3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-09 17:31:57 +00:00
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2025-09-19 17:24:00 -07:00
parent cf53f2c866
commit 444a9b1c4f
2 changed files with 101 additions and 62 deletions

View file

@ -1055,6 +1055,7 @@ lemma_builder::lemma_builder(core& c, const char* name):name(name), c(c) {
lemma_builder& lemma_builder::operator|=(ineq const& ineq) { lemma_builder& lemma_builder::operator|=(ineq const& ineq) {
if (!c.explain_ineq(*this, ineq.term(), ineq.cmp(), ineq.rs())) { if (!c.explain_ineq(*this, ineq.term(), ineq.cmp(), ineq.rs())) {
CTRACE(nla_solver, c.ineq_holds(ineq), c.print_ineq(ineq, tout) << "\n";); CTRACE(nla_solver, c.ineq_holds(ineq), c.print_ineq(ineq, tout) << "\n";);
CTRACE(nra, c.ineq_holds(ineq), c.print_ineq(ineq, tout) << "\n";);
SASSERT(c.m_use_nra_model || !c.ineq_holds(ineq)); SASSERT(c.m_use_nra_model || !c.ineq_holds(ineq));
current().push_back(ineq); current().push_back(ineq);
} }
@ -1550,10 +1551,6 @@ lbool core::check() {
if (no_effect()) if (no_effect())
m_divisions.check(); m_divisions.check();
if (no_effect()) { if (no_effect()) {
std::function<void(void)> check1 = [&]() { m_order.order_lemma(); std::function<void(void)> check1 = [&]() { m_order.order_lemma();
}; };

View file

@ -16,6 +16,7 @@
#include "util/map.h" #include "util/map.h"
#include "util/uint_set.h" #include "util/uint_set.h"
#include "math/lp/nla_core.h" #include "math/lp/nla_core.h"
#include "math/lp/monic.h"
#include "params/smt_params_helper.hpp" #include "params/smt_params_helper.hpp"
@ -251,6 +252,73 @@ struct solver::imp {
return r; return r;
} }
void process_polynomial_check_assignment(unsigned num_mon, polynomial::polynomial const* p, rational& bound, const u_map<lp::lpvar>& nl2lp, lp::lar_term& t) {
polynomial::manager& pm = m_nlsat->pm();
for (unsigned i = 0; i < num_mon; ++i) {
polynomial::monomial* m = pm.get_monomial(p, i);
TRACE(nra, tout << "monomial: "; pm.display(tout, m); tout << "\n";);
auto& coeff = pm.coeff(p, i);
TRACE(nra, tout << "coeff:"; pm.m().display(tout, coeff););
unsigned num_vars = pm.size(m);
lp::lpvar v = lp::null_lpvar;
// add mon * coeff to t;
switch (num_vars) {
case 0:
bound -= coeff;
break;
case 1: {
unsigned mon_var = pm.get_var(m, 0);
auto v = nl2lp[mon_var];
TRACE(nra, tout << "nl2lp[" << mon_var << "]:" << v << std::endl;);
rational s;
SASSERT(v != (unsigned)-1);
v = m_nla_core.reduce_var_to_rooted(v, s);
t.add_monomial(s * coeff, v);
}
break;
default: {
svector<lp::lpvar> vars;
for (unsigned j = 0; j < num_vars; ++j)
vars.push_back(nl2lp[pm.get_var(m, j)]);
rational s;
vars = m_nla_core.reduce_monic_to_rooted(vars, s);
auto mon = m_nla_core.emons().find_canonical(vars);
TRACE(nra, tout << "canonical mon: "; if (mon) tout << *mon; else tout << "null"; tout << "\n";);
if (mon)
v = mon->var();
else {
NOT_IMPLEMENTED_YET();
// this one is for Lev Nachmanson: lar_solver relies on internal variables
// to have terms from outside. The solver doesn't get to create
// its own monomials.
// v = ...
// It is not a use case if the nlsat solver only provides linear
// polynomials so punt for now.
m_nla_core.add_monic(v, vars.size(), vars.data());
}
TRACE(nra,
tout << "process_polynomial_check_assignment:";
tout << " vars=";
for (auto _w : vars) tout << _w << ' ';
tout << " s=" << s
<< " mon=" << (mon ? static_cast<int>(mon->var()) : -1)
<< " v=" << v << "\n";);
t.add_monomial(s * coeff, v);
break;
}
}
}
}
u_map<lp::lpvar> reverse_lp2nl() {
u_map<lp::lpvar> nl2lp;
for (auto [j, x] : m_lp2nl)
nl2lp.insert(x, j);
return nl2lp;
}
lbool check_assignment() { lbool check_assignment() {
setup_solver(); setup_solver();
lbool r = l_undef; lbool r = l_undef;
@ -288,79 +356,53 @@ struct solver::imp {
validate_constraints(); validate_constraints();
break; break;
case l_false: { case l_false: {
u_map<lp::lpvar> nl2lp; u_map<lp::lpvar> nl2lp = reverse_lp2nl();
for (auto [j, x] : m_lp2nl)
nl2lp.insert(x, j);
nla::lemma_builder lemma(m_nla_core, __FUNCTION__); nla::lemma_builder lemma(m_nla_core, __FUNCTION__);
for (nlsat::literal l : clause) { for (nlsat::literal l : clause) {
nlsat::atom* a = m_nlsat->bool_var2atom(l.var()); nlsat::atom* a = m_nlsat->bool_var2atom(l.var());
TRACE(nra, tout << "atom: "; m_nlsat->display(tout, *a); tout << "\n";);
SASSERT(!a->is_root_atom()); SASSERT(!a->is_root_atom());
SASSERT(a->is_ineq_atom()); SASSERT(a->is_ineq_atom());
auto& ia = *to_ineq_atom(a); auto& ia = *to_ineq_atom(a);
VERIFY(ia.size() == 1); // deal with factored polynomials later VERIFY(ia.size() == 1); // deal with factored polynomials later
// a is an inequality atom, i.e., p > 0, p < 0, or p = 0. // a is an inequality atom, i.e., p > 0, p < 0, or p = 0.
polynomial::polynomial const* p = ia.p(0); polynomial::polynomial const* p = ia.p(0);
TRACE(nra, tout << "polynomial: "; pm.display(tout, p); tout << "\n";);
unsigned num_mon = pm.size(p); unsigned num_mon = pm.size(p);
rational bound(0); rational bound(0);
lp::lar_term t; lp::lar_term t;
for (unsigned i = 0; i < num_mon; ++i) { process_polynomial_check_assignment(num_mon, p, bound, nl2lp, t);
polynomial::monomial* m = pm.get_monomial(p, i);
auto& coeff = pm.coeff(p, i);
unsigned num_vars = pm.size(m);
lp::lpvar v = lp::null_lpvar;
// add mon * coeff to t;
switch (num_vars) {
case 0:
bound -= coeff;
break;
case 1: {
v = nl2lp[pm.get_var(m, 0)];
rational s;
v = m_nla_core.reduce_var_to_rooted(v, s);
t.add_monomial(s * coeff, v);
}
break;
default: {
svector<lp::lpvar> vars;
for (unsigned j = 0; j < num_vars; ++j)
vars.push_back(nl2lp[pm.get_var(m, j)]);
rational s(1);
vars = m_nla_core.reduce_monic_to_rooted(vars, s);
auto mon = m_nla_core.emons().find_canonical(vars);
if (mon)
v = mon->var();
else {
NOT_IMPLEMENTED_YET();
// this one is for Lev Nachmanson: lar_solver relies on internal variables
// to have terms from outside. The solver doesn't get to create
// its own monomials.
// v = ...
// It is not a use case if the nlsat solver only provides linear
// polynomials so punt for now.
m_nla_core.add_monic(v, vars.size(), vars.data());
}
t.add_monomial(s * coeff, v);
break;
}
}
}
switch (a->get_kind()) { switch (a->get_kind()) {
case nlsat::atom::EQ: case nlsat::atom::EQ:
lemma |= nla::ineq(l.sign() ? lp::lconstraint_kind::NE : lp::lconstraint_kind::EQ, t, bound); {
nla::ineq inq(l.sign() ? lp::lconstraint_kind::NE : lp::lconstraint_kind::EQ, t, bound);
if (m_nla_core.ineq_holds(inq))
return l_undef;
lemma |= inq;
}
break; break;
case nlsat::atom::LT: case nlsat::atom::LT:
lemma |= nla::ineq(l.sign() ? lp::lconstraint_kind::GE : lp::lconstraint_kind::LT, t, bound); {
nla::ineq inq(l.sign() ? lp::lconstraint_kind::GE : lp::lconstraint_kind::LT, t, bound);
if (m_nla_core.ineq_holds(inq))
return l_undef;
lemma |= inq;
}
break; break;
case nlsat::atom::GT: case nlsat::atom::GT:
lemma |= nla::ineq(l.sign() ? lp::lconstraint_kind::LE : lp::lconstraint_kind::GT, t, bound); {
nla::ineq inq(l.sign() ? lp::lconstraint_kind::LE : lp::lconstraint_kind::GT, t, bound);
if (m_nla_core.ineq_holds(inq))
return l_undef;
lemma |= inq;
}
break; break;
default: default:
UNREACHABLE(); UNREACHABLE();
return l_undef; return l_undef;
} }
} }
IF_VERBOSE(1, verbose_stream() << "linear lemma: " << lemma << "\n"); IF_VERBOSE(1, verbose_stream() << "linear lemma: " << lemma << "\n");
m_nla_core.set_use_nra_model(true); m_nla_core.set_use_nra_model(true);
break; break;