||||||
|         if (u.is_intersect(args[1], a1, a2)) { |     if (u.is_intersect(args[0], a1, a2)) { | ||||||
|             if (args[0] == a1 || args[0] == a2) { |         if (args[1] == a1 || args[1] == a2) { | ||||||
|                 result = args[0]; |             result = args[1]; | ||||||
|                 return BR_DONE; |             return BR_DONE; | ||||||
|             } |  | ||||||
|         } |  | ||||||
|          |  | ||||||
|         // Absorption: set.union(set.intersect(x, y), x) -> x
 |  | ||||||
|         if (u.is_intersect(args[0], a1, a2)) { |  | ||||||
|             if (args[1] == a1 || args[1] == a2) { |  | ||||||
|                 result = args[1]; |  | ||||||
|                 return BR_DONE; |  | ||||||
|             } |  | ||||||
|         } |         } | ||||||
|     } |     } | ||||||
|      |      | ||||||
|  |      | ||||||
|     return BR_FAILED; |     return BR_FAILED; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * args, expr_ref & result) { | br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * args, expr_ref & result) { | ||||||
|  |     if (num_args != 2) | ||||||
|  |         return BR_FAILED; | ||||||
|  | 
 | ||||||
|     // Idempotency: set.intersect(x, x) -> x
 |     // Idempotency: set.intersect(x, x) -> x
 | ||||||
|     if (num_args == 2 && args[0] == args[1]) { |     if (args[0] == args[1]) { | ||||||
|         result = args[0]; |         result = args[0]; | ||||||
|         return BR_DONE; |         return BR_DONE; | ||||||
|     } |     } | ||||||
|      |      | ||||||
|     // Annihilation: set.intersect(x, empty) -> empty or set.intersect(empty, x) -> empty
 |     // Annihilation: set.intersect(x, empty) -> empty or set.intersect(empty, x) -> empty
 | ||||||
|     if (num_args == 2) { |     if (u.is_empty(args[0])) { | ||||||
|         if (u.is_empty(args[0])) { |         result = args[0]; | ||||||
|  |         return BR_DONE; | ||||||
|  |     } | ||||||
|  |     if (u.is_empty(args[1])) { | ||||||
|  |         result = args[1]; | ||||||
|  |         return BR_DONE; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // Absorption: set.intersect(x, set.union(x, y)) -> x
 | ||||||
|  |     expr *a1, *a2; | ||||||
|  |     if (u.is_union(args[1], a1, a2)) { | ||||||
|  |         if (args[0] == a1 || args[0] == a2) { | ||||||
|             result = args[0]; |             result = args[0]; | ||||||
|             return BR_DONE; |             return BR_DONE; | ||||||
|         } |         } | ||||||
|         if (u.is_empty(args[1])) { |     } | ||||||
|  | 
 | ||||||
|  |     // Absorption: set.intersect(set.union(x, y), x) -> x
 | ||||||
|  |     if (u.is_union(args[0], a1, a2)) { | ||||||
|  |         if (args[1] == a1 || args[1] == a2) { | ||||||
|             result = args[1]; |             result = args[1]; | ||||||
|             return BR_DONE; |             return BR_DONE; | ||||||
|         } |         } | ||||||
|          |     } | ||||||
|         // Absorption: set.intersect(x, set.union(x, y)) -> x
 |     expr *l1, *l2, *u1, *u2; | ||||||
|         expr* a1, *a2; |     if (u.is_range(args[0], l1, u1) && u.is_range(args[1], l2, u2)) { | ||||||
|         if (u.is_union(args[1], a1, a2)) { |         arith_util a(m); | ||||||
|             if (args[0] == a1 || args[0] == a2) { |         auto max_l = m.mk_ite(a.mk_ge(l1, l2), l1, l2); | ||||||
|                 result = args[0]; |         auto min_u = m.mk_ite(a.mk_ge(u1, u2), u2, u1); | ||||||
|                 return BR_DONE; |         result = u.mk_range(max_l, min_u); | ||||||
|             } |         return BR_REWRITE_FULL; | ||||||
|         } |  | ||||||
|          |  | ||||||
|         // Absorption: set.intersect(set.union(x, y), x) -> x
 |  | ||||||
|         if (u.is_union(args[0], a1, a2)) { |  | ||||||
|             if (args[1] == a1 || args[1] == a2) { |  | ||||||
|                 result = args[1]; |  | ||||||
|                 return BR_DONE; |  | ||||||
|             } |  | ||||||
|         } |  | ||||||
|     } |     } | ||||||
|      |      | ||||||
|     return BR_FAILED; |     return BR_FAILED; | ||||||
|  |  | ||||||
|  | @ -122,12 +122,12 @@ namespace smt { | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     /*
 |     /*
 | ||||||
|     * Merge the equivalence classes of two variables. |      * Merge the equivalence classes of two variables. | ||||||
|      * parent_in := vector of (set.in x S) terms where S is in the equivalence class of r. |      * parent_in := vector of (set.in x S) terms where S is in the equivalence class of r. | ||||||
|      * parent_setops := vector of (set.op S T) where S or T is in the equivalence class of r. |      * parent_setops := vector of (set.op S T) where S or T is in the equivalence class of r. | ||||||
|      * setops := vector of (set.op S T) where (set.op S T) is in the equivalence class of r. |      * setops := vector of (set.op S T) where (set.op S T) is in the equivalence class of r. | ||||||
|      *  |      *  | ||||||
|     */ |      */ | ||||||
|     void theory_finite_set::merge_eh(theory_var root, theory_var other, theory_var, theory_var) { |     void theory_finite_set::merge_eh(theory_var root, theory_var other, theory_var, theory_var) { | ||||||
|         // r is the new root
 |         // r is the new root
 | ||||||
|         TRACE(finite_set, tout << "merging v" << root << " v" << other << "\n"; display_var(tout, root); |         TRACE(finite_set, tout << "merging v" << root << " v" << other << "\n"; display_var(tout, root); | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue