3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-14 23:05:26 +00:00

fixed-size min-heap for tracking top-k literals (#7752)

* very basic setup

* ensure solve_eqs is fully disabled when smt.solve_eqs=false, #7743

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* respect smt configuration parameter in elim_unconstrained simplifier

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* indentation

* add bash files for test runs

* add option to selectively disable variable solving for only ground expressions

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* remove verbose output

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix #7745

axioms for len(substr(...)) escaped due to nested rewriting

* ensure atomic constraints are processed by arithmetic solver

* #7739 optimization

add simplification rule for at(x, offset) = ""

Introducing j just postpones some rewrites that prevent useful simplifications. Z3 already uses common sub-expressions.
The example highlights some opportunities for simplification, noteworthy at(..) = "".
The example is solved in both versions after adding this simplification.

* fix unsound len(substr) axiom

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* FreshConst is_sort (#7748)

* #7750

add pre-processing simplification

* Add parameter validation for selected API functions

* updates to ac-plugin

fix incrementality bugs by allowing destructive updates during saturation at the cost of redoing saturation after a pop.

* enable passive, add check for bloom up-to-date

* add top-k fixed-sized min-heap priority queue for top scoring literals

---------

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
Co-authored-by: humnrdble <83878671+humnrdble@users.noreply.github.com>
This commit is contained in:
Ilana Shapiro 2025-07-28 19:54:01 -07:00 committed by GitHub
parent a9b4e35938
commit 435ea6ea99
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 762 additions and 303 deletions

32
run_local_tests.sh Executable file
View file

@ -0,0 +1,32 @@
#!/bin/bash
# run from inside ./z3/build
Z3=./z3
OPTIONS="-v:0 -st smt.threads=4"
OUT_FILE="../z3_results.txt"
BASE_PATH="../../z3-poly-testing/inputs/"
# List of relative test files (relative to BASE_PATH)
REL_TEST_FILES=(
"QF_NIA_small/Ton_Chanh_15__Singapore_v1_false-termination.c__p27381_terminationG_0.smt2"
"QF_UFDTLIA_SAT/52759_bec3a2272267494faeecb6bfaf253e3b_10_QF_UFDTLIA.smt2"
)
# Clear output file
> "$OUT_FILE"
# Loop through and run Z3 on each file
for rel_path in "${REL_TEST_FILES[@]}"; do
full_path="$BASE_PATH$rel_path"
test_name="$rel_path"
echo "Running: $test_name"
echo "===== $test_name =====" | tee -a "$OUT_FILE"
# Run Z3 and pipe output to both screen and file
$Z3 "$full_path" $OPTIONS 2>&1 | tee -a "$OUT_FILE"
echo "" | tee -a "$OUT_FILE"
done
echo "Results written to $OUT_FILE"

View file

@ -225,13 +225,15 @@ extern "C" {
Z3_TRY; Z3_TRY;
LOG_Z3_mk_fresh_func_decl(c, prefix, domain_size, domain, range); LOG_Z3_mk_fresh_func_decl(c, prefix, domain_size, domain, range);
RESET_ERROR_CODE(); RESET_ERROR_CODE();
CHECK_IS_SORT(range, nullptr);
CHECK_SORTS(domain_size, domain, nullptr);
if (prefix == nullptr) { if (prefix == nullptr) {
prefix = ""; prefix = "";
} }
func_decl* d = mk_c(c)->m().mk_fresh_func_decl(prefix, func_decl* d = mk_c(c)->m().mk_fresh_func_decl(prefix,
domain_size, domain_size,
reinterpret_cast<sort*const*>(domain), to_sorts(domain),
to_sort(range), false); to_sort(range), false);
mk_c(c)->save_ast_trail(d); mk_c(c)->save_ast_trail(d);
@ -243,9 +245,11 @@ extern "C" {
Z3_TRY; Z3_TRY;
LOG_Z3_mk_fresh_const(c, prefix, ty); LOG_Z3_mk_fresh_const(c, prefix, ty);
RESET_ERROR_CODE(); RESET_ERROR_CODE();
CHECK_IS_SORT(ty, nullptr);
if (prefix == nullptr) { if (prefix == nullptr) {
prefix = ""; prefix = "";
} }
app* a = mk_c(c)->m().mk_fresh_const(prefix, to_sort(ty), false); app* a = mk_c(c)->m().mk_fresh_const(prefix, to_sort(ty), false);
mk_c(c)->save_ast_trail(a); mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a)); RETURN_Z3(of_ast(a));
@ -654,6 +658,7 @@ extern "C" {
Z3_TRY; Z3_TRY;
LOG_Z3_get_sort_name(c, t); LOG_Z3_get_sort_name(c, t);
RESET_ERROR_CODE(); RESET_ERROR_CODE();
CHECK_IS_SORT(t, of_symbol(symbol::null));
CHECK_VALID_AST(t, of_symbol(symbol::null)); CHECK_VALID_AST(t, of_symbol(symbol::null));
return of_symbol(to_sort(t)->get_name()); return of_symbol(to_sort(t)->get_name());
Z3_CATCH_RETURN(of_symbol(symbol::null)); Z3_CATCH_RETURN(of_symbol(symbol::null));

View file

@ -286,10 +286,13 @@ namespace api {
inline api::context * mk_c(Z3_context c) { return reinterpret_cast<api::context*>(c); } inline api::context * mk_c(Z3_context c) { return reinterpret_cast<api::context*>(c); }
#define RESET_ERROR_CODE() { mk_c(c)->reset_error_code(); } #define RESET_ERROR_CODE() { mk_c(c)->reset_error_code(); }
#define SET_ERROR_CODE(ERR, MSG) { mk_c(c)->set_error_code(ERR, MSG); } #define SET_ERROR_CODE(ERR, MSG) { mk_c(c)->set_error_code(ERR, MSG); }
#define CHECK_NON_NULL(_p_,_ret_) { if (_p_ == 0) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is null"); return _ret_; } } #define CHECK_NON_NULL(_p_,_ret_) { if (_p_ == nullptr) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is null"); return _ret_; } }
#define CHECK_VALID_AST(_a_, _ret_) { if (_a_ == 0 || !CHECK_REF_COUNT(_a_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "not a valid ast"); return _ret_; } } #define CHECK_VALID_AST(_a_, _ret_) { if (_a_ == nullptr || !CHECK_REF_COUNT(_a_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "not a valid ast"); return _ret_; } }
inline bool is_expr(Z3_ast a) { return is_expr(to_ast(a)); } inline bool is_expr(Z3_ast a) { return is_expr(to_ast(a)); }
#define CHECK_IS_EXPR(_p_, _ret_) { if (_p_ == 0 || !is_expr(_p_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is not an expression"); return _ret_; } } #define CHECK_IS_EXPR(_p_, _ret_) { if (_p_ == nullptr || !is_expr(_p_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is not an expression"); return _ret_; } }
#define CHECK_IS_SORT(_p_, _ret_) { if (_p_ == nullptr || !is_sort(_p_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is not a sort"); return _ret_; } }
#define CHECK_SORTS(_n_, _ps_, _ret_) { for (unsigned i = 0; i < _n_; ++i) if (!is_sort(_ps_[i])) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is not a sort"); return _ret_; } }
inline bool is_bool_expr(Z3_context c, Z3_ast a) { return is_expr(a) && mk_c(c)->m().is_bool(to_expr(a)); } inline bool is_bool_expr(Z3_context c, Z3_ast a) { return is_expr(a) && mk_c(c)->m().is_bool(to_expr(a)); }
#define CHECK_FORMULA(_a_, _ret_) { if (_a_ == 0 || !CHECK_REF_COUNT(_a_) || !is_bool_expr(c, _a_)) { SET_ERROR_CODE(Z3_INVALID_ARG, nullptr); return _ret_; } } #define CHECK_FORMULA(_a_, _ret_) { if (_a_ == nullptr || !CHECK_REF_COUNT(_a_) || !is_bool_expr(c, _a_)) { SET_ERROR_CODE(Z3_INVALID_ARG, nullptr); return _ret_; } }
inline void check_sorts(Z3_context c, ast * n) { mk_c(c)->check_sorts(n); } inline void check_sorts(Z3_context c, ast * n) { mk_c(c)->check_sorts(n); }

View file

@ -67,6 +67,7 @@ inline ast * const * to_asts(Z3_ast const* a) { return reinterpret_cast<ast* con
inline sort * to_sort(Z3_sort a) { return reinterpret_cast<sort*>(a); } inline sort * to_sort(Z3_sort a) { return reinterpret_cast<sort*>(a); }
inline Z3_sort of_sort(sort* s) { return reinterpret_cast<Z3_sort>(s); } inline Z3_sort of_sort(sort* s) { return reinterpret_cast<Z3_sort>(s); }
inline bool is_sort(Z3_sort a) { return is_sort(to_sort(a)); }
inline sort * const * to_sorts(Z3_sort const* a) { return reinterpret_cast<sort* const*>(a); } inline sort * const * to_sorts(Z3_sort const* a) { return reinterpret_cast<sort* const*>(a); }
inline Z3_sort const * of_sorts(sort* const* s) { return reinterpret_cast<Z3_sort const*>(s); } inline Z3_sort const * of_sorts(sort* const* s) { return reinterpret_cast<Z3_sort const*>(s); }

View file

@ -1506,6 +1506,8 @@ def Consts(names, sort):
def FreshConst(sort, prefix="c"): def FreshConst(sort, prefix="c"):
"""Create a fresh constant of a specified sort""" """Create a fresh constant of a specified sort"""
if z3_debug():
_z3_assert(is_sort(sort), f"Z3 sort expected, got {type(sort)}")
ctx = _get_ctx(sort.ctx) ctx = _get_ctx(sort.ctx)
return _to_expr_ref(Z3_mk_fresh_const(ctx.ref(), prefix, sort.ast), ctx) return _to_expr_ref(Z3_mk_fresh_const(ctx.ref(), prefix, sort.ast), ctx)

View file

@ -136,15 +136,13 @@ namespace euf {
// unit -> {} // unit -> {}
void ac_plugin::add_unit(enode* u) { void ac_plugin::add_unit(enode* u) {
m_units.push_back(u); push_equation(u, nullptr);
mk_node(u);
auto m_id = to_monomial(u, {});
init_equation(eq(to_monomial(u), m_id, justification::axiom(get_id())));
} }
// zero x -> zero // zero x -> zero
void ac_plugin::add_zero(enode* z) { void ac_plugin::add_zero(enode* z) {
mk_node(z)->is_zero = true; mk_node(z)->is_zero = true;
// zeros persist
} }
void ac_plugin::register_shared(enode* n) { void ac_plugin::register_shared(enode* n) {
@ -165,12 +163,16 @@ namespace euf {
push_undo(is_register_shared); push_undo(is_register_shared);
} }
void ac_plugin::push_scope_eh() {
push_undo(is_push_scope);
}
void ac_plugin::undo() { void ac_plugin::undo() {
auto k = m_undo.back(); auto k = m_undo.back();
m_undo.pop_back(); m_undo.pop_back();
switch (k) { switch (k) {
case is_add_eq: { case is_queue_eq: {
m_active.pop_back(); m_queued.pop_back();
break; break;
} }
case is_add_node: { case is_add_node: {
@ -180,14 +182,15 @@ namespace euf {
n->~node(); n->~node();
break; break;
} }
case is_add_monomial: { case is_push_scope: {
m_monomials.pop_back(); m_active.reset();
m_passive.reset();
m_units.reset();
m_queue_head = 0;
break; break;
} }
case is_update_eq: { case is_add_monomial: {
auto const& [idx, eq] = m_update_eq_trail.back(); m_monomials.pop_back();
m_active[idx] = eq;
m_update_eq_trail.pop_back();
break; break;
} }
case is_add_shared_index: { case is_add_shared_index: {
@ -316,14 +319,24 @@ namespace euf {
} }
void ac_plugin::merge_eh(enode* l, enode* r) { void ac_plugin::merge_eh(enode* l, enode* r) {
if (l == r) push_equation(l, r);
return; }
void ac_plugin::pop_equation(enode* l, enode* r) {
m_fuel += m_fuel_inc; m_fuel += m_fuel_inc;
if (!r) {
m_units.push_back(l);
mk_node(l);
auto m_id = to_monomial(l, {});
init_equation(eq(to_monomial(l), m_id, justification::axiom(get_id())), true);
}
else {
auto j = justification::equality(l, r); auto j = justification::equality(l, r);
auto m1 = to_monomial(l); auto m1 = to_monomial(l);
auto m2 = to_monomial(r); auto m2 = to_monomial(r);
TRACE(plugin, tout << "merge: " << m_name << " " << g.bpp(l) << " == " << g.bpp(r) << " " << m_pp_ll(*this, monomial(m1)) << " == " << m_pp_ll(*this, monomial(m2)) << "\n"); TRACE(plugin, tout << "merge: " << m_name << " " << g.bpp(l) << " == " << g.bpp(r) << " " << m_pp_ll(*this, monomial(m1)) << " == " << m_pp_ll(*this, monomial(m2)) << "\n");
init_equation(eq(m1, m2, j)); init_equation(eq(m1, m2, j), true);
}
} }
void ac_plugin::diseq_eh(enode* eq) { void ac_plugin::diseq_eh(enode* eq) {
@ -336,12 +349,32 @@ namespace euf {
register_shared(b); register_shared(b);
} }
bool ac_plugin::init_equation(eq const& e) { void ac_plugin::push_equation(enode* l, enode* r) {
m_active.push_back(e); if (l == r)
auto& eq = m_active.back(); return;
deduplicate(monomial(eq.l).m_nodes, monomial(eq.r).m_nodes); m_queued.push_back({ l, r });
push_undo(is_queue_eq);
}
if (orient_equation(eq)) { bool ac_plugin::init_equation(eq eq, bool is_active) {
deduplicate(monomial(eq.l), monomial(eq.r));
if (!orient_equation(eq))
return false;
#if 1
if (is_reducing(eq))
is_active = true;
#else
is_active = true; // set to active by default
#endif
if (!is_active) {
m_passive.push_back(eq);
return true;
}
m_active.push_back(eq);
auto& ml = monomial(eq.l); auto& ml = monomial(eq.l);
auto& mr = monomial(eq.r); auto& mr = monomial(eq.r);
@ -388,11 +421,7 @@ namespace euf {
return true; return true;
} }
else {
m_active.pop_back();
return false;
}
}
bool ac_plugin::orient_equation(eq& e) { bool ac_plugin::orient_equation(eq& e) {
auto& ml = monomial(e.l); auto& ml = monomial(e.l);
@ -455,8 +484,11 @@ namespace euf {
uint64_t ac_plugin::filter(monomial_t& m) { uint64_t ac_plugin::filter(monomial_t& m) {
auto& bloom = m.m_bloom; auto& bloom = m.m_bloom;
if (bloom.m_tick == m_tick)
if (bloom.m_tick == m_tick) {
SASSERT(bloom_filter_is_correct(m.m_nodes, m.m_bloom));
return bloom.m_filter; return bloom.m_filter;
}
bloom.m_filter = 0; bloom.m_filter = 0;
for (auto n : m) for (auto n : m)
bloom.m_filter |= (1ull << (n->id() % 64ull)); bloom.m_filter |= (1ull << (n->id() % 64ull));
@ -466,6 +498,13 @@ namespace euf {
return bloom.m_filter; return bloom.m_filter;
} }
bool ac_plugin::bloom_filter_is_correct(ptr_vector<node> const& m, bloom const& b) const {
uint64_t f = 0;
for (auto n : m)
f |= (1ull << (n->id() % 64ull));
return b.m_filter == f;
}
bool ac_plugin::can_be_subset(monomial_t& subset, monomial_t& superset) { bool ac_plugin::can_be_subset(monomial_t& subset, monomial_t& superset) {
if (subset.size() > superset.size()) if (subset.size() > superset.size())
return false; return false;
@ -477,6 +516,7 @@ namespace euf {
bool ac_plugin::can_be_subset(monomial_t& subset, ptr_vector<node> const& m, bloom& bloom) { bool ac_plugin::can_be_subset(monomial_t& subset, ptr_vector<node> const& m, bloom& bloom) {
if (subset.size() > m.size()) if (subset.size() > m.size())
return false; return false;
SASSERT(bloom.m_tick != m_tick || bloom_filter_is_correct(m, bloom));
if (bloom.m_tick != m_tick) { if (bloom.m_tick != m_tick) {
bloom.m_filter = 0; bloom.m_filter = 0;
for (auto n : m) for (auto n : m)
@ -562,6 +602,10 @@ namespace euf {
} }
void ac_plugin::propagate() { void ac_plugin::propagate() {
while (m_queue_head < m_queued.size()) {
auto [l, r] = m_queued[m_queue_head++];
pop_equation(l, r);
}
while (true) { while (true) {
loop_start: loop_start:
if (m_fuel == 0) if (m_fuel == 0)
@ -583,7 +627,7 @@ namespace euf {
goto loop_start; goto loop_start;
auto& eq = m_active[eq_id]; auto& eq = m_active[eq_id];
deduplicate(monomial(eq.l).m_nodes, monomial(eq.r).m_nodes); deduplicate(monomial(eq.l), monomial(eq.r));
if (monomial(eq.l).size() == 0) { if (monomial(eq.l).size() == 0) {
set_status(eq_id, eq_status::is_dead_eq); set_status(eq_id, eq_status::is_dead_eq);
continue; continue;
@ -623,12 +667,20 @@ namespace euf {
} }
unsigned ac_plugin::pick_next_eq() { unsigned ac_plugin::pick_next_eq() {
init_pick:
while (!m_to_simplify_todo.empty()) { while (!m_to_simplify_todo.empty()) {
unsigned id = *m_to_simplify_todo.begin(); unsigned id = *m_to_simplify_todo.begin();
if (id < m_active.size() && is_to_simplify(id)) if (id < m_active.size() && is_to_simplify(id))
return id; return id;
m_to_simplify_todo.remove(id); m_to_simplify_todo.remove(id);
} }
if (!m_passive.empty()) {
auto eq = m_passive.back();
// verbose_stream() << "pick passive " << eq_pp_ll(*this, eq) << "\n";
m_passive.pop_back();
init_equation(eq, true);
goto init_pick;
}
return UINT_MAX; return UINT_MAX;
} }
@ -640,11 +692,7 @@ namespace euf {
if (are_equal(monomial(eq.l), monomial(eq.r))) if (are_equal(monomial(eq.l), monomial(eq.r)))
s = eq_status::is_dead_eq; s = eq_status::is_dead_eq;
if (eq.status != s) {
m_update_eq_trail.push_back({ id, eq });
eq.status = s; eq.status = s;
push_undo(is_update_eq);
}
switch (s) { switch (s) {
case eq_status::is_processed_eq: case eq_status::is_processed_eq:
case eq_status::is_reducing_eq: case eq_status::is_reducing_eq:
@ -673,7 +721,7 @@ namespace euf {
} }
// //
// backward iterator allows simplification of eq // forward iterator allows simplification of eq
// The rhs of eq is a super-set of lhs of other eq. // The rhs of eq is a super-set of lhs of other eq.
// //
unsigned_vector const& ac_plugin::forward_iterator(unsigned eq_id) { unsigned_vector const& ac_plugin::forward_iterator(unsigned eq_id) {
@ -749,7 +797,7 @@ namespace euf {
} }
// //
// forward iterator simplifies other eqs where their rhs is a superset of lhs of eq // backward iterator simplifies other eqs where their rhs is a superset of lhs of eq
// //
unsigned_vector const& ac_plugin::backward_iterator(unsigned eq_id) { unsigned_vector const& ac_plugin::backward_iterator(unsigned eq_id) {
auto& eq = m_active[eq_id]; auto& eq = m_active[eq_id];
@ -843,10 +891,8 @@ namespace euf {
reduce(m_src_r, j); reduce(m_src_r, j);
auto new_r = to_monomial(m_src_r); auto new_r = to_monomial(m_src_r);
index_new_r(dst_eq, monomial(m_active[dst_eq].r), monomial(new_r)); index_new_r(dst_eq, monomial(m_active[dst_eq].r), monomial(new_r));
m_update_eq_trail.push_back({ dst_eq, m_active[dst_eq] });
m_active[dst_eq].r = new_r; m_active[dst_eq].r = new_r;
m_active[dst_eq].j = j; m_active[dst_eq].j = j;
push_undo(is_update_eq);
m_src_r.reset(); m_src_r.reset();
m_src_r.append(monomial(src.r).m_nodes); m_src_r.append(monomial(src.r).m_nodes);
TRACE(plugin_verbose, tout << "rewritten to " << m_pp_ll(*this, monomial(new_r)) << "\n"); TRACE(plugin_verbose, tout << "rewritten to " << m_pp_ll(*this, monomial(new_r)) << "\n");
@ -862,7 +908,7 @@ namespace euf {
// //
// dst_ids, dst_count contain rhs of dst_eq // dst_ids, dst_count contain rhs of dst_eq
// //
TRACE(plugin, tout << "backward simplify " << eq_pp_ll(*this, src) << " " << eq_pp_ll(*this, dst) << " can-be-subset: " << can_be_subset(monomial(src.l), monomial(dst.r)) << "\n"); TRACE(plugin, tout << "forward simplify " << eq_pp_ll(*this, src) << " " << eq_pp_ll(*this, dst) << " can-be-subset: " << can_be_subset(monomial(src.l), monomial(dst.r)) << "\n");
if (forward_subsumes(src_eq, dst_eq)) { if (forward_subsumes(src_eq, dst_eq)) {
set_status(dst_eq, eq_status::is_dead_eq); set_status(dst_eq, eq_status::is_dead_eq);
@ -891,11 +937,9 @@ namespace euf {
reduce(m, j); reduce(m, j);
auto new_r = to_monomial(m); auto new_r = to_monomial(m);
index_new_r(dst_eq, monomial(m_active[dst_eq].r), monomial(new_r)); index_new_r(dst_eq, monomial(m_active[dst_eq].r), monomial(new_r));
m_update_eq_trail.push_back({ dst_eq, m_active[dst_eq] });
m_active[dst_eq].r = new_r; m_active[dst_eq].r = new_r;
m_active[dst_eq].j = j; m_active[dst_eq].j = j;
TRACE(plugin, tout << "rewritten to " << m_pp(*this, monomial(new_r)) << "\n"); TRACE(plugin, tout << "rewritten to " << m_pp(*this, monomial(new_r)) << "\n");
push_undo(is_update_eq);
return true; return true;
} }
@ -975,7 +1019,9 @@ namespace euf {
SASSERT(!are_equal(m_active[src_eq], m_active[dst_eq])); SASSERT(!are_equal(m_active[src_eq], m_active[dst_eq]));
return false; return false;
} }
return all_of(monomial(dst.r), [&](node* n) { unsigned id = n->id(); return m_src_r_counts[id] == m_dst_r_counts[id]; }); bool r = all_of(monomial(dst.r), [&](node* n) { unsigned id = n->id(); return m_src_r_counts[id] == m_dst_r_counts[id]; });
SASSERT(r || !are_equal(m_active[src_eq], m_active[dst_eq]));
return r;
} }
// src_l_counts, src_r_counts are initialized for src.l, src.r // src_l_counts, src_r_counts are initialized for src.l, src.r
@ -1079,8 +1125,7 @@ namespace euf {
goto init_loop; goto init_loop;
} }
} }
} } while (false);
while (false);
VERIFY(sz >= m.size()); VERIFY(sz >= m.size());
return change; return change;
} }
@ -1177,7 +1222,7 @@ namespace euf {
unsigned max_left_new = std::max(m_src_r.size(), m_dst_r.size()); unsigned max_left_new = std::max(m_src_r.size(), m_dst_r.size());
unsigned min_right_new = std::min(m_src_r.size(), m_dst_r.size()); unsigned min_right_new = std::min(m_src_r.size(), m_dst_r.size());
if (max_left_new <= max_left && min_right_new <= min_right) if (max_left_new <= max_left && min_right_new <= min_right)
added_eq = init_equation(eq(to_monomial(m_src_r), to_monomial(m_dst_r), j)); added_eq = init_equation(eq(to_monomial(m_src_r), to_monomial(m_dst_r), j), false);
CTRACE(plugin, added_eq, CTRACE(plugin, added_eq,
tout << "superpose: " << m_name << " " << eq_pp_ll(*this, src) << " " << eq_pp_ll(*this, dst) << " --> "; tout << "superpose: " << m_name << " " << eq_pp_ll(*this, src) << " " << eq_pp_ll(*this, dst) << " --> ";
@ -1202,23 +1247,36 @@ namespace euf {
SASSERT(is_active(other_eq)); SASSERT(is_active(other_eq));
backward_reduce(eq, other_eq); backward_reduce(eq, other_eq);
} }
for (auto p : m_passive) {
bool change = false;
if (backward_reduce_monomial(eq, p, monomial(p.l)))
change = true;
if (backward_reduce_monomial(eq, p, monomial(p.r)))
change = true;
(void)change;
CTRACE(plugin, change,
verbose_stream() << "backward reduce " << eq_pp_ll(*this, eq) << " " << eq_pp_ll(*this, p) << "\n");
}
} }
// TODO: this is destructive. It breaks reversibility.
// TODO: also need justifications from eq if there is a change.
void ac_plugin::backward_reduce(eq const& eq, unsigned other_eq_id) { void ac_plugin::backward_reduce(eq const& eq, unsigned other_eq_id) {
auto& other_eq = m_active[other_eq_id]; auto& other_eq = m_active[other_eq_id];
TRACE(plugin_verbose,
tout << "backward reduce " << eq_pp_ll(*this, eq) << " " << eq_pp_ll(*this, other_eq) << "\n");
bool change = false; bool change = false;
if (backward_reduce_monomial(eq, monomial(other_eq.l))) if (backward_reduce_monomial(eq, other_eq, monomial(other_eq.l)))
change = true; change = true;
if (backward_reduce_monomial(eq, monomial(other_eq.r))) if (backward_reduce_monomial(eq, other_eq, monomial(other_eq.r)))
change = true; change = true;
if (change) CTRACE(plugin, change,
tout << "backward reduce " << eq_pp_ll(*this, eq) << " " << eq_pp_ll(*this, other_eq) << "\n");
if (change) {
set_status(other_eq_id, eq_status::is_to_simplify_eq); set_status(other_eq_id, eq_status::is_to_simplify_eq);
} }
}
bool ac_plugin::backward_reduce_monomial(eq const& eq, monomial_t& m) { bool ac_plugin::backward_reduce_monomial(eq const& src, eq& dst, monomial_t& m) {
auto const& r = monomial(eq.r); auto const& r = monomial(src.r);
unsigned j = 0; unsigned j = 0;
bool change = false; bool change = false;
for (auto n : m) { for (auto n : m) {
@ -1241,6 +1299,10 @@ namespace euf {
m.m_nodes[j++] = r[0]; m.m_nodes[j++] = r[0];
} }
m.m_nodes.shrink(j); m.m_nodes.shrink(j);
if (change) {
m.m_bloom.m_tick = 0;
dst.j = join(dst.j, src);
}
return change; return change;
} }
@ -1277,8 +1339,17 @@ namespace euf {
return true; return true;
} }
void ac_plugin::deduplicate(monomial_t& a, monomial_t& b) {
unsigned sza = a.size(), szb = b.size();
deduplicate(a.m_nodes, b.m_nodes);
if (sza != a.size())
a.m_bloom.m_tick = 0;
if (szb != b.size())
b.m_bloom.m_tick = 0;
}
void ac_plugin::deduplicate(ptr_vector<node>& a, ptr_vector<node>& b) { void ac_plugin::deduplicate(ptr_vector<node>& a, ptr_vector<node>& b) {
{
for (auto n : a) { for (auto n : a) {
if (n->is_zero) { if (n->is_zero) {
a[0] = n; a[0] = n;
@ -1293,7 +1364,6 @@ namespace euf {
break; break;
} }
} }
}
if (!m_is_injective) if (!m_is_injective)
return; return;
@ -1385,9 +1455,7 @@ namespace euf {
push_undo(is_update_shared); push_undo(is_update_shared);
m_shared[idx].m = new_m; m_shared[idx].m = new_m;
m_shared[idx].j = j; m_shared[idx].j = j;
TRACE(plugin_verbose, tout << "shared simplified to " << m_pp_ll(*this, monomial(new_m)) << "\n"); TRACE(plugin_verbose, tout << "shared simplified to " << m_pp_ll(*this, monomial(new_m)) << "\n");
push_merge(old_n, new_n, j); push_merge(old_n, new_n, j);
} }
@ -1397,19 +1465,15 @@ namespace euf {
} }
justification::dependency* ac_plugin::justify_equation(unsigned eq) { justification::dependency* ac_plugin::justify_equation(unsigned eq) {
auto const& e = m_active[eq]; return m_dep_manager.mk_leaf(m_active[eq].j);
auto* j = m_dep_manager.mk_leaf(e.j);
j = justify_monomial(j, monomial(e.l));
j = justify_monomial(j, monomial(e.r));
return j;
}
justification::dependency* ac_plugin::justify_monomial(justification::dependency* j, monomial_t const& m) {
return j;
} }
justification ac_plugin::join(justification j, unsigned eq) { justification ac_plugin::join(justification j, unsigned eq) {
return justification::dependent(m_dep_manager.mk_join(m_dep_manager.mk_leaf(j), justify_equation(eq))); return justification::dependent(m_dep_manager.mk_join(m_dep_manager.mk_leaf(j), justify_equation(eq)));
} }
justification ac_plugin::join(justification j, eq const& eq) {
return justification::dependent(m_dep_manager.mk_join(m_dep_manager.mk_leaf(j), m_dep_manager.mk_leaf(eq.j)));
}
} }

View file

@ -123,6 +123,7 @@ namespace euf {
func_decl* m_decl = nullptr; func_decl* m_decl = nullptr;
bool m_is_injective = false; bool m_is_injective = false;
vector<eq> m_active, m_passive; vector<eq> m_active, m_passive;
enode_pair_vector m_queued;
ptr_vector<node> m_nodes; ptr_vector<node> m_nodes;
bool_vector m_shared_nodes; bool_vector m_shared_nodes;
vector<monomial_t> m_monomials; vector<monomial_t> m_monomials;
@ -146,21 +147,21 @@ namespace euf {
// backtrackable state // backtrackable state
enum undo_kind { enum undo_kind {
is_add_eq, is_queue_eq,
is_add_monomial, is_add_monomial,
is_add_node, is_add_node,
is_update_eq,
is_add_shared_index, is_add_shared_index,
is_add_eq_index, is_add_eq_index,
is_register_shared, is_register_shared,
is_update_shared is_update_shared,
is_push_scope
}; };
svector<undo_kind> m_undo; svector<undo_kind> m_undo;
ptr_vector<node> m_node_trail; ptr_vector<node> m_node_trail;
unsigned m_queue_head = 0;
svector<std::pair<unsigned, shared>> m_update_shared_trail; svector<std::pair<unsigned, shared>> m_update_shared_trail;
svector<std::tuple<node*, unsigned, unsigned>> m_merge_trail; svector<std::tuple<node*, unsigned, unsigned>> m_merge_trail;
svector<std::pair<unsigned, eq>> m_update_eq_trail;
@ -178,6 +179,7 @@ namespace euf {
enode* from_monomial(ptr_vector<node> const& m); enode* from_monomial(ptr_vector<node> const& m);
monomial_t const& monomial(unsigned i) const { return m_monomials[i]; } monomial_t const& monomial(unsigned i) const { return m_monomials[i]; }
monomial_t& monomial(unsigned i) { return m_monomials[i]; } monomial_t& monomial(unsigned i) { return m_monomials[i]; }
void sort(monomial_t& monomial); void sort(monomial_t& monomial);
bool is_sorted(monomial_t const& monomial) const; bool is_sorted(monomial_t const& monomial) const;
uint64_t filter(monomial_t& m); uint64_t filter(monomial_t& m);
@ -188,11 +190,12 @@ namespace euf {
bool are_equal(eq const& a, eq const& b) { bool are_equal(eq const& a, eq const& b) {
return are_equal(monomial(a.l), monomial(b.l)) && are_equal(monomial(a.r), monomial(b.r)); return are_equal(monomial(a.l), monomial(b.l)) && are_equal(monomial(a.r), monomial(b.r));
} }
bool bloom_filter_is_correct(ptr_vector<node> const& m, bloom const& b) const;
bool well_formed(eq const& e) const; bool well_formed(eq const& e) const;
bool is_reducing(eq const& e) const; bool is_reducing(eq const& e) const;
void backward_reduce(unsigned eq_id); void backward_reduce(unsigned eq_id);
void backward_reduce(eq const& src, unsigned dst); void backward_reduce(eq const& eq, unsigned dst);
bool backward_reduce_monomial(eq const& eq, monomial_t& m); bool backward_reduce_monomial(eq const& src, eq & dst, monomial_t& m);
void forward_subsume_new_eqs(); void forward_subsume_new_eqs();
bool is_forward_subsumed(unsigned dst_eq); bool is_forward_subsumed(unsigned dst_eq);
bool forward_subsumes(unsigned src_eq, unsigned dst_eq); bool forward_subsumes(unsigned src_eq, unsigned dst_eq);
@ -208,7 +211,9 @@ namespace euf {
return nullptr; return nullptr;
} }
bool init_equation(eq const& e); bool init_equation(eq e, bool is_active);
void push_equation(enode* l, enode* r);
void pop_equation(enode* l, enode* r);
bool orient_equation(eq& e); bool orient_equation(eq& e);
void set_status(unsigned eq_id, eq_status s); void set_status(unsigned eq_id, eq_status s);
unsigned pick_next_eq(); unsigned pick_next_eq();
@ -217,6 +222,7 @@ namespace euf {
void backward_simplify(unsigned eq_id, unsigned using_eq); void backward_simplify(unsigned eq_id, unsigned using_eq);
bool forward_simplify(unsigned eq_id, unsigned using_eq); bool forward_simplify(unsigned eq_id, unsigned using_eq);
bool superpose(unsigned src_eq, unsigned dst_eq); bool superpose(unsigned src_eq, unsigned dst_eq);
void deduplicate(monomial_t& a, monomial_t& b);
void deduplicate(ptr_vector<node>& a, ptr_vector<node>& b); void deduplicate(ptr_vector<node>& a, ptr_vector<node>& b);
ptr_vector<node> m_src_r, m_src_l, m_dst_r, m_dst_l; ptr_vector<node> m_src_r, m_src_l, m_dst_r, m_dst_l;
@ -260,8 +266,8 @@ namespace euf {
justification justify_rewrite(unsigned eq1, unsigned eq2); justification justify_rewrite(unsigned eq1, unsigned eq2);
justification::dependency* justify_equation(unsigned eq); justification::dependency* justify_equation(unsigned eq);
justification::dependency* justify_monomial(justification::dependency* d, monomial_t const& m);
justification join(justification j1, unsigned eq); justification join(justification j1, unsigned eq);
justification join(justification j1, eq const& eq);
bool is_correct_ref_count(monomial_t const& m, ref_counts const& counts) const; bool is_correct_ref_count(monomial_t const& m, ref_counts const& counts) const;
bool is_correct_ref_count(ptr_vector<node> const& m, ref_counts const& counts) const; bool is_correct_ref_count(ptr_vector<node> const& m, ref_counts const& counts) const;
@ -301,6 +307,8 @@ namespace euf {
void undo() override; void undo() override;
void push_scope_eh() override;
void propagate() override; void propagate() override;
std::ostream& display(std::ostream& out) const override; std::ostream& display(std::ostream& out) const override;

View file

@ -43,6 +43,11 @@ namespace euf {
void undo() override; void undo() override;
void push_scope_eh() override {
m_add.push_scope_eh();
m_mul.push_scope_eh();
}
void propagate() override; void propagate() override;
std::ostream& display(std::ostream& out) const override; std::ostream& display(std::ostream& out) const override;

View file

@ -103,6 +103,9 @@ namespace euf {
m_scopes.push_back(m_updates.size()); m_scopes.push_back(m_updates.size());
m_region.push_scope(); m_region.push_scope();
m_updates.push_back(update_record(m_new_th_eqs_qhead, update_record::new_th_eq_qhead())); m_updates.push_back(update_record(m_new_th_eqs_qhead, update_record::new_th_eq_qhead()));
for (auto p : m_plugins)
if (p)
p->push_scope_eh();
} }
SASSERT(m_new_th_eqs_qhead <= m_new_th_eqs.size()); SASSERT(m_new_th_eqs_qhead <= m_new_th_eqs.size());
} }

View file

@ -53,6 +53,8 @@ namespace euf {
virtual void undo() = 0; virtual void undo() = 0;
virtual void push_scope_eh() {}
virtual std::ostream& display(std::ostream& out) const = 0; virtual std::ostream& display(std::ostream& out) const = 0;
virtual void collect_statistics(statistics& st) const {} virtual void collect_statistics(statistics& st) const {}

View file

@ -2265,6 +2265,20 @@ br_status bv_rewriter::mk_bv_ext_rotate_left(expr * arg1, expr * arg2, expr_ref
unsigned shift = static_cast<unsigned>((r2 % numeral(bv_size)).get_uint64() % static_cast<uint64_t>(bv_size)); unsigned shift = static_cast<unsigned>((r2 % numeral(bv_size)).get_uint64() % static_cast<uint64_t>(bv_size));
return mk_bv_rotate_left(shift, arg1, result); return mk_bv_rotate_left(shift, arg1, result);
} }
expr* x = nullptr, * y = nullptr;
if (m_util.is_ext_rotate_right(arg1, x, y) && arg2 == y) {
// bv_ext_rotate_left(bv_ext_rotate_right(x, y), y) --> x
result = x;
return BR_DONE;
}
if (m_util.is_ext_rotate_left(arg1, x, y)) {
result = m_util.mk_bv_rotate_left(x, m_util.mk_bv_add(y, arg2));
return BR_REWRITE2;
}
if (m_util.is_ext_rotate_right(arg1, x, y)) {
result = m_util.mk_bv_rotate_left(x, m_util.mk_bv_sub(arg2, y));
return BR_REWRITE2;
}
return BR_FAILED; return BR_FAILED;
} }
@ -2275,6 +2289,20 @@ br_status bv_rewriter::mk_bv_ext_rotate_right(expr * arg1, expr * arg2, expr_ref
unsigned shift = static_cast<unsigned>((r2 % numeral(bv_size)).get_uint64() % static_cast<uint64_t>(bv_size)); unsigned shift = static_cast<unsigned>((r2 % numeral(bv_size)).get_uint64() % static_cast<uint64_t>(bv_size));
return mk_bv_rotate_right(shift, arg1, result); return mk_bv_rotate_right(shift, arg1, result);
} }
expr* x = nullptr, * y = nullptr;
if (m_util.is_ext_rotate_left(arg1, x, y) && arg2 == y) {
// bv_ext_rotate_right(bv_ext_rotate_left(x, y), y) --> x
result = x;
return BR_DONE;
}
if (m_util.is_ext_rotate_right(arg1, x, y)) {
result = m_util.mk_bv_rotate_right(x, m_util.mk_bv_add(y, arg2));
return BR_REWRITE2;
}
if (m_util.is_ext_rotate_left(arg1, x, y)) {
result = m_util.mk_bv_rotate_right(x, m_util.mk_bv_sub(arg2, y));
return BR_REWRITE2;
}
return BR_FAILED; return BR_FAILED;
} }

View file

@ -1224,16 +1224,40 @@ namespace seq {
let n = len(x) let n = len(x)
- len(a ++ b) = len(a) + len(b) if x = a ++ b - len(a ++ b) = len(a) + len(b) if x = a ++ b
- len(unit(u)) = 1 if x = unit(u) - len(unit(u)) = 1 if x = unit(u)
- len(extract(x, o, l)) = l if len(x) >= o + l etc
- len(str) = str.length() if x = str - len(str) = str.length() if x = str
- len(empty) = 0 if x = empty - len(empty) = 0 if x = empty
- len(int.to.str(i)) >= 1 if x = int.to.str(i) and more generally if i = 0 then 1 else 1+floor(log(|i|)) - len(int.to.str(i)) >= 1 if x = int.to.str(i) and more generally if i = 0 then 1 else 1+floor(log(|i|))
- len(x) >= 0 otherwise - len(x) >= 0 otherwise
*/ */
void axioms::length_axiom(expr* n) { void axioms::length_axiom(expr* n) {
expr* x = nullptr; expr* x = nullptr, * y = nullptr, * offs = nullptr, * l = nullptr;
VERIFY(seq.str.is_length(n, x)); VERIFY(seq.str.is_length(n, x));
if (seq.str.is_concat(x) || if (seq.str.is_concat(x) && to_app(x)->get_num_args() != 0) {
seq.str.is_unit(x) || ptr_vector<expr> args;
for (auto arg : *to_app(x))
args.push_back(seq.str.mk_length(arg));
expr_ref len(a.mk_add(args), m);
add_clause(mk_eq(len, n));
}
else if (seq.str.is_extract(x, y, offs, l)) {
// len(extract(y, o, l)) = l if len(y) >= o + l, o >= 0, l >= 0
// len(extract(y, o, l)) = 0 if o < 0 or l <= 0 or len(y) < o
// len(extract(y, o, l)) = len(y) - o if o <= len(y) < o + l
expr_ref len_y(mk_len(y), m);
expr_ref z(a.mk_int(0), m);
expr_ref y_ge_l = mk_ge(a.mk_sub(len_y, a.mk_add(offs, l)), 0);
expr_ref y_ge_o = mk_ge(a.mk_sub(len_y, offs), 0);
expr_ref offs_ge_0 = mk_ge(offs, 0);
expr_ref l_ge_0 = mk_ge(l, 0);
add_clause(~offs_ge_0, ~l_ge_0, ~y_ge_l, mk_eq(n, l));
add_clause(offs_ge_0, mk_eq(n, z));
add_clause(l_ge_0, mk_eq(n, z));
add_clause(y_ge_o, mk_eq(n, z));
add_clause(~y_ge_o, y_ge_l, mk_eq(n, a.mk_sub(len_y, offs)));
}
else if (seq.str.is_unit(x) ||
seq.str.is_empty(x) || seq.str.is_empty(x) ||
seq.str.is_string(x)) { seq.str.is_string(x)) {
expr_ref len(n, m); expr_ref len(n, m);

View file

@ -6021,6 +6021,12 @@ bool seq_rewriter::reduce_eq_empty(expr* l, expr* r, expr_ref& result) {
result = m_autil.mk_lt(s, zero()); result = m_autil.mk_lt(s, zero());
return true; return true;
} }
// at(s, offset) = "" <=> len(s) <= offset or offset < 0
if (str().is_at(r, s, offset)) {
expr_ref len_s(str().mk_length(s), m());
result = m().mk_or(m_autil.mk_le(len_s, offset), m_autil.mk_lt(offset, zero()));
return true;
}
return false; return false;
} }

View file

@ -112,7 +112,7 @@ eliminate:
--*/ --*/
#include "params/smt_params_helper.hpp"
#include "ast/ast_ll_pp.h" #include "ast/ast_ll_pp.h"
#include "ast/ast_pp.h" #include "ast/ast_pp.h"
#include "ast/recfun_decl_plugin.h" #include "ast/recfun_decl_plugin.h"
@ -166,7 +166,7 @@ void elim_unconstrained::eliminate() {
expr_ref rr(m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz), m); expr_ref rr(m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz), m);
bool inverted = m_inverter(t->get_decl(), t->get_num_args(), m_args.data() + sz, r); bool inverted = m_inverter(t->get_decl(), t->get_num_args(), m_args.data() + sz, r);
proof_ref pr(m); proof_ref pr(m);
if (inverted && m_enable_proofs) { if (inverted && m_config.m_enable_proofs) {
expr * s = m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz); expr * s = m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz);
expr * eq = m.mk_eq(s, r); expr * eq = m.mk_eq(s, r);
proof * pr1 = m.mk_def_intro(eq); proof * pr1 = m.mk_def_intro(eq);
@ -267,7 +267,7 @@ void elim_unconstrained::reset_nodes() {
*/ */
void elim_unconstrained::init_nodes() { void elim_unconstrained::init_nodes() {
m_enable_proofs = false; m_config.m_enable_proofs = false;
m_trail.reset(); m_trail.reset();
m_fmls.freeze_suffix(); m_fmls.freeze_suffix();
@ -276,7 +276,7 @@ void elim_unconstrained::init_nodes() {
auto [f, p, d] = m_fmls[i](); auto [f, p, d] = m_fmls[i]();
terms.push_back(f); terms.push_back(f);
if (p) if (p)
m_enable_proofs = true; m_config.m_enable_proofs = true;
} }
m_heap.reset(); m_heap.reset();
@ -303,7 +303,7 @@ void elim_unconstrained::init_nodes() {
for (expr* e : terms) for (expr* e : terms)
get_node(e).set_top(); get_node(e).set_top();
m_inverter.set_produce_proofs(m_enable_proofs); m_inverter.set_produce_proofs(m_config.m_enable_proofs);
} }
@ -422,6 +422,8 @@ void elim_unconstrained::update_model_trail(generic_model_converter& mc, vector<
} }
void elim_unconstrained::reduce() { void elim_unconstrained::reduce() {
if (!m_config.m_enabled)
return;
generic_model_converter_ref mc = alloc(generic_model_converter, m, "elim-unconstrained"); generic_model_converter_ref mc = alloc(generic_model_converter, m, "elim-unconstrained");
m_inverter.set_model_converter(mc.get()); m_inverter.set_model_converter(mc.get());
m_created_compound = true; m_created_compound = true;
@ -436,3 +438,8 @@ void elim_unconstrained::reduce() {
mc->reset(); mc->reset();
} }
} }
void elim_unconstrained::updt_params(params_ref const& p) {
smt_params_helper sp(p);
m_config.m_enabled = sp.elim_unconstrained();
}

View file

@ -79,6 +79,10 @@ class elim_unconstrained : public dependent_expr_simplifier {
unsigned m_num_eliminated = 0; unsigned m_num_eliminated = 0;
void reset() { m_num_eliminated = 0; } void reset() { m_num_eliminated = 0; }
}; };
struct config {
bool m_enabled = true;
bool m_enable_proofs = false;
};
expr_inverter m_inverter; expr_inverter m_inverter;
ptr_vector<node> m_nodes; ptr_vector<node> m_nodes;
var_lt m_lt; var_lt m_lt;
@ -86,8 +90,8 @@ class elim_unconstrained : public dependent_expr_simplifier {
expr_ref_vector m_trail; expr_ref_vector m_trail;
expr_ref_vector m_args; expr_ref_vector m_args;
stats m_stats; stats m_stats;
config m_config;
bool m_created_compound = false; bool m_created_compound = false;
bool m_enable_proofs = false;
bool is_var_lt(int v1, int v2) const; bool is_var_lt(int v1, int v2) const;
node& get_node(unsigned n) const { return *m_nodes[n]; } node& get_node(unsigned n) const { return *m_nodes[n]; }
@ -119,4 +123,7 @@ public:
void collect_statistics(statistics& st) const override { st.update("elim-unconstrained", m_stats.m_num_eliminated); } void collect_statistics(statistics& st) const override { st.update("elim-unconstrained", m_stats.m_num_eliminated); }
void reset_statistics() override { m_stats.reset(); } void reset_statistics() override { m_stats.reset(); }
void updt_params(params_ref const& p) override;
}; };

View file

@ -46,6 +46,7 @@ Outline of a presumably better scheme:
#include "ast/simplifiers/solve_context_eqs.h" #include "ast/simplifiers/solve_context_eqs.h"
#include "ast/converters/generic_model_converter.h" #include "ast/converters/generic_model_converter.h"
#include "params/tactic_params.hpp" #include "params/tactic_params.hpp"
#include "params/smt_params_helper.hpp"
namespace euf { namespace euf {
@ -119,6 +120,9 @@ namespace euf {
if (m_fmls.frozen(v)) if (m_fmls.frozen(v))
continue; continue;
if (!m_config.m_enable_non_ground && has_quantifiers(t))
continue;
bool is_safe = true; bool is_safe = true;
unsigned todo_sz = todo.size(); unsigned todo_sz = todo.size();
@ -126,6 +130,8 @@ namespace euf {
// all time-stamps must be at or above current level // all time-stamps must be at or above current level
// unexplored variables that are part of substitution are appended to work list. // unexplored variables that are part of substitution are appended to work list.
SASSERT(m_todo.empty()); SASSERT(m_todo.empty());
m_todo.push_back(t); m_todo.push_back(t);
expr_fast_mark1 visited; expr_fast_mark1 visited;
while (!m_todo.empty()) { while (!m_todo.empty()) {
@ -224,6 +230,9 @@ namespace euf {
void solve_eqs::reduce() { void solve_eqs::reduce() {
if (!m_config.m_enabled)
return;
m_fmls.freeze_suffix(); m_fmls.freeze_suffix();
for (extract_eq* ex : m_extract_plugins) for (extract_eq* ex : m_extract_plugins)
@ -330,6 +339,9 @@ namespace euf {
for (auto* ex : m_extract_plugins) for (auto* ex : m_extract_plugins)
ex->updt_params(p); ex->updt_params(p);
m_rewriter.updt_params(p); m_rewriter.updt_params(p);
smt_params_helper sp(p);
m_config.m_enabled = sp.solve_eqs();
m_config.m_enable_non_ground = sp.solve_eqs_non_ground();
} }
void solve_eqs::collect_param_descrs(param_descrs& r) { void solve_eqs::collect_param_descrs(param_descrs& r) {

View file

@ -41,6 +41,8 @@ namespace euf {
struct config { struct config {
bool m_context_solve = true; bool m_context_solve = true;
unsigned m_max_occs = UINT_MAX; unsigned m_max_occs = UINT_MAX;
bool m_enabled = true;
bool m_enable_non_ground = true;
}; };
stats m_stats; stats m_stats;

View file

@ -20,6 +20,7 @@ def_module_params(module_name='smt',
('delay_units_threshold', UINT, 32, 'maximum number of learned unit clauses before restarting, ignored if delay_units is false'), ('delay_units_threshold', UINT, 32, 'maximum number of learned unit clauses before restarting, ignored if delay_units is false'),
('elim_unconstrained', BOOL, True, 'pre-processing: eliminate unconstrained subterms'), ('elim_unconstrained', BOOL, True, 'pre-processing: eliminate unconstrained subterms'),
('solve_eqs', BOOL, True, 'pre-processing: solve equalities'), ('solve_eqs', BOOL, True, 'pre-processing: solve equalities'),
('solve_eqs.non_ground', BOOL, True, 'pre-processing: solve equalities. Allow eliminating variables by non-ground solutions which can break behavior for model evaluation.'),
('propagate_values', BOOL, True, 'pre-processing: propagate values'), ('propagate_values', BOOL, True, 'pre-processing: propagate values'),
('bound_simplifier', BOOL, True, 'apply bounds simplification during pre-processing'), ('bound_simplifier', BOOL, True, 'apply bounds simplification during pre-processing'),
('pull_nested_quantifiers', BOOL, False, 'pre-processing: pull nested quantifiers'), ('pull_nested_quantifiers', BOOL, False, 'pre-processing: pull nested quantifiers'),

191
src/smt/priority_queue.h Normal file
View file

@ -0,0 +1,191 @@
// SOURCE: https://github.com/Ten0/updatable_priority_queue/blob/master/updatable_priority_queue.h
#include <utility>
#include <vector>
namespace updatable_priority_queue {
template <typename Key, typename Priority>
struct priority_queue_node {
Priority priority;
Key key;
priority_queue_node(const Key& key, const Priority& priority) : priority(priority), key(key) {}
friend bool operator<(const priority_queue_node& pqn1, const priority_queue_node& pqn2) {
return pqn1.priority > pqn2.priority;
}
friend bool operator>(const priority_queue_node& pqn1, const priority_queue_node& pqn2) {
return pqn1.priority < pqn2.priority;
}
};
/** Key has to be an uint value (convertible to size_t)
* This is a max heap (max is on top), to match stl's pQ */
template <typename Key, typename Priority>
class priority_queue {
protected:
std::vector<size_t> id_to_heappos;
std::vector<priority_queue_node<Key,Priority>> heap;
std::size_t max_size = 4; // std::numeric_limits<std::size_t>::max(); // Create a variable max_size that defaults to the largest size_t value possible
public:
// priority_queue() {}
priority_queue(std::size_t max_size = std::numeric_limits<std::size_t>::max()): max_size(max_size) {}
// Returns a const reference to the internal heap storage
const std::vector<priority_queue_node<Key, Priority>>& get_heap() const {
return heap;
}
bool empty() const { return heap.empty(); }
std::size_t size() const { return heap.size(); }
/** first is priority, second is key */
const priority_queue_node<Key,Priority>& top() const { return heap.front(); }
void pop(bool remember_key=false) {
if(size() == 0) return;
id_to_heappos[heap.front().key] = -1-remember_key;
if(size() > 1) {
*heap.begin() = std::move(*(heap.end()-1));
id_to_heappos[heap.front().key] = 0;
}
heap.pop_back();
sift_down(0);
}
priority_queue_node<Key,Priority> pop_value(bool remember_key=true) {
if(size() == 0) return priority_queue_node<Key, Priority>(-1, Priority());
priority_queue_node<Key,Priority> ret = std::move(*heap.begin());
id_to_heappos[ret.key] = -1-remember_key;
if(size() > 1) {
*heap.begin() = std::move(*(heap.end()-1));
id_to_heappos[heap.front().key] = 0;
}
heap.pop_back();
sift_down(0);
return ret;
}
/** Sets the priority for the given key. If not present, it will be added, otherwise it will be updated
* Returns true if the priority was changed.
* */
bool set(const Key& key, const Priority& priority, bool only_if_higher=false) {
if(key < id_to_heappos.size() && id_to_heappos[key] < ((size_t)-2)) // This key is already in the pQ
return update(key, priority, only_if_higher);
else
return push(key, priority, only_if_higher);
}
std::pair<bool,Priority> get_priority(const Key& key) {
if(key < id_to_heappos.size()) {
size_t pos = id_to_heappos[key];
if(pos < ((size_t)-2)) {
return {true, heap[pos].priority};
}
}
return {false, 0};
}
/** Returns true if the key was not inside and was added, otherwise does nothing and returns false
* If the key was remembered and only_if_unknown is true, does nothing and returns false
* */
bool push(const Key& key, const Priority& priority, bool only_if_unknown = false) {
extend_ids(key);
if (id_to_heappos[key] < ((size_t)-2)) return false; // already inside
if (only_if_unknown && id_to_heappos[key] == ((size_t)-2)) return false; // was evicted and only_if_unknown prevents re-adding
if (heap.size() < max_size) {
// We have room: just add new element
size_t n = heap.size();
id_to_heappos[key] = n;
heap.emplace_back(key, priority);
sift_up(n);
return true;
} else {
// Heap full: heap[0] is the smallest priority in the top-k (min-heap)
if (priority <= heap[0].priority) {
// New element priority too small or equal, discard it
return false;
}
// Evict smallest element at heap[0]
Key evicted_key = heap[0].key;
id_to_heappos[evicted_key] = -2; // Mark evicted
heap[0] = priority_queue_node<Key, Priority>(key, priority);
id_to_heappos[key] = 0;
sift_down(0); // restore min-heap property
return true;
}
}
/** Returns true if the key was already inside and was updated, otherwise does nothing and returns false */
bool update(const Key& key, const Priority& new_priority, bool only_if_higher=false) {
if(key >= id_to_heappos.size()) return false;
size_t heappos = id_to_heappos[key];
if(heappos >= ((size_t)-2)) return false;
Priority& priority = heap[heappos].priority;
if(new_priority > priority) {
priority = new_priority;
sift_up(heappos);
return true;
}
else if(!only_if_higher && new_priority < priority) {
priority = new_priority;
sift_down(heappos);
return true;
}
return false;
}
void clear() {
heap.clear();
id_to_heappos.clear();
}
private:
void extend_ids(Key k) {
size_t new_size = k+1;
if(id_to_heappos.size() < new_size)
id_to_heappos.resize(new_size, -1);
}
void sift_down(size_t heappos) {
size_t len = heap.size();
size_t child = heappos*2+1;
if(len < 2 || child >= len) return;
if(child+1 < len && heap[child+1] > heap[child]) ++child; // Check whether second child is higher
if(!(heap[child] > heap[heappos])) return; // Already in heap order
priority_queue_node<Key,Priority> val = std::move(heap[heappos]);
do {
heap[heappos] = std::move(heap[child]);
id_to_heappos[heap[heappos].key] = heappos;
heappos = child;
child = 2*child+1;
if(child >= len) break;
if(child+1 < len && heap[child+1] > heap[child]) ++child;
} while(heap[child] > val);
heap[heappos] = std::move(val);
id_to_heappos[heap[heappos].key] = heappos;
}
void sift_up(size_t heappos) {
size_t len = heap.size();
if(len < 2 || heappos <= 0) return;
size_t parent = (heappos-1)/2;
if(!(heap[heappos] > heap[parent])) return;
priority_queue_node<Key, Priority> val = std::move(heap[heappos]);
do {
heap[heappos] = std::move(heap[parent]);
id_to_heappos[heap[heappos].key] = heappos;
heappos = parent;
if(heappos <= 0) break;
parent = (parent-1)/2;
} while(val > heap[parent]);
heap[heappos] = std::move(val);
id_to_heappos[heap[heappos].key] = heappos;
}
};
}

View file

@ -50,6 +50,7 @@ Revision History:
#include "model/model.h" #include "model/model.h"
#include "solver/progress_callback.h" #include "solver/progress_callback.h"
#include "solver/assertions/asserted_formulas.h" #include "solver/assertions/asserted_formulas.h"
#include "smt/priority_queue.h"
#include <tuple> #include <tuple>
// there is a significant space overhead with allocating 1000+ contexts in // there is a significant space overhead with allocating 1000+ contexts in
@ -189,7 +190,9 @@ namespace smt {
unsigned_vector m_lit_occs; //!< occurrence count of literals unsigned_vector m_lit_occs; //!< occurrence count of literals
svector<bool_var_data> m_bdata; //!< mapping bool_var -> data svector<bool_var_data> m_bdata; //!< mapping bool_var -> data
svector<double> m_activity; svector<double> m_activity;
svector<double> m_scores[2]; updatable_priority_queue::priority_queue<bool_var, double> m_pq_scores;
svector<std::array<double, 2>> m_lit_scores;
clause_vector m_aux_clauses; clause_vector m_aux_clauses;
clause_vector m_lemmas; clause_vector m_lemmas;
vector<clause_vector> m_clauses_to_reinit; vector<clause_vector> m_clauses_to_reinit;
@ -932,10 +935,11 @@ namespace smt {
void dump_axiom(unsigned n, literal const* lits); void dump_axiom(unsigned n, literal const* lits);
void add_scores(unsigned n, literal const* lits); void add_scores(unsigned n, literal const* lits);
void reset_scores() { void reset_scores() {
for (auto& s : m_scores) s[0] = s[1] = 0.0; for (auto& s : m_lit_scores) s[0] = s[1] = 0.0;
m_pq_scores.clear(); // Clear the priority queue heap as well
} }
double get_score(literal l) const { double get_score(literal l) const {
return m_scores[l.var()][l.sign()]; return m_lit_scores[l.var()][l.sign()];
} }
public: public:

View file

@ -928,9 +928,8 @@ namespace smt {
set_bool_var(id, v); set_bool_var(id, v);
m_bdata.reserve(v+1); m_bdata.reserve(v+1);
m_activity.reserve(v+1); m_activity.reserve(v+1);
m_scores[0].reserve(v + 1); m_lit_scores.reserve(v + 1);
m_scores[1].reserve(v + 1); m_lit_scores[v][0] = m_lit_scores[v][1] = 0.0;
m_scores[0][v] = m_scores[1][v] = 0.0;
m_bool_var2expr.reserve(v+1); m_bool_var2expr.reserve(v+1);
m_bool_var2expr[v] = n; m_bool_var2expr[v] = n;
literal l(v, false); literal l(v, false);
@ -1528,11 +1527,25 @@ namespace smt {
}} }}
} }
// void context::add_scores(unsigned n, literal const* lits) {
// for (unsigned i = 0; i < n; ++i) {
// auto lit = lits[i];
// unsigned v = lit.var();
// m_lit_scores[v][lit.sign()] += 1.0 / n;
// }
// }
void context::add_scores(unsigned n, literal const* lits) { void context::add_scores(unsigned n, literal const* lits) {
for (unsigned i = 0; i < n; ++i) { for (unsigned i = 0; i < n; ++i) {
auto lit = lits[i]; auto lit = lits[i];
unsigned v = lit.var(); unsigned v = lit.var(); // unique key per literal
m_scores[lit.sign()][v] += 1.0 / n;
auto curr_score = m_lit_scores[v][0] * m_lit_scores[v][1];
m_lit_scores[v][lit.sign()] += 1.0 / n;
auto new_score = m_lit_scores[v][0] * m_lit_scores[v][1];
m_pq_scores.set(v, new_score);
} }
} }

View file

@ -92,66 +92,86 @@ namespace smt {
sl.push_child(&(new_m->limit())); sl.push_child(&(new_m->limit()));
} }
// Access socres as follows:
// ctx.m_scores[lit.sign()][lit.var()]
// auto cube = [](context& ctx, expr_ref_vector& lasms, expr_ref& c) { auto cube = [](context& ctx, expr_ref_vector& lasms, expr_ref& c) {
// lookahead lh(ctx); lookahead lh(ctx);
// c = lh.choose(); c = lh.choose();
// if (c) { if (c) {
// if ((ctx.get_random_value() % 2) == 0)
// c = c.get_manager().mk_not(c);
// lasms.push_back(c);
// }
// };
auto cube = [&](context& ctx, expr_ref_vector& lasms, expr_ref& c) {
lookahead lh(ctx); // Create lookahead object to use get_score for evaluation
std::vector<std::pair<expr_ref, double>> candidates; // List of candidate literals and their scores
unsigned budget = 10; // Maximum number of variables to sample for building the cubes
// Loop through all Boolean variables in the context
for (bool_var v = 0; v < ctx.m_bool_var2expr.size(); ++v) {
if (ctx.get_assignment(v) != l_undef) continue; // Skip already assigned variables
expr* e = ctx.bool_var2expr(v); // Get expression associated with variable
if (!e) continue; // Skip if not a valid variable
literal lit(v, false); // Create literal for v = true
ctx.push_scope(); // Save solver state
ctx.assign(lit, b_justification::mk_axiom(), true); // Assign v = true with axiom justification
ctx.propagate(); // Propagate consequences of assignment
if (!ctx.inconsistent()) { // Only keep variable if assignment didnt lead to conflict
double score = lh.get_score(); // Evaluate current state using lookahead scoring
candidates.emplace_back(expr_ref(e, ctx.get_manager()), score); // Store (expr, score) pair
}
ctx.pop_scope(1); // Restore solver state
if (candidates.size() >= budget) break; // Stop early if sample budget is exhausted
}
// Sort candidates in descending order by score (higher score = better)
std::sort(candidates.begin(), candidates.end(),
[](auto& a, auto& b) { return a.second > b.second; });
unsigned cube_size = 2; // compute_cube_size_from_feedback(); // NEED TO IMPLEMENT: Decide how many literals to include (adaptive)
// Select top-scoring literals to form the cube
for (unsigned i = 0; i < std::min(cube_size, (unsigned)candidates.size()); ++i) {
expr_ref lit = candidates[i].first;
// Randomly flip polarity with 50% chance (introduces polarity diversity)
if ((ctx.get_random_value() % 2) == 0) if ((ctx.get_random_value() % 2) == 0)
lit = ctx.get_manager().mk_not(lit); c = c.get_manager().mk_not(c);
lasms.push_back(c);
lasms.push_back(lit); // Add literal as thread-local assumption
} }
}; };
auto cube_batch_pq = [&](context& ctx, expr_ref_vector& lasms, expr_ref& c) {
unsigned k = 4; // Number of top literals you want
ast_manager& m = ctx.get_manager();
// Get the entire fixed-size priority queue (it's not that big)
auto candidates = ctx.m_pq_scores.get_heap(); // returns vector<node<key, priority>>
// Sort descending by priority (higher priority first)
std::sort(candidates.begin(), candidates.end(),
[](const auto& a, const auto& b) { return a.priority > b.priority; });
expr_ref_vector conjuncts(m);
unsigned count = 0;
for (const auto& node : candidates) {
if (ctx.get_assignment(node.key) != l_undef) continue;
expr* e = ctx.bool_var2expr(node.key);
if (!e) continue;
expr_ref lit(e, m);
conjuncts.push_back(lit);
if (++count >= k) break;
}
c = mk_and(conjuncts);
lasms.push_back(c);
};
auto cube_batch = [&](context& ctx, expr_ref_vector& lasms, expr_ref& c) {
std::vector<std::pair<expr_ref, double>> candidates;
unsigned k = 4; // Get top-k scoring literals
ast_manager& m = ctx.get_manager();
// std::cout << ctx.m_bool_var2expr.size() << std::endl; // Prints the size of m_bool_var2expr
// Loop over first 100 Boolean vars
for (bool_var v = 0; v < 100; ++v) {
if (ctx.get_assignment(v) != l_undef) continue;
expr* e = ctx.bool_var2expr(v);
if (!e) continue;
literal lit(v, false);
double score = ctx.get_score(lit);
if (score == 0.0) continue;
candidates.emplace_back(expr_ref(e, m), score);
}
// Sort all candidate literals descending by score
std::sort(candidates.begin(), candidates.end(),
[](auto& a, auto& b) { return a.second > b.second; });
// Clear c and build it as conjunction of top-k
expr_ref_vector conjuncts(m);
for (unsigned i = 0; i < std::min(k, (unsigned)candidates.size()); ++i) {
expr_ref lit = candidates[i].first;
conjuncts.push_back(lit);
}
// Build conjunction and store in c
c = mk_and(conjuncts);
// Add the single cube formula to lasms (not each literal separately)
lasms.push_back(c);
};
obj_hashtable<expr> unit_set; obj_hashtable<expr> unit_set;
expr_ref_vector unit_trail(ctx.m); expr_ref_vector unit_trail(ctx.m);
@ -192,33 +212,47 @@ namespace smt {
std::mutex mux; std::mutex mux;
// Lambda defining the work each SMT thread performs
auto worker_thread = [&](int i) { auto worker_thread = [&](int i) {
try { try {
// Get thread-specific context and AST manager
context& pctx = *pctxs[i]; context& pctx = *pctxs[i];
ast_manager& pm = *pms[i]; ast_manager& pm = *pms[i];
// Initialize local assumptions and cube
expr_ref_vector lasms(pasms[i]); expr_ref_vector lasms(pasms[i]);
expr_ref c(pm); expr_ref c(pm);
// Set the max conflict limit for this thread
pctx.get_fparams().m_max_conflicts = std::min(thread_max_conflicts, max_conflicts); pctx.get_fparams().m_max_conflicts = std::min(thread_max_conflicts, max_conflicts);
// Periodically generate cubes based on frequency
if (num_rounds > 0 && (num_rounds % pctx.get_fparams().m_threads_cube_frequency) == 0) if (num_rounds > 0 && (num_rounds % pctx.get_fparams().m_threads_cube_frequency) == 0)
cube(pctx, lasms, c); cube_batch(pctx, lasms, c);
// Optional verbose logging
IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i; IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i;
if (num_rounds > 0) verbose_stream() << " :round " << num_rounds; if (num_rounds > 0) verbose_stream() << " :round " << num_rounds;
if (c) verbose_stream() << " :cube " << mk_bounded_pp(c, pm, 3); if (c) verbose_stream() << " :cube " << mk_bounded_pp(c, pm, 3);
verbose_stream() << ")\n";); verbose_stream() << ")\n";);
// Check satisfiability of assumptions
lbool r = pctx.check(lasms.size(), lasms.data()); lbool r = pctx.check(lasms.size(), lasms.data());
// Handle results based on outcome and conflict count
if (r == l_undef && pctx.m_num_conflicts >= max_conflicts) if (r == l_undef && pctx.m_num_conflicts >= max_conflicts)
; // no-op ; // no-op, allow loop to continue
else if (r == l_undef && pctx.m_num_conflicts >= thread_max_conflicts) else if (r == l_undef && pctx.m_num_conflicts >= thread_max_conflicts)
return; return; // quit thread early
// If cube was unsat and it's in the core, learn from it
else if (r == l_false && pctx.unsat_core().contains(c)) { else if (r == l_false && pctx.unsat_core().contains(c)) {
IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i << " :learn " << mk_bounded_pp(c, pm, 3) << ")"); IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i << " :learn " << mk_bounded_pp(c, pm, 3) << ")");
pctx.assert_expr(mk_not(mk_and(pctx.unsat_core()))); pctx.assert_expr(mk_not(mk_and(pctx.unsat_core())));
return; return;
} }
// Begin thread-safe update of shared result state
bool first = false; bool first = false;
{ {
std::lock_guard<std::mutex> lock(mux); std::lock_guard<std::mutex> lock(mux);
@ -232,29 +266,27 @@ namespace smt {
finished_id = i; finished_id = i;
result = r; result = r;
} }
else if (!first) return; else if (!first) return; // nothing new to contribute
} }
// Cancel limits on other threads now that a result is known
for (ast_manager* m : pms) { for (ast_manager* m : pms) {
if (m != &pm) m->limit().cancel(); if (m != &pm) m->limit().cancel();
} }
} } catch (z3_error & err) {
catch (z3_error & err) {
if (finished_id == UINT_MAX) { if (finished_id == UINT_MAX) {
error_code = err.error_code(); error_code = err.error_code();
ex_kind = ERROR_EX; ex_kind = ERROR_EX;
done = true; done = true;
} }
} } catch (z3_exception & ex) {
catch (z3_exception & ex) {
if (finished_id == UINT_MAX) { if (finished_id == UINT_MAX) {
ex_msg = ex.what(); ex_msg = ex.what();
ex_kind = DEFAULT_EX; ex_kind = DEFAULT_EX;
done = true; done = true;
} }
} } catch (...) {
catch (...) {
if (finished_id == UINT_MAX) { if (finished_id == UINT_MAX) {
ex_msg = "unknown exception"; ex_msg = "unknown exception";
ex_kind = ERROR_EX; ex_kind = ERROR_EX;
@ -263,29 +295,37 @@ namespace smt {
} }
}; };
// for debugging: num_threads = 1; // Thread scheduling loop
while (true) { while (true) {
vector<std::thread> threads(num_threads); vector<std::thread> threads(num_threads);
// Launch threads
for (unsigned i = 0; i < num_threads; ++i) { for (unsigned i = 0; i < num_threads; ++i) {
// [&, i] is the lambda's capture clause: capture all variables by reference (&) except i, which is captured by value. // [&, i] is the lambda's capture clause: capture all variables by reference (&) except i, which is captured by value.
threads[i] = std::thread([&, i]() { worker_thread(i); }); threads[i] = std::thread([&, i]() { worker_thread(i); });
} }
// Wait for all threads to finish
for (auto & th : threads) { for (auto & th : threads) {
th.join(); th.join();
} }
// Stop if one finished with a result
if (done) break; if (done) break;
// Otherwise update shared state and retry
collect_units(); collect_units();
++num_rounds; ++num_rounds;
max_conflicts = (max_conflicts < thread_max_conflicts) ? 0 : (max_conflicts - thread_max_conflicts); max_conflicts = (max_conflicts < thread_max_conflicts) ? 0 : (max_conflicts - thread_max_conflicts);
thread_max_conflicts *= 2; thread_max_conflicts *= 2;
} }
// Gather statistics from all solver contexts
for (context* c : pctxs) { for (context* c : pctxs) {
c->collect_statistics(ctx.m_aux_stats); c->collect_statistics(ctx.m_aux_stats);
} }
// If no thread finished successfully, throw recorded error
if (finished_id == UINT_MAX) { if (finished_id == UINT_MAX) {
switch (ex_kind) { switch (ex_kind) {
case ERROR_EX: throw z3_error(error_code); case ERROR_EX: throw z3_error(error_code);
@ -293,6 +333,7 @@ namespace smt {
} }
} }
// Handle result: translate model/unsat core back to main context
model_ref mdl; model_ref mdl;
context& pctx = *pctxs[finished_id]; context& pctx = *pctxs[finished_id];
ast_translation tr(*pms[finished_id], m); ast_translation tr(*pms[finished_id], m);

View file

@ -439,7 +439,6 @@ final_check_status theory_seq::final_check_eh() {
} }
bool theory_seq::set_empty(expr* x) { bool theory_seq::set_empty(expr* x) {
add_axiom(~mk_eq(m_autil.mk_int(0), mk_len(x), false), mk_eq_empty(x)); add_axiom(~mk_eq(m_autil.mk_int(0), mk_len(x), false), mk_eq_empty(x));
return true; return true;
@ -475,10 +474,9 @@ bool theory_seq::check_fixed_length(bool is_zero, bool check_long_strings) {
bool found = false; bool found = false;
for (unsigned i = 0; i < m_length.size(); ++i) { for (unsigned i = 0; i < m_length.size(); ++i) {
expr* e = m_length.get(i); expr* e = m_length.get(i);
if (fixed_length(e, is_zero, check_long_strings)) { if (fixed_length(e, is_zero, check_long_strings))
found = true; found = true;
} }
}
return found; return found;
} }