3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00

elaborate on dom simplifier

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-08-29 19:16:56 -07:00
parent 6969e6024b
commit 4452ff9884
3 changed files with 336 additions and 212 deletions

View file

@ -7,6 +7,7 @@ z3_add_component(core_tactics
ctx_simplify_tactic.cpp
der_tactic.cpp
distribute_forall_tactic.cpp
dom_simplify_tactic.cpp
elim_term_ite_tactic.cpp
elim_uncnstr_tactic.cpp
injectivity_tactic.cpp

View file

@ -17,210 +17,165 @@ Notes:
--*/
#if 0
#include "ast/ast.h"
#include "ast/ast_util.h"
#include "ast/ast_pp.h"
#include "tactic/core/dom_simplify_tactic.h"
class expr_dominators {
public:
typedef obj_map<expr, ptr_vector<expr>> tree_t;
private:
ast_manager& m;
expr_ref m_root;
obj_map<unsigned> m_expr2post; // reverse post-order number
ptr_vector<expr> m_post2expr;
tree_t m_parents;
obj_map<expr, expr*> m_doms;
tree_t m_tree;
void add_edge(tree_t& tree, expr * src, expr* dst) {
tree.insert_if_not_there(src, ptr_vector<expr>()).push_back(dst);
}
/**
\brief compute a post-order traversal for e.
Also populate the set of parents
*/
void compute_post_order() {
unsigned post_num = 0;
SASSERT(m_post2expr.empty());
SASSERT(m_expr2post.empty());
ast_mark mark;
ptr_vector<expr> todo;
todo.push_back(m_root);
while (!todo.empty()) {
expr* e = todo.back();
if (is_marked(e)) {
todo.pop_back();
continue;
/**
\brief compute a post-order traversal for e.
Also populate the set of parents
*/
void expr_dominators::compute_post_order() {
unsigned post_num = 0;
SASSERT(m_post2expr.empty());
SASSERT(m_expr2post.empty());
ast_mark mark;
ptr_vector<expr> todo;
todo.push_back(m_root);
while (!todo.empty()) {
expr* e = todo.back();
if (mark.is_marked(e)) {
todo.pop_back();
continue;
}
if (is_app(e)) {
app* a = to_app(e);
bool done = true;
for (expr* arg : *a) {
if (!mark.is_marked(arg)) {
todo.push_back(arg);
done = false;
}
}
if (is_app(e)) {
app* a = to_app(e);
bool done = true;
if (done) {
mark.mark(e, true);
m_expr2post.insert(e, post_num++);
m_post2expr.push_back(e);
todo.pop_back();
for (expr* arg : *a) {
if (!is_marked(arg)) {
todo.push_back(arg);
done = false;
}
}
if (done) {
mark.mark(e);
m_expr2post.insert(e, post_num++);
m_post2expr.push_back(e);
todo.pop_back();
for (expr* arg : *a) {
add_edge(m_parents, arg, a);
}
}
}
else {
todo.pop_back();
}
}
}
expr* intersect(expr* x, expr * y) {
unsigned n1 = m_expr2post[x];
unsigned n2 = m_expr2post[y];
while (n1 != n2) {
if (n1 < n2) {
x = m_doms[x];
n1 = m_expr2post[x];
}
else if (n1 > n2) {
y = m_doms[y];
n2 = m_expr2post[y];
}
}
SASSERT(x == y);
return x;
}
void compute_dominators() {
expr * e = m_root;
SASSERT(m_doms.empty());
m_doms.insert(e, e);
bool change = true;
while (change) {
change = false;
SASSERT(m_post2expr.back() == e);
for (unsigned i = 0; i < m_post2expr.size() - 1; ++i) {
expr * child = m_post2expr[i];
ptr_vector<expr> const& p = m_parents[child];
SASSERT(!p.empty());
expr * new_idom = p[0], * idom2 = 0;
for (unsigned j = 1; j < p.size(); ++j) {
if (m_doms.find(p[j], idom2)) {
new_idom = intersect(new_idom, idom2);
}
}
if (!m_doms.find(child, idom2) || idom2 != new_idom) {
m_doms.insert(child, new_idom);
change = true;
add_edge(m_parents, arg, a);
}
}
}
}
void extract_tree() {
for (auto const& kv : m_doms) {
add_edge(m_tree, kv.m_value, kv.m_key);
else {
mark.mark(e, true);
todo.pop_back();
}
}
void reset() {
m_expr2post.reset();
m_post2expr.reset();
m_parents.reset();
m_doms.reset();
m_tree.reset();
m_root.reset();
}
}
public:
expr_dominators(ast_manager& m): m(m), m_root(m) {}
void compile(expr * e) {
reset();
m_root = e;
compute_post_order();
compute_dominators();
extract_tree();
expr* expr_dominators::intersect(expr* x, expr * y) {
unsigned n1 = m_expr2post[x];
unsigned n2 = m_expr2post[y];
while (n1 != n2) {
if (n1 < n2) {
x = m_doms[x];
n1 = m_expr2post[x];
}
else if (n1 > n2) {
y = m_doms[y];
n2 = m_expr2post[y];
}
}
SASSERT(x == y);
return x;
}
void compile(unsigned sz, expr * const* es) {
expr_ref e(m.mk_and(sz, es), m);
compile(e);
void expr_dominators::compute_dominators() {
expr * e = m_root;
SASSERT(m_doms.empty());
m_doms.insert(e, e);
bool change = true;
while (change) {
change = false;
SASSERT(m_post2expr.back() == e);
for (unsigned i = 0; i < m_post2expr.size() - 1; ++i) {
expr * child = m_post2expr[i];
ptr_vector<expr> const& p = m_parents[child];
SASSERT(!p.empty());
expr * new_idom = p[0], * idom2 = 0;
for (unsigned j = 1; j < p.size(); ++j) {
if (m_doms.find(p[j], idom2)) {
new_idom = intersect(new_idom, idom2);
}
}
if (!m_doms.find(child, idom2) || idom2 != new_idom) {
m_doms.insert(child, new_idom);
change = true;
}
}
}
}
void expr_dominators::extract_tree() {
for (auto const& kv : m_doms) {
add_edge(m_tree, kv.m_value, kv.m_key);
}
}
void expr_dominators::compile(expr * e) {
reset();
m_root = e;
compute_post_order();
compute_dominators();
extract_tree();
}
void expr_dominators::compile(unsigned sz, expr * const* es) {
expr_ref e(m.mk_and(sz, es), m);
compile(e);
}
void expr_dominators::reset() {
m_expr2post.reset();
m_post2expr.reset();
m_parents.reset();
m_doms.reset();
m_tree.reset();
m_root.reset();
}
tree_t const& get_tree() { return m_tree; }
};
// goes to header file:
class dom_simplify_tactic : public tactic {
public:
class simplifier {
public:
virtual ~simplifier() {}
/**
\brief assert_expr performs an implicit push
*/
virtual bool assert_expr(expr * t, bool sign) = 0;
/**
\brief apply simplification.
*/
virtual void operator()(expr_ref& r) = 0;
/**
\brief pop scopes accumulated from assertions.
*/
virtual void pop(unsigned num_scopes) = 0;
};
private:
simplifier& m_simplifier;
params_ref m_params;
expr_ref_vector m_trail;
obj_map<expr, expr*> m_result;
expr_dominators m_dominators;
expr_ref simplify(expr* t);
expr_ref simplify_ite(app * ite);
expr_ref simplify_and(app * ite) { return simplify_and_or(true, ite); }
expr_ref simplify_or(app * ite) { return simplify_and_or(false, ite); }
expr_ref simplify_and_or(bool is_and app * ite);
expr_ref get_cache(expr* t) { if (!m_result.find(r, r)) r = t; return expr_ref(r, m); }
void cache(expr *t, expr* r) { m_result.insert(t, r); m_trail.push_back(r); }
void simplify_goal(goal_ref& g);
public:
dom_simplify_tactic(ast_manager & m, simplifier& s, params_ref const & p = params_ref());
virtual tactic * translate(ast_manager & m);
virtual ~dom_simplify_tactic();
virtual void updt_params(params_ref const & p);
static void get_param_descrs(param_descrs & r);
virtual void collect_param_descrs(param_descrs & r) { get_param_descrs(r); }
virtual void operator()(goal_ref const & in,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core);
virtual void cleanup();
};
// implementation:
expr_ref dom_simplifier_tactic::simplify_ite(app * ite) {
tactic * dom_simplify_tactic::translate(ast_manager & m) {
return alloc(dom_simplify_tactic, m, m_simplifier->translate(m), m_params);
}
void dom_simplify_tactic::operator()(
goal_ref const & in,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core) {
mc = 0; pc = 0; core = 0;
tactic_report report("dom-simplify", *in.get());
simplify_goal(*(in.get()));
in->inc_depth();
result.push_back(in.get());
}
void dom_simplify_tactic::cleanup() {
m_trail.reset();
m_args.reset();
m_args2.reset();
m_result.reset();
m_dominators.reset();
}
expr_ref dom_simplify_tactic::simplify_ite(app * ite) {
expr_ref r(m);
expr * c = 0, * t = 0, * e = 0;
VERIFY(m.is_ite(ite, c, t, e));
@ -233,7 +188,7 @@ expr_ref dom_simplifier_tactic::simplify_ite(app * ite) {
r = simplify(e);
}
else {
expr_ref t = simplify(t);
expr_ref new_t = simplify(t);
pop(scope_level() - old_lvl);
if (!assert_expr(new_c, true)) {
return new_t;
@ -254,14 +209,18 @@ expr_ref dom_simplifier_tactic::simplify_ite(app * ite) {
return r;
}
expr_ref dom_simplifier_tactic::simplify(expr * e0) {
expr_ref dom_simplify_tactic::simplify(expr * e0) {
expr_ref r(m);
expr* e = 0;
if (!m_result.find(e0, e)) {
e = e0;
}
if (m.is_ite(e)) {
++m_depth;
if (m_depth > m_max_depth) {
r = e;
}
else if (m.is_ite(e)) {
r = simplify_ite(to_app(e));
}
else if (m.is_and(e)) {
@ -271,7 +230,7 @@ expr_ref dom_simplifier_tactic::simplify(expr * e0) {
r = simplify_or(to_app(e));
}
else {
tree_t const& t = m_dominators.get_tree();
expr_dominators::tree_t const& t = m_dominators.get_tree();
if (t.contains(e)) {
ptr_vector<expr> const& children = t[e];
for (expr * child : children) {
@ -281,7 +240,7 @@ expr_ref dom_simplifier_tactic::simplify(expr * e0) {
if (is_app(e)) {
m_args.reset();
for (expr* arg : *to_app(e)) {
m_args.push_back(get_cached(arg));
m_args.push_back(get_cached(arg)); // TBD is cache really applied to all sub-terms?
}
r = m.mk_app(to_app(e)->get_decl(), m_args.size(), m_args.c_ptr());
}
@ -289,18 +248,20 @@ expr_ref dom_simplifier_tactic::simplify(expr * e0) {
r = e;
}
}
m_simplifier(r);
(*m_simplifier)(r);
cache(e0, r);
TRACE("simplify", tout << "depth: " << m_depth << " " << mk_pp(e0, m) << " -> " << r << "\n";);
--m_depth;
return r;
}
expr_ref dom_simplifier_tactic::simplify_or_and(bool is_and, app * e) {
expr_ref dom_simplify_tactic::simplify_and_or(bool is_and, app * e) {
expr_ref r(m);
unsigned old_lvl = scope_level();
m_args.reset();
for (expr * arg : *e) {
r = simplify(arg);
if (!assert_expr(r, is_and)) {
if (!assert_expr(r, !is_and)) {
r = is_and ? m.mk_false() : m.mk_true();
}
m_args.push_back(r);
@ -310,7 +271,7 @@ expr_ref dom_simplifier_tactic::simplify_or_and(bool is_and, app * e) {
m_args2.reset();
for (expr * arg : m_args) {
r = simplify(arg);
if (!assert_expr(r, is_and)) {
if (!assert_expr(r, !is_and)) {
r = is_and ? m.mk_false() : m.mk_true();
}
m_args2.push_back(r);
@ -321,31 +282,61 @@ expr_ref dom_simplifier_tactic::simplify_or_and(bool is_and, app * e) {
return r;
}
void dom_simplifier_tactic::simplify_goal(goal& g) {
void dom_simplify_tactic::init(goal& g) {
expr_ref_vector args(m);
expr_ref fml(m);
unsigned sz = g.size();
for (unsigned i = 0; i < sz; ++i) args.push_back(g.form(i));
fml = mk_and(args);
expr_ref tmp(fml);
// TBD: deal with dependencies.
do {
m_result.reset();
m_trail.reset();
m_dominators.compile(fml);
#if 0
for (unsigned i = 0; i < sz; ++i) {
r = simplify(g.form(i));
// TBD: simplfy goal as a conjuction ?
//
expr_ref fml = mk_and(args);
m_result.reset();
m_trail.reset();
m_dominators.compile(fml);
}
void dom_simplify_tactic::simplify_goal(goal& g) {
SASSERT(scope_level() == 0);
bool change = true;
m_depth = 0;
while (change) {
change = false;
// go forwards
init(g);
unsigned sz = g.size();
for (unsigned i = 0; !g.inconsistent() && i < sz; ++i) {
expr_ref r = simplify(g.form(i));
if (i < sz - 1 && !m.is_true(r) && !m.is_false(r) && !g.dep(i) && !g.proofs_enabled() && !assert_expr(r, false)) {
r = m.mk_false();
}
change |= r != g.form(i);
proof* new_pr = 0;
if (g.proofs_enabled()) {
new_pr = m.mk_modus_ponens(g.pr(i), m.mk_rewrite_star(g.form(i), r, 0, 0));
}
g.update(i, r, new_pr, g.dep(i));
}
#endif
tmp = fml;
fml = simplify(fml);
pop(scope_level());
// go backwards
init(g);
sz = g.size();
for (unsigned i = sz; !g.inconsistent() && i > 0; ) {
--i;
expr_ref r = simplify(g.form(i));
if (i > 0 && !m.is_true(r) && !m.is_false(r) && !g.dep(i) && !g.proofs_enabled() && !assert_expr(r, false)) {
r = m.mk_false();
}
change |= r != g.form(i);
proof* new_pr = 0;
if (g.proofs_enabled()) {
new_pr = m.mk_modus_ponens(g.pr(i), m.mk_rewrite_star(g.form(i), r, 0, 0));
}
g.update(i, r, new_pr, g.dep(i));
}
pop(scope_level());
}
while (tmp != fml);
//g.reset();
//g.add(fml);
SASSERT(scope_level() == 0);
}
#endif

View file

@ -0,0 +1,132 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
dom_simplify_tactic.cpp
Abstract:
Dominator-based context simplifer.
Author:
Nikolaj and Nuno
Notes:
--*/
#ifndef DOM_SIMPLIFY_TACTIC_H_
#define DOM_SIMPLIFY_TACTIC_H_
#include "ast/ast.h"
#include "tactic/tactic.h"
class expr_dominators {
public:
typedef obj_map<expr, ptr_vector<expr>> tree_t;
private:
ast_manager& m;
expr_ref m_root;
obj_map<expr, unsigned> m_expr2post; // reverse post-order number
ptr_vector<expr> m_post2expr;
tree_t m_parents;
obj_map<expr, expr*> m_doms;
tree_t m_tree;
void add_edge(tree_t& tree, expr * src, expr* dst) {
tree.insert_if_not_there2(src, ptr_vector<expr>())->get_data().m_value.push_back(dst);
}
void compute_post_order();
expr* intersect(expr* x, expr * y);
void compute_dominators();
void extract_tree();
public:
expr_dominators(ast_manager& m): m(m), m_root(m) {}
void compile(expr * e);
void compile(unsigned sz, expr * const* es);
tree_t const& get_tree() { return m_tree; }
void reset();
};
class dom_simplify_tactic : public tactic {
public:
class simplifier {
public:
virtual ~simplifier() {}
/**
\brief assert_expr performs an implicit push
*/
virtual bool assert_expr(expr * t, bool sign) = 0;
/**
\brief apply simplification.
*/
virtual void operator()(expr_ref& r) = 0;
/**
\brief pop scopes accumulated from assertions.
*/
virtual void pop(unsigned num_scopes) = 0;
virtual simplifier * translate(ast_manager & m);
};
private:
ast_manager& m;
simplifier* m_simplifier;
params_ref m_params;
expr_ref_vector m_trail, m_args, m_args2;
obj_map<expr, expr*> m_result;
expr_dominators m_dominators;
unsigned m_scope_level;
unsigned m_depth;
unsigned m_max_depth;
expr_ref simplify(expr* t);
expr_ref simplify_ite(app * ite);
expr_ref simplify_and(app * ite) { return simplify_and_or(true, ite); }
expr_ref simplify_or(app * ite) { return simplify_and_or(false, ite); }
expr_ref simplify_and_or(bool is_and, app * ite);
void simplify_goal(goal& g);
expr_ref get_cached(expr* t) { expr* r = 0; if (!m_result.find(r, r)) r = t; return expr_ref(r, m); }
void cache(expr *t, expr* r) { m_result.insert(t, r); m_trail.push_back(r); }
unsigned scope_level() { return m_scope_level; }
void pop(unsigned n) { SASSERT(n <= m_scope_level); m_scope_level -= n; m_simplifier->pop(n); }
bool assert_expr(expr* f, bool sign) { m_scope_level++; return m_simplifier->assert_expr(f, sign); }
void init(goal& g);
public:
dom_simplify_tactic(ast_manager & m, simplifier* s, params_ref const & p = params_ref()):
m(m), m_simplifier(s), m_params(p),
m_trail(m), m_args(m), m_args2(m),
m_dominators(m),
m_scope_level(0), m_depth(0), m_max_depth(1024) {}
virtual ~dom_simplify_tactic() {}
virtual tactic * translate(ast_manager & m);
virtual void updt_params(params_ref const & p) {}
static void get_param_descrs(param_descrs & r) {}
virtual void collect_param_descrs(param_descrs & r) { get_param_descrs(r); }
virtual void operator()(goal_ref const & in,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core);
virtual void cleanup();
};
#endif