mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 09:34:08 +00:00
dio with static_matrix initial setup
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
9e8b17b5f8
commit
42bdc893a9
|
@ -56,6 +56,7 @@ namespace lp {
|
|||
}
|
||||
|
||||
};
|
||||
|
||||
std::ostream& print_S(std::ostream & out) {
|
||||
out << "S:\n";
|
||||
for (unsigned i : m_s) {
|
||||
|
@ -66,7 +67,8 @@ namespace lp {
|
|||
}
|
||||
|
||||
std::ostream& print_lar_term_L(const lar_term & t, std::ostream & out) const {
|
||||
return print_linear_combination_customized(t.coeffs_as_vector(), [](int j)->std::string {return "y"+std::to_string(j);}, out );
|
||||
return print_linear_combination_customized(t.coeffs_as_vector(),
|
||||
[](int j)->std::string {return "y"+std::to_string(j);}, out );
|
||||
}
|
||||
|
||||
std::ostream& print_term_o(term_o const& term, std::ostream& out) const {
|
||||
|
@ -110,26 +112,29 @@ namespace lp {
|
|||
An annotated state is a triple ⟨E′, λ, σ⟩, where E′ is a set of pairs ⟨e, ℓ⟩ in which
|
||||
e is an equation and ℓ is a linear combination of variables from L
|
||||
*/
|
||||
struct eprime_pair {
|
||||
term_o m_e;
|
||||
//
|
||||
struct eprime_entry {
|
||||
unsigned m_row_index; // the index of the row in the constraint matrix that m_e corresponds to
|
||||
term_o m_e; // it will be used for debugging only
|
||||
// we keep the dependency of the equation in m_l
|
||||
// a more expensive alternative is to keep the history term of m_e : originally m_l is i, the index of row m_e was constructed from
|
||||
u_dependency *m_l;
|
||||
};
|
||||
vector<eprime_pair> m_eprime;
|
||||
|
||||
/* let σ be a partial mapping from variables in L united with X to linear combinations
|
||||
of variables in X and of integer constants showing the substitutions
|
||||
*/
|
||||
u_map<term_o> m_sigma;
|
||||
|
||||
public:
|
||||
enum class row_status {
|
||||
F,
|
||||
S,
|
||||
NO_S_NO_F
|
||||
};
|
||||
vector<eprime_entry> m_eprime;
|
||||
// the terms are stored in m_A and m_c
|
||||
static_matrix<mpq, numeric_pair<mpq>> m_e_matrix; // the rows of the matrix are the terms, without the constant part
|
||||
vector<row_status> m_row_status;
|
||||
vector<mpq> m_c; // to keep the constants of the terms
|
||||
int_solver& lia;
|
||||
lar_solver& lra;
|
||||
explanation m_infeas_explanation;
|
||||
|
||||
// we start assigning with UINT_MAX and go down, print it as l(UINT_MAX - m_last_fresh_x_var)
|
||||
unsigned m_last_fresh_x_var;
|
||||
indexed_vector<mpq> m_indexed_work_vector;
|
||||
|
||||
bool m_report_branch = false;
|
||||
|
||||
// set F
|
||||
|
@ -140,10 +145,20 @@ namespace lp {
|
|||
// gives the order of substitution
|
||||
|
||||
unsigned m_conflict_index = -1; // m_eprime[m_conflict_index] gives the conflict
|
||||
public:
|
||||
imp(int_solver& lia, lar_solver& lra): lia(lia), lra(lra) {}
|
||||
|
||||
term_o row_to_term(const row_strip<mpq>& row) const {
|
||||
term_o get_term_from_e_matrix(unsigned i) {
|
||||
term_o t;
|
||||
for (const auto & p: m_e_matrix.m_rows[i]) {
|
||||
t.add_monomial(p.coeff(), p.var());
|
||||
}
|
||||
t.c() = m_c[i];
|
||||
return t;
|
||||
}
|
||||
private:
|
||||
term_o create_eprime_entry_from_row(const row_strip<mpq>& row, unsigned row_index) {
|
||||
const auto lcm = get_denominators_lcm(row);
|
||||
#if Z3DEBUG
|
||||
term_o t;
|
||||
for (const auto & p: row)
|
||||
if (lia.is_fixed(p.var()))
|
||||
|
@ -151,11 +166,23 @@ namespace lp {
|
|||
else
|
||||
t.add_monomial(lcm * p.coeff(), p.var());
|
||||
t.c() *= lcm;
|
||||
#endif
|
||||
// init m_e_matrix and m_c
|
||||
mpq & c = m_c[row_index];
|
||||
for (const auto & p: row)
|
||||
if (lia.is_fixed(p.var()))
|
||||
c += p.coeff()*lia.lower_bound(p.var()).x;
|
||||
else
|
||||
m_e_matrix.add_new_element(row_index, p.var(), lcm * p.coeff());
|
||||
c *= lcm;
|
||||
SASSERT(t == get_term_from_e_matrix(row_index));
|
||||
return t;
|
||||
}
|
||||
|
||||
void init() {
|
||||
m_last_fresh_x_var = lra.column_count();
|
||||
m_e_matrix = static_matrix<mpq, impq>(lra.row_count(), lra.column_count());
|
||||
m_row_status.resize(lra.row_count(), row_status::NO_S_NO_F);
|
||||
m_c.resize(lra.row_count(), mpq(0));
|
||||
m_report_branch = false;
|
||||
unsigned n_of_rows = lra.A_r().row_count();
|
||||
m_k2s.clear();
|
||||
|
@ -181,17 +208,19 @@ namespace lp {
|
|||
TRACE("dioph_eq", tout << "not all vars are int and small\n";);
|
||||
continue;
|
||||
}
|
||||
term_o t = row_to_term(row);
|
||||
term_o t = create_eprime_entry_from_row(row, i);
|
||||
m_row_status[i] = row_status::F;
|
||||
TRACE("dioph_eq", tout << "row = "; lra.print_row(row, tout) << std::endl;);
|
||||
if (t.size() == 0) {
|
||||
SASSERT(t.c().is_zero());
|
||||
continue;
|
||||
}
|
||||
// eprime_pair pair = {t, lar_term(i)};
|
||||
eprime_pair pair = {t, get_dep_from_row(row)};
|
||||
m_f.push_back(static_cast<unsigned>(m_f.size()));
|
||||
// eprime_pair pair = {t, lar_term(i)};
|
||||
eprime_entry pair = {i, t, get_dep_from_row(row)};
|
||||
|
||||
m_f.push_back(static_cast<unsigned>(i));
|
||||
m_eprime.push_back(pair);
|
||||
TRACE("dioph_eq", print_eprime_entry(static_cast<unsigned>(m_f.size()) - 1, tout););
|
||||
TRACE("dioph_eq", print_eprime_entry(static_cast<unsigned>(i), tout););
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -207,9 +236,9 @@ namespace lp {
|
|||
return dep;
|
||||
}
|
||||
|
||||
mpq gcd_of_coeffs(const term_o& t) {
|
||||
mpq gcd_of_row(unsigned row_index) {
|
||||
mpq g(0);
|
||||
for (const auto & p : t) {
|
||||
for (const auto & p : m_e_matrix.m_rows[row_index]) {
|
||||
if (g.is_zero())
|
||||
g = abs(p.coeff());
|
||||
else
|
||||
|
@ -235,14 +264,14 @@ namespace lp {
|
|||
return false;
|
||||
}
|
||||
|
||||
void prepare_lia_branch_report(const term_o & e, const mpq& g, const mpq new_c) {
|
||||
void prepare_lia_branch_report(const eprime_entry & e, const mpq& g, const mpq new_c) {
|
||||
/* We have ep.m_e/g = 0, or sum((coff_i/g)*x_i) + new_c = 0,
|
||||
or sum((coeff_i/g)*x_i) = -new_c, where new_c is not an integer
|
||||
Then sum((coeff_i/g)*x_i) <= floor(-new_c) or sum((coeff_i/g)*x_i) >= ceil(-new_c)
|
||||
*/
|
||||
lar_term& t = lia.get_term();
|
||||
for (const auto& p: e) {
|
||||
t.add_monomial(p.coeff()/g, p.j());
|
||||
for (const auto& p: m_e_matrix.m_rows[e.m_row_index]) {
|
||||
t.add_monomial(p.coeff()/g, p.var());
|
||||
}
|
||||
lia.offset() = floor(-new_c);
|
||||
lia.is_upper() = true;
|
||||
|
@ -251,23 +280,24 @@ namespace lp {
|
|||
}
|
||||
|
||||
// returns true if no conflict is found and false otherwise
|
||||
// this function devides all cooficients, and the free constant, of the ep.m_e by the gcd of all coefficients,
|
||||
// this function devides all cooficients, and the free constant, of the ep.m_e by the gcd of all coefficients,
|
||||
// it is needed by the next steps
|
||||
// the conflict can be used to report "cuts from proofs"
|
||||
bool normalize_e_by_gcd(eprime_pair& ep) {
|
||||
bool normalize_e_by_gcd(unsigned row_index) {
|
||||
eprime_entry& ep = m_eprime[row_index];
|
||||
TRACE("dioph_eq", print_eprime_entry(ep, tout) << std::endl;);
|
||||
mpq g = gcd_of_coeffs(ep.m_e);
|
||||
mpq g = gcd_of_row(row_index);
|
||||
if (g.is_zero() || g.is_one()) {
|
||||
SASSERT(g.is_one() || ep.m_e.c().is_zero());
|
||||
return true;
|
||||
}
|
||||
TRACE("dioph_eq", tout << "g:" << g << std::endl;);
|
||||
mpq c_g = ep.m_e.c() / g;
|
||||
mpq c_g = m_c[row_index] / g;
|
||||
if (c_g.is_int()) {
|
||||
for (auto& p: ep.m_e.coeffs()) {
|
||||
p.m_value /= g;
|
||||
for (auto& p: m_e_matrix.m_rows[row_index]) {
|
||||
p.coeff() /= g;
|
||||
}
|
||||
ep.m_e.c() = c_g;
|
||||
m_c[row_index] = c_g;
|
||||
// ep.m_l *= (1/g);
|
||||
TRACE("dioph_eq", tout << "ep_m_e:"; print_eprime_entry(ep, tout) << std::endl;);
|
||||
return true;
|
||||
|
@ -275,7 +305,7 @@ namespace lp {
|
|||
// c_g is not integral
|
||||
if (lra.settings().stats().m_dio_conflicts % lra.settings().dio_cut_from_proof_period() == 0 &&
|
||||
!has_fresh_var(ep.m_e))
|
||||
prepare_lia_branch_report(ep.m_e, g, c_g);
|
||||
prepare_lia_branch_report(ep, g, c_g);
|
||||
return false;
|
||||
|
||||
}
|
||||
|
@ -283,7 +313,7 @@ namespace lp {
|
|||
// returns true if no conflict is found and false otherwise
|
||||
bool normalize_by_gcd() {
|
||||
for (unsigned l: m_f) {
|
||||
if (!normalize_e_by_gcd(m_eprime[l])) {
|
||||
if (!normalize_e_by_gcd(l)) {
|
||||
m_conflict_index = l;
|
||||
return false;
|
||||
}
|
||||
|
@ -301,58 +331,59 @@ namespace lp {
|
|||
// We look at term e.m_e: it is in form (+-)x_k + sum {a_i*x_i} + c = 0.
|
||||
// We substitute x_k in t by (+-)coeff*(sum {a_i*x_i} + c), where coeff is the coefficient of x_k in t.
|
||||
|
||||
void substitute_k_with_S_entry_for_tigthening(const eprime_pair& e, unsigned k, term_o& t, std::queue<unsigned> & q) {
|
||||
SASSERT (t.contains(k) && e.m_e.contains(k));
|
||||
mpq coeff = t.get_coeff(k); // need to copy it because the pointer value can be changed during the next loop
|
||||
const mpq& k_coeff_in_e = e.m_e.get_coeff(k);
|
||||
bool is_one = k_coeff_in_e.is_one();
|
||||
SASSERT(is_one || k_coeff_in_e.is_minus_one());
|
||||
t.erase_var(k);
|
||||
if (is_one) {
|
||||
coeff = -coeff;
|
||||
}
|
||||
for (const auto& p: e.m_e) {
|
||||
if (p.j() == k) continue;
|
||||
t.add_monomial(coeff*p.coeff(), p.j());
|
||||
}
|
||||
t.c() += coeff*e.m_e.c();
|
||||
TRACE("dioph_eq", tout << "after subs_k\n"; print_term_o(t, tout) << std::endl;);
|
||||
for (const auto& p: t) {
|
||||
if (is_fresh_var(p.j())) {
|
||||
continue;
|
||||
}
|
||||
if (m_k2s[p.j()] != null_lpvar)
|
||||
q.push(p.j());
|
||||
}
|
||||
void substitute_k_with_S_entry_for_tigthening(const eprime_entry& e, unsigned k, std::queue<unsigned> & q) {
|
||||
// SASSERT ( e.m_e.contains(k));
|
||||
// mpq coeff = m_indexed_work_vector[k]; // need to copy it because the pointer value can be changed during the next loop
|
||||
// const mpq& k_coeff_in_e = e.m_e.get_coeff(k); // get it from m_e_matrix instead of e.m_e
|
||||
|
||||
// bool is_one = k_coeff_in_e.is_one();
|
||||
// SASSERT(is_one || k_coeff_in_e.is_minus_one());
|
||||
// t.erase_var(k);
|
||||
// if (is_one) {
|
||||
// coeff = -coeff;
|
||||
// }
|
||||
// for (const auto& p: e.m_e) {
|
||||
// if (p.j() == k) continue;
|
||||
// t.add_monomial(coeff*p.coeff(), p.j());
|
||||
// }
|
||||
// t.c() += coeff*e.m_e.c();
|
||||
// TRACE("dioph_eq", tout << "after subs_k\n"; print_term_o(t, tout) << std::endl;);
|
||||
// for (const auto& p: t) {
|
||||
// if (is_fresh_var(p.j())) {
|
||||
// continue;
|
||||
// }
|
||||
// if (m_k2s[p.j()] != null_lpvar)
|
||||
// q.push(p.j());
|
||||
// }
|
||||
|
||||
}
|
||||
|
||||
const eprime_pair& k_th_entry(unsigned k) const {
|
||||
const eprime_entry& k_th_entry(unsigned k) const {
|
||||
return m_eprime[m_k2s[k]];
|
||||
}
|
||||
|
||||
const unsigned sub_index(unsigned k) const {
|
||||
return m_k2s[k];
|
||||
}
|
||||
|
||||
void substitude_term_on_q_with_S_for_tightening(std::queue<unsigned> &q, term_o& t, u_dependency* &dep) {
|
||||
TRACE("dioph_eq_dep", tout << "dep:"; print_dep(tout, dep) << std::endl;);
|
||||
while (!q.empty()) {
|
||||
unsigned k = q.front();
|
||||
q.pop();
|
||||
const eprime_pair& e = k_th_entry(k);
|
||||
if (!t.contains(k)) {
|
||||
continue;
|
||||
}
|
||||
TRACE("dioph_eq", tout << "k:" << k << " in: "; print_eprime_entry(sub_index(k), tout) << std::endl;);
|
||||
substitute_k_with_S_entry_for_tigthening(e, k, t, q);
|
||||
// works on m_indexed_work_vector
|
||||
void substitude_term_on_q_with_S_for_tightening(std::queue<unsigned> &q, u_dependency* &dep) {
|
||||
// TRACE("dioph_eq_dep", tout << "dep:"; print_dep(tout, dep) << std::endl;);
|
||||
// while (!q.empty()) {
|
||||
// unsigned k = q.front();
|
||||
// q.pop();
|
||||
// const eprime_entry& e = k_th_entry(k);
|
||||
// if (m_indexed_work_vector[k].is_zero()) {
|
||||
// continue;
|
||||
// }
|
||||
// TRACE("dioph_eq", tout << "k:" << k << " in: "; print_eprime_entry(sub_index(k), tout) << std::endl;);
|
||||
// substitute_k_with_S_entry_for_tigthening(e, k, q);
|
||||
|
||||
TRACE("dioph_eq", print_queue(q, tout););
|
||||
// TRACE("dioph_eq", print_queue(q, tout););
|
||||
|
||||
dep = lra.mk_join(dep, e.m_l);
|
||||
TRACE("dioph_eq", tout << "substituted t:"; print_term_o(t, tout) << std::endl;
|
||||
tout << "\ndep:"; print_dep(tout, dep) << std::endl;);
|
||||
}
|
||||
// dep = lra.mk_join(dep, e.m_l);
|
||||
// TRACE("dioph_eq", tout << "substituted t:"; print_term_o(t, tout) << std::endl;
|
||||
// tout << "\ndep:"; print_dep(tout, dep) << std::endl;);
|
||||
// }
|
||||
}
|
||||
|
||||
|
||||
|
@ -368,6 +399,7 @@ namespace lp {
|
|||
if (!m_infeas_explanation.empty()) {
|
||||
return lia_move::conflict;
|
||||
}
|
||||
|
||||
}
|
||||
if (!change)
|
||||
return lia_move::undef;
|
||||
|
@ -389,38 +421,38 @@ namespace lp {
|
|||
return out;
|
||||
}
|
||||
// j is the index of the column representing a term
|
||||
// return true if there is a change
|
||||
// return true if a new tighter bound was set on j
|
||||
bool tighten_bounds_for_column(unsigned j) {
|
||||
TRACE("dioph_eq", tout << "j:"; tout << j << std::endl;);
|
||||
const lar_term& lar_t = lra.get_term(j);
|
||||
TRACE("dioph_eq", tout << "tighten_term_for_S: "; print_lar_term_L(lar_t, tout) << std::endl;);
|
||||
// create a copy: t is a copy of lar_t
|
||||
term_o t;
|
||||
std::queue<unsigned> q;
|
||||
for (const auto& p: lar_t) {
|
||||
if (sub_index(p.j()) != null_lpvar)
|
||||
q.push(p.j());
|
||||
t.add_monomial(p.coeff(), p.j());
|
||||
}
|
||||
u_dependency * dep = nullptr;
|
||||
// TRACE("dioph_eq", tout << "j:"; tout << j << std::endl;);
|
||||
// const lar_term& lar_t = lra.get_term(j);
|
||||
// TRACE("dioph_eq", tout << "tighten_term_for_S: "; print_lar_term_L(lar_t, tout) << std::endl;);
|
||||
// // create a copy: t is a copy of lar_t
|
||||
// std::queue<unsigned> q;
|
||||
// m_indexed_work_vector.clear();
|
||||
// for (const auto& p: lar_t) {
|
||||
// if (sub_index(p.j()) != null_lpvar)
|
||||
// q.push(p.j());
|
||||
// m_indexed_work_vector.set_value(p.coeff(), p.j());
|
||||
// }
|
||||
// u_dependency * dep = nullptr;
|
||||
|
||||
TRACE("dioph_eq", tout << "t:"; print_term_o(t, tout) << std::endl;
|
||||
/*tout << "dep:"; print_dep(tout, dep) << std::endl;*/);
|
||||
substitude_term_on_q_with_S_for_tightening(q, t, dep);
|
||||
TRACE("dioph_eq", tout << "after process_q_with_S\n t:"; print_term_o(t, tout) << std::endl;
|
||||
tout << "dep:"; print_dep(tout, dep) << std::endl;);
|
||||
mpq g = gcd_of_coeffs(t);
|
||||
if (g.is_one()) {
|
||||
TRACE("dioph_eq", tout << "g is one" << std::endl;);
|
||||
return false;
|
||||
} else if (g.is_zero()) {
|
||||
handle_constant_term(t, j, dep);
|
||||
if (!m_infeas_explanation.empty())
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
// TRACE("dioph_eq", tout << "t:"; print_term_o(t, tout) << std::endl;
|
||||
// /*tout << "dep:"; print_dep(tout, dep) << std::endl;*/);
|
||||
// substitude_term_on_q_with_S_for_tightening(q, dep);
|
||||
// TRACE("dioph_eq", tout << "after process_q_with_S\n t:"; print_term_o(t, tout) << std::endl;
|
||||
// tout << "dep:"; print_dep(tout, dep) << std::endl;);
|
||||
// mpq g = gcd_of_row(t);
|
||||
// if (g.is_one()) {
|
||||
// TRACE("dioph_eq", tout << "g is one" << std::endl;);
|
||||
// return false;
|
||||
// } else if (g.is_zero()) {
|
||||
// handle_constant_term(t, j, dep);
|
||||
// if (!m_infeas_explanation.empty())
|
||||
// return true;
|
||||
// return false;
|
||||
// }
|
||||
|
||||
return tighten_bounds_for_term(t, g, j, dep);
|
||||
// return tighten_bounds_for_term(t, g, j, dep);
|
||||
}
|
||||
void handle_constant_term(term_o& t, unsigned j, u_dependency* dep) {
|
||||
if (t.c().is_zero()) {
|
||||
|
@ -454,57 +486,57 @@ namespace lp {
|
|||
// returns true if there is a change
|
||||
// dep comes from the substitution with S
|
||||
bool tighten_bounds_for_term(term_o& t, const mpq& g, unsigned j, u_dependency* dep) {
|
||||
mpq rs;
|
||||
bool is_strict;
|
||||
bool change = false;
|
||||
u_dependency *b_dep = nullptr;
|
||||
SASSERT(!g.is_zero());
|
||||
// mpq rs;
|
||||
// bool is_strict;
|
||||
// bool change = false;
|
||||
// u_dependency *b_dep = nullptr;
|
||||
// SASSERT(!g.is_zero());
|
||||
|
||||
if (lra.has_upper_bound(j, b_dep, rs, is_strict)) {
|
||||
TRACE("dioph_eq", tout << "tighten upper bound for x" << j << " with rs:" << rs << std::endl;);
|
||||
rs = (rs - t.c()) / g;
|
||||
TRACE("dioph_eq", tout << "tighten upper bound for x" << j << " with rs:" << rs << std::endl;);
|
||||
// if (lra.has_upper_bound(j, b_dep, rs, is_strict)) {
|
||||
// TRACE("dioph_eq", tout << "tighten upper bound for x" << j << " with rs:" << rs << std::endl;);
|
||||
// rs = (rs - t.c()) / g;
|
||||
// TRACE("dioph_eq", tout << "tighten upper bound for x" << j << " with rs:" << rs << std::endl;);
|
||||
|
||||
if (!rs.is_int()) {
|
||||
tighten_bound_for_term_for_bound_kind(t, g, j, lra.mk_join(dep, b_dep), rs, true);
|
||||
change = true;
|
||||
}
|
||||
}
|
||||
if (lra.has_lower_bound(j, b_dep, rs, is_strict)) {
|
||||
TRACE("dioph_eq", tout << "tighten lower bound for x" << j << " with rs:" << rs << std::endl;);
|
||||
rs = (rs - t.c()) / g;
|
||||
// if (!rs.is_int()) {
|
||||
// tighten_bound_for_term_for_bound_kind(t, g, j, lra.mk_join(dep, b_dep), rs, true);
|
||||
// change = true;
|
||||
// }
|
||||
// }
|
||||
// if (lra.has_lower_bound(j, b_dep, rs, is_strict)) {
|
||||
// TRACE("dioph_eq", tout << "tighten lower bound for x" << j << " with rs:" << rs << std::endl;);
|
||||
// rs = (rs - t.c()) / g;
|
||||
|
||||
TRACE("dioph_eq", tout << "tighten lower bound for x" << j << " with rs:" << rs << std::endl;);
|
||||
// TRACE("dioph_eq", tout << "tighten lower bound for x" << j << " with rs:" << rs << std::endl;);
|
||||
|
||||
if (!rs.is_int()) {
|
||||
tighten_bound_for_term_for_bound_kind(t, g, j, lra.mk_join(b_dep, dep), rs, false);
|
||||
change = true;
|
||||
}
|
||||
}
|
||||
return change;
|
||||
// if (!rs.is_int()) {
|
||||
// tighten_bound_for_term_for_bound_kind(t, g, j, lra.mk_join(b_dep, dep), rs, false);
|
||||
// change = true;
|
||||
// }
|
||||
// }
|
||||
// return change;
|
||||
}
|
||||
|
||||
void tighten_bound_for_term_for_bound_kind(term_o& t,
|
||||
const mpq& g, unsigned j, u_dependency* dep, const mpq & ub, bool upper) {
|
||||
// ub = (upper_bound(j) - t.c())/g.
|
||||
// we have x[j] = t = g*t_+ t.c() <= upper_bound(j), then
|
||||
// t_ <= floor((upper_bound(j) - t.c())/g) = floor(ub)
|
||||
//
|
||||
// so xj = g*t_+t.c() <= g*floor(ub) + t.c() is new upper bound
|
||||
// <= can be replaced with >= for lower bounds, with ceil instead of floor
|
||||
mpq bound = g * (upper?floor(ub):ceil(ub))+t.c();
|
||||
TRACE("dioph_eq", tout << "upper:" << upper << std::endl;
|
||||
tout << "new " << (upper? "upper":"lower" ) << "bound:" << bound << std::endl;);
|
||||
// // ub = (upper_bound(j) - t.c())/g.
|
||||
// // we have x[j] = t = g*t_+ t.c() <= upper_bound(j), then
|
||||
// // t_ <= floor((upper_bound(j) - t.c())/g) = floor(ub)
|
||||
// //
|
||||
// // so xj = g*t_+t.c() <= g*floor(ub) + t.c() is new upper bound
|
||||
// // <= can be replaced with >= for lower bounds, with ceil instead of floor
|
||||
// mpq bound = g * (upper?floor(ub):ceil(ub))+t.c();
|
||||
// TRACE("dioph_eq", tout << "upper:" << upper << std::endl;
|
||||
// tout << "new " << (upper? "upper":"lower" ) << "bound:" << bound << std::endl;);
|
||||
|
||||
dep = lra.mk_join(dep, upper? lra.get_column_upper_bound_witness(j): lra.get_column_lower_bound_witness(j) );
|
||||
SASSERT(upper && bound <= lra.get_upper_bound(j).x || !upper && bound >= lra.get_lower_bound(j).x);
|
||||
lconstraint_kind kind = upper? lconstraint_kind::LE: lconstraint_kind::GE;
|
||||
lra.update_column_type_and_bound(j, kind, bound, dep);
|
||||
TRACE("dioph_eq",
|
||||
tout << "new " << (upper? "upper":"lower" ) << "bound:" << bound << std::endl;
|
||||
tout << "bound_dep:\n";print_dep(tout, dep) << std::endl;);
|
||||
// dep = lra.mk_join(dep, upper? lra.get_column_upper_bound_witness(j): lra.get_column_lower_bound_witness(j) );
|
||||
// SASSERT(upper && bound <= lra.get_upper_bound(j).x || !upper && bound >= lra.get_lower_bound(j).x);
|
||||
// lconstraint_kind kind = upper? lconstraint_kind::LE: lconstraint_kind::GE;
|
||||
// lra.update_column_type_and_bound(j, kind, bound, dep);
|
||||
// TRACE("dioph_eq",
|
||||
// tout << "new " << (upper? "upper":"lower" ) << "bound:" << bound << std::endl;
|
||||
// tout << "bound_dep:\n";print_dep(tout, dep) << std::endl;);
|
||||
}
|
||||
|
||||
public:
|
||||
lia_move check() {
|
||||
init();
|
||||
while(m_f.size()) {
|
||||
|
@ -519,14 +551,14 @@ namespace lp {
|
|||
rewrite_eqs();
|
||||
}
|
||||
TRACE("dioph_eq", print_S(tout););
|
||||
lia_move ret = tighten_with_S();
|
||||
if (ret == lia_move::conflict) {
|
||||
lra.settings().stats().m_dio_conflicts++;
|
||||
return lia_move::conflict;
|
||||
}
|
||||
// lia_move ret = tighten_with_S();
|
||||
// if (ret == lia_move::conflict) {
|
||||
// lra.settings().stats().m_dio_conflicts++;
|
||||
// return lia_move::conflict;
|
||||
// }
|
||||
return lia_move::undef;
|
||||
}
|
||||
|
||||
private:
|
||||
std::list<unsigned>::iterator pick_eh() {
|
||||
return m_f.begin(); // TODO: make a smarter joice
|
||||
}
|
||||
|
@ -561,23 +593,23 @@ namespace lp {
|
|||
}
|
||||
}
|
||||
|
||||
std::tuple<mpq, unsigned, int> find_minimal_abs_coeff(const term_o& eh) const {
|
||||
std::tuple<mpq, unsigned, int> find_minimal_abs_coeff(unsigned row_index) const {
|
||||
bool first = true, first_fresh = true;
|
||||
mpq ahk, ahk_fresh;
|
||||
unsigned k, k_fresh;
|
||||
int k_sign, k_sign_fresh;
|
||||
mpq t;
|
||||
for (const auto& p : eh) {
|
||||
for (const auto& p : m_e_matrix.m_rows[row_index]) {
|
||||
t = abs(p.coeff());
|
||||
if (first_fresh || t < ahk_fresh) {
|
||||
ahk_fresh = t;
|
||||
k_sign_fresh = p.coeff().is_pos() ? 1 : -1;
|
||||
k_fresh = p.j();
|
||||
k_fresh = p.var();
|
||||
first_fresh = false;
|
||||
} else if (first || t < ahk) {
|
||||
ahk = t;
|
||||
k_sign = p.coeff().is_pos() ? 1 : -1;
|
||||
k = p.j();
|
||||
k = p.var();
|
||||
first = false;
|
||||
if (ahk.is_one())
|
||||
break;
|
||||
|
@ -605,61 +637,105 @@ namespace lp {
|
|||
TRACE("dioph_eq", tout << "subst_term:"; print_term_o(t, tout) << std::endl;);
|
||||
return t;
|
||||
}
|
||||
void eliminate_var_in_f(eprime_pair& e_pair, unsigned k, int k_sign) {
|
||||
term_o t = get_term_to_subst(e_pair.m_e, k, k_sign);
|
||||
substitute_var_on_f(k, k_sign, t, e_pair.m_l, -1) ; // -1 is for the index to ignore
|
||||
|
||||
std::ostream& print_e_row(unsigned i, std::ostream& out) {
|
||||
return print_term_o(get_term_from_e_matrix(i), out);
|
||||
}
|
||||
// j is the variable to eliminate, it appears in row e.m_e_matrix with
|
||||
// coefficient +-1
|
||||
void eliminate_var_in_f(eprime_entry& e, unsigned j, int j_sign) {
|
||||
unsigned piv_row_index = e.m_row_index;
|
||||
auto &column = m_e_matrix.m_columns[j];
|
||||
int pivot_col_cell_index = -1;
|
||||
for (unsigned k = 0; k < column.size(); k++) {
|
||||
if (column[k].var() == piv_row_index) {
|
||||
pivot_col_cell_index = k;
|
||||
break;
|
||||
}
|
||||
}
|
||||
SASSERT(pivot_col_cell_index != -1);
|
||||
if (pivot_col_cell_index != 0) {
|
||||
// swap the pivot column cell with the head cell
|
||||
auto c = column[0];
|
||||
column[0] = column[pivot_col_cell_index];
|
||||
column[pivot_col_cell_index] = c;
|
||||
|
||||
m_e_matrix.m_rows[piv_row_index][column[0].offset()].offset() = 0;
|
||||
m_e_matrix.m_rows[c.var()][c.offset()].offset() = pivot_col_cell_index;
|
||||
}
|
||||
|
||||
unsigned f_rows_in_column =0;
|
||||
for (const auto& c: column) {
|
||||
if (m_row_status[c.var()] == row_status::F)
|
||||
f_rows_in_column ++;
|
||||
}
|
||||
TRACE("dioph_eq", tout << "f_rows_in_column:" << f_rows_in_column << std::endl;);
|
||||
while (column.size() > 1 && f_rows_in_column > 0 ) {
|
||||
auto & c = column.back();
|
||||
if (m_row_status[c.var()] != row_status::F)
|
||||
continue;
|
||||
f_rows_in_column--;
|
||||
SASSERT(c.var() != piv_row_index);
|
||||
mpq coeff = m_e_matrix.get_val(c);
|
||||
TRACE("dioph_eq", tout << "c_row:" << c.var(); print_e_row(c.var(), tout) << std::endl;);
|
||||
m_e_matrix.pivot_row_to_row_given_cell_with_sign(piv_row_index, c, j, j_sign);
|
||||
m_c[c.var()] -= j_sign* coeff*m_c[piv_row_index];
|
||||
TRACE("dioph_eq", tout << "after pivoting c_row:"; print_e_row(c.var(), tout) << std::endl;);
|
||||
}
|
||||
}
|
||||
|
||||
// k is the variable to substitute
|
||||
void fresh_var_step(unsigned e_index, unsigned k) {
|
||||
eprime_pair & e_pair = m_eprime[e_index];
|
||||
// step 7 from the paper
|
||||
auto & eh = e_pair.m_e;
|
||||
// xt is the fresh variable
|
||||
unsigned xt = m_last_fresh_x_var++;
|
||||
TRACE("dioph_eq", tout << "introduce fresh xt:" << "x"<< var_str(xt) << std::endl;
|
||||
tout << "eh:"; print_term_o(eh,tout) << std::endl;);
|
||||
/* Let eh = sum (a_i*x_i) + c
|
||||
For each i != k, let a_i = a_qi*ahk + a_ri, and let c = c_q * ahk + c_r
|
||||
eh = ahk * (x_k + sum {a_qi*x_i) + c_q | i != k }) + sum {a_ri*x_i | i != k} + c_r = 0
|
||||
xt = x_k + sum {a_qi*x_i) + c_q | i != k }, it will be xt_term
|
||||
Then x_k -> - sum {a_qi*x_i) + c_q | i != k } + xt, it will be subs_k
|
||||
eh = ahk*xt + ...
|
||||
*/
|
||||
term_o xt_term;
|
||||
term_o k_subs;
|
||||
// copy it aside
|
||||
const mpq ahk = eh.get_coeff(k);
|
||||
mpq r, q = machine_div_rem(eh.c(), ahk, r);
|
||||
xt_term.add_var(k);
|
||||
xt_term.c() = q;
|
||||
xt_term.add_monomial(mpq(-1), xt);
|
||||
k_subs.add_var(xt);
|
||||
k_subs.c() = - q;
|
||||
term_o et; //et is the elimination k from eh, which is an optimization
|
||||
et.add_monomial(ahk, xt);
|
||||
et.c() = r;
|
||||
for (const auto & p: eh) {
|
||||
if (p.j() == k) continue;
|
||||
q = machine_div_rem(p.coeff(), ahk, r);
|
||||
xt_term.add_monomial(q, p.j());
|
||||
k_subs.add_monomial(-q, p.j());
|
||||
et.add_monomial(r, p.j());
|
||||
void fresh_var_step(unsigned e_index, unsigned k, const mpq& ahk) {
|
||||
eprime_entry & e = m_eprime[e_index];
|
||||
unsigned h = e.m_row_index;
|
||||
// backup the term at h
|
||||
m_indexed_work_vector.clear();
|
||||
m_indexed_work_vector.resize(lra.column_count());
|
||||
auto hrow = m_e_matrix.m_rows[h];
|
||||
for (const auto& cell : hrow)
|
||||
m_indexed_work_vector.set_value(cell.coeff(), cell.var());
|
||||
while (hrow.size() > 0) {
|
||||
auto & c = hrow.back();
|
||||
m_e_matrix.remove_element(hrow, c);
|
||||
}
|
||||
m_eprime[e_index].m_e = et;
|
||||
// eprime_pair xt_entry = {xt_term, lar_term()}; // 0 for m_l field
|
||||
eprime_pair xt_entry = {xt_term, nullptr}; // nullptr for the dependency
|
||||
m_eprime.push_back(xt_entry);
|
||||
TRACE("dioph_eq", tout << "xt_term:"; print_term_o(xt_term, tout) << std::endl;
|
||||
tout << "k_subs:"; print_term_o(k_subs, tout) << std::endl;
|
||||
print_eprime_entry(m_eprime.size()-1, tout););
|
||||
substitute_var_on_f(k, 1, k_subs, xt_entry.m_l, e_index);
|
||||
|
||||
// the term to eliminate the fresh variable
|
||||
term_o xt_subs = xt_term.clone();
|
||||
xt_subs.add_monomial(mpq(1), xt);
|
||||
TRACE("dioph_eq", tout << "xt_subs: x"<< var_str(xt) << " -> "; print_term_o(xt_subs, tout) << std::endl;);
|
||||
m_sigma.insert(xt, xt_subs);
|
||||
|
||||
// step 7 from the paper
|
||||
// xt is the fresh variable
|
||||
unsigned xt = m_e_matrix.column_count();
|
||||
unsigned fresh_row = m_e_matrix.row_count();
|
||||
m_e_matrix.add_row(); // for the fresh variable definition
|
||||
m_e_matrix.add_column(); // the fresh variable itself
|
||||
m_row_status.push_back(row_status::S); // adding a new row to S
|
||||
// Add a new row for the fresh variable definition
|
||||
/* Let eh = sum(ai*xi) + c. For each i != k, let ai = qi*ahk + ri, and let c = c_q * ahk + c_r.
|
||||
eh = ahk*(x_k + sum{qi*xi|i != k} + c_q) + sum {ri*xi|i!= k} + c_r.
|
||||
Then -xt + x_k + sum {qi*x_i)| i != k} + c_q will be the fresh row
|
||||
eh = ahk*xt + sum {ri*x_i | i != k} + c_r is the row m_e_matrix[e.m_row_index]
|
||||
*/
|
||||
mpq q, r;
|
||||
q = machine_div_rem(m_c[h], ahk, r);
|
||||
m_c[h] = r;
|
||||
m_c.push_back(q);
|
||||
m_e_matrix.add_new_element(h, xt, ahk);
|
||||
m_e_matrix.add_new_element(fresh_row, xt, -mpq(1));
|
||||
m_e_matrix.add_new_element(fresh_row, k, mpq(1));
|
||||
for (unsigned i: m_indexed_work_vector.m_index) {
|
||||
mpq ai = m_indexed_work_vector[i];
|
||||
if (i == k) continue;
|
||||
q = machine_div_rem(ai, ahk, r);
|
||||
if (!r.is_zero())
|
||||
m_e_matrix.add_new_element(h, i, r);
|
||||
if (!q.is_zero())
|
||||
m_e_matrix.add_new_element(fresh_row, i, q);
|
||||
|
||||
}
|
||||
|
||||
// add entry to S
|
||||
m_eprime.push_back({fresh_row, term_o(), nullptr});
|
||||
this->m_s.push_back(fresh_row);
|
||||
TRACE("dioph_eq", tout << "changed entry:"; print_eprime_entry(e_index, tout)<< std::endl;
|
||||
tout << "added to S:\n"; print_eprime_entry(m_eprime.size()-1, tout););
|
||||
eliminate_var_in_f(m_eprime.back(), k, 1);
|
||||
}
|
||||
|
||||
std::ostream& print_eprime_entry(unsigned i, std::ostream& out) {
|
||||
|
@ -667,16 +743,20 @@ namespace lp {
|
|||
return print_eprime_entry(m_eprime[i], out);
|
||||
}
|
||||
|
||||
std::ostream& print_eprime_entry(const eprime_pair& e, std::ostream& out) {
|
||||
std::ostream& print_eprime_entry(const eprime_entry& e, std::ostream& out) {
|
||||
out << "{\n";
|
||||
print_term_o(e.m_e, out << "\tm_e:") << "," << std::endl;
|
||||
print_dep(out<< "\tm_l:", e.m_l) << "\n";
|
||||
out << "\trow:" << e.m_row_index << "," << std::endl;
|
||||
print_term_o(get_term_from_e_matrix(e.m_row_index), out << "\trow:");
|
||||
|
||||
// print_dep(out<< "\tm_l:", e.m_l) << "\n";
|
||||
out << "}"<< std::endl;
|
||||
return out;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// k is the index of the index of the variable with the coefficient +-1 that is being substituted
|
||||
void move_entry_from_f_to_s(unsigned k, std::list<unsigned>::iterator it) {
|
||||
SASSERT(m_row_status[*it] == row_status::F);
|
||||
m_row_status[*it] = row_status::S;
|
||||
if (k >= m_k2s.size()) { // k is a fresh variable
|
||||
m_k2s.resize(k+1, -1 );
|
||||
}
|
||||
|
@ -691,8 +771,7 @@ namespace lp {
|
|||
auto eh_it = pick_eh();
|
||||
auto& eprime_entry = m_eprime[*eh_it];
|
||||
TRACE("dioph_eq", print_eprime_entry(*eh_it, tout););
|
||||
term_o& eh = eprime_entry.m_e;
|
||||
auto [ahk, k, k_sign] = find_minimal_abs_coeff(eh);
|
||||
auto [ahk, k, k_sign] = find_minimal_abs_coeff(eprime_entry.m_row_index);
|
||||
TRACE("dioph_eq", tout << "ahk:" << ahk << ", k:" << k << ", k_sign:" << k_sign << std::endl;);
|
||||
if (ahk.is_one()) {
|
||||
eprime_entry.m_e.j() = k;
|
||||
|
@ -700,10 +779,10 @@ namespace lp {
|
|||
move_entry_from_f_to_s(k, eh_it);
|
||||
eliminate_var_in_f(eprime_entry, k , k_sign);
|
||||
} else {
|
||||
fresh_var_step(*eh_it, k);
|
||||
fresh_var_step(*eh_it, k, ahk);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
void explain(explanation& ex) {
|
||||
if (m_conflict_index == UINT_MAX) {
|
||||
SASSERT(!(lra.get_status() == lp_status::FEASIBLE || lra.get_status() == lp_status::OPTIMAL));
|
||||
|
|
|
@ -59,6 +59,7 @@ template void static_matrix<mpq, numeric_pair<mpq> >::set(unsigned int, unsigned
|
|||
|
||||
template bool lp::static_matrix<lp::mpq, lp::mpq>::pivot_row_to_row_given_cell(unsigned int, column_cell& , unsigned int);
|
||||
template bool lp::static_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >::pivot_row_to_row_given_cell(unsigned int, column_cell&, unsigned int);
|
||||
template void lp::static_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >::pivot_row_to_row_given_cell_with_sign(unsigned int, column_cell&, unsigned int, int);
|
||||
template void lp::static_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >::remove_element(vector<lp::row_cell<lp::mpq>, true, unsigned int>&, lp::row_cell<lp::mpq>&);
|
||||
|
||||
}
|
||||
|
|
|
@ -68,7 +68,8 @@ class static_matrix
|
|||
};
|
||||
std::stack<dim> m_stack;
|
||||
public:
|
||||
vector<int> m_vector_of_row_offsets;
|
||||
|
||||
vector<int> m_work_vector_of_row_offsets;
|
||||
indexed_vector<T> m_work_vector;
|
||||
vector<row_strip<T>> m_rows;
|
||||
vector<column_strip> m_columns;
|
||||
|
@ -110,7 +111,7 @@ public:
|
|||
static_matrix() = default;
|
||||
|
||||
// constructor
|
||||
static_matrix(unsigned m, unsigned n): m_vector_of_row_offsets(n, -1) {
|
||||
static_matrix(unsigned m, unsigned n): m_work_vector_of_row_offsets(n, -1) {
|
||||
init_row_columns(m, n);
|
||||
}
|
||||
// constructor that copies columns of the basis from A
|
||||
|
@ -133,7 +134,7 @@ public:
|
|||
void add_row() {m_rows.push_back(row_strip<T>());}
|
||||
void add_column() {
|
||||
m_columns.push_back(column_strip());
|
||||
m_vector_of_row_offsets.push_back(-1);
|
||||
m_work_vector_of_row_offsets.push_back(-1);
|
||||
}
|
||||
|
||||
void forget_last_columns(unsigned how_many_to_forget);
|
||||
|
@ -289,7 +290,8 @@ public:
|
|||
}
|
||||
|
||||
// pivot row i to row ii
|
||||
bool pivot_row_to_row_given_cell(unsigned i, column_cell& c, unsigned);
|
||||
bool pivot_row_to_row_given_cell(unsigned i, column_cell& c, unsigned j);
|
||||
void pivot_row_to_row_given_cell_with_sign(unsigned piv_row_index, column_cell& c, unsigned j, int j_sign);
|
||||
void scan_row_ii_to_offset_vector(const row_strip<T> & rvals);
|
||||
|
||||
void transpose_rows(unsigned i, unsigned ii) {
|
||||
|
|
|
@ -23,6 +23,7 @@ Revision History:
|
|||
#include <utility>
|
||||
#include <set>
|
||||
#include "math/lp/static_matrix.h"
|
||||
#include "static_matrix.h"
|
||||
namespace lp {
|
||||
// each assignment for this matrix should be issued only once!!!
|
||||
|
||||
|
@ -31,7 +32,7 @@ inline void addmul(mpq& r, mpq const& a, mpq const& b) { r.addmul(a, b); }
|
|||
|
||||
template <typename T, typename X>
|
||||
void static_matrix<T, X>::init_row_columns(unsigned m, unsigned n) {
|
||||
lp_assert(m_rows.size() == 0 && m_columns.size() == 0);
|
||||
SASSERT(m_rows.size() == 0 && m_columns.size() == 0);
|
||||
for (unsigned i = 0; i < m; i++) {
|
||||
m_rows.push_back(row_strip<T>());
|
||||
}
|
||||
|
@ -43,15 +44,16 @@ void static_matrix<T, X>::init_row_columns(unsigned m, unsigned n) {
|
|||
|
||||
template <typename T, typename X> void static_matrix<T, X>::scan_row_ii_to_offset_vector(const row_strip<T> & rvals) {
|
||||
for (unsigned j = 0; j < rvals.size(); j++)
|
||||
m_vector_of_row_offsets[rvals[j].var()] = j;
|
||||
m_work_vector_of_row_offsets[rvals[j].var()] = j;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> bool static_matrix<T, X>::pivot_row_to_row_given_cell(unsigned i, column_cell & c, unsigned pivot_col) {
|
||||
template <typename T, typename X> bool static_matrix<T, X>::pivot_row_to_row_given_cell(unsigned i,
|
||||
column_cell & c, unsigned pivot_col) {
|
||||
unsigned ii = c.var();
|
||||
lp_assert(i < row_count() && ii < column_count() && i != ii);
|
||||
SASSERT(i < row_count() && ii < column_count() && i != ii);
|
||||
T alpha = -get_val(c);
|
||||
lp_assert(!is_zero(alpha));
|
||||
SASSERT(!is_zero(alpha));
|
||||
auto & rowii = m_rows[ii];
|
||||
remove_element(rowii, rowii[c.offset()]);
|
||||
scan_row_ii_to_offset_vector(rowii);
|
||||
|
@ -60,8 +62,8 @@ template <typename T, typename X> bool static_matrix<T, X>::pivot_row_to_row_giv
|
|||
for (const auto & iv : m_rows[i]) {
|
||||
unsigned j = iv.var();
|
||||
if (j == pivot_col) continue;
|
||||
lp_assert(!is_zero(iv.coeff()));
|
||||
int j_offs = m_vector_of_row_offsets[j];
|
||||
SASSERT(!is_zero(iv.coeff()));
|
||||
int j_offs = m_work_vector_of_row_offsets[j];
|
||||
if (j_offs == -1) { // it is a new element
|
||||
T alv = alpha * iv.coeff();
|
||||
add_new_element(ii, j, alv);
|
||||
|
@ -72,7 +74,7 @@ template <typename T, typename X> bool static_matrix<T, X>::pivot_row_to_row_giv
|
|||
}
|
||||
// clean the work vector
|
||||
for (unsigned k = 0; k < prev_size_ii; k++) {
|
||||
m_vector_of_row_offsets[rowii[k].var()] = -1;
|
||||
m_work_vector_of_row_offsets[rowii[k].var()] = -1;
|
||||
}
|
||||
|
||||
// remove zeroes
|
||||
|
@ -83,11 +85,47 @@ template <typename T, typename X> bool static_matrix<T, X>::pivot_row_to_row_giv
|
|||
return !rowii.empty();
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
inline void static_matrix<T, X>::pivot_row_to_row_given_cell_with_sign(unsigned piv_row_index,
|
||||
column_cell& c, unsigned pivot_col, int pivot_sign) {
|
||||
unsigned ii = c.var();
|
||||
SASSERT(ii != piv_row_index);
|
||||
T alpha = get_val(c) * pivot_sign;
|
||||
SASSERT(!is_zero(alpha));
|
||||
auto & rowii = m_rows[ii];
|
||||
remove_element(rowii, rowii[c.offset()]);
|
||||
scan_row_ii_to_offset_vector(rowii);
|
||||
unsigned prev_size_ii = rowii.size();
|
||||
// run over the pivot row and update row ii
|
||||
for (const auto & iv : m_rows[piv_row_index]) {
|
||||
unsigned j = iv.var();
|
||||
if (j == pivot_col) continue;
|
||||
SASSERT(!is_zero(iv.coeff()));
|
||||
int j_offs = m_work_vector_of_row_offsets[j];
|
||||
if (j_offs == -1) { // it is a new element
|
||||
T alv = alpha * iv.coeff();
|
||||
add_new_element(ii, j, alv);
|
||||
}
|
||||
else {
|
||||
addmul(rowii[j_offs].coeff(), iv.coeff(), alpha);
|
||||
}
|
||||
}
|
||||
// clean the work vector
|
||||
for (unsigned k = 0; k < prev_size_ii; k++) {
|
||||
m_work_vector_of_row_offsets[rowii[k].var()] = -1;
|
||||
}
|
||||
|
||||
// remove zeroes
|
||||
for (unsigned k = rowii.size(); k-- > 0; ) {
|
||||
if (is_zero(rowii[k].coeff()))
|
||||
remove_element(rowii, rowii[k]);
|
||||
}
|
||||
}
|
||||
|
||||
// constructor that copies columns of the basis from A
|
||||
template <typename T, typename X>
|
||||
static_matrix<T, X>::static_matrix(static_matrix const &A, unsigned * /* basis */) :
|
||||
m_vector_of_row_offsets(A.column_count(), numeric_traits<T>::zero()) {
|
||||
m_work_vector_of_row_offsets(A.column_count(), numeric_traits<T>::zero()) {
|
||||
unsigned m = A.row_count();
|
||||
init_row_columns(m, m);
|
||||
for (; m-- > 0; )
|
||||
|
@ -96,14 +134,14 @@ static_matrix<T, X>::static_matrix(static_matrix const &A, unsigned * /* basis *
|
|||
}
|
||||
|
||||
template <typename T, typename X> void static_matrix<T, X>::clear() {
|
||||
m_vector_of_row_offsets.clear();
|
||||
m_work_vector_of_row_offsets.clear();
|
||||
m_rows.clear();
|
||||
m_columns.clear();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void static_matrix<T, X>::init_vector_of_row_offsets() {
|
||||
m_vector_of_row_offsets.clear();
|
||||
m_vector_of_row_offsets.resize(column_count(), -1);
|
||||
m_work_vector_of_row_offsets.clear();
|
||||
m_work_vector_of_row_offsets.resize(column_count(), -1);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void static_matrix<T, X>::init_empty_matrix(unsigned m, unsigned n) {
|
||||
|
@ -112,9 +150,9 @@ template <typename T, typename X> void static_matrix<T, X>::init_empty_matrix(un
|
|||
}
|
||||
|
||||
template <typename T, typename X> unsigned static_matrix<T, X>::lowest_row_in_column(unsigned col) {
|
||||
lp_assert(col < column_count());
|
||||
SASSERT(col < column_count());
|
||||
column_strip & colstrip = m_columns[col];
|
||||
lp_assert(colstrip.size() > 0);
|
||||
SASSERT(colstrip.size() > 0);
|
||||
unsigned ret = 0;
|
||||
for (auto & t : colstrip) {
|
||||
if (t.var() > ret) {
|
||||
|
@ -125,7 +163,7 @@ template <typename T, typename X> unsigned static_matrix<T, X>::lowest_row_in_co
|
|||
}
|
||||
|
||||
template <typename T, typename X> void static_matrix<T, X>::forget_last_columns(unsigned how_many_to_forget) {
|
||||
lp_assert(m_columns.size() >= how_many_to_forget);
|
||||
SASSERT(m_columns.size() >= how_many_to_forget);
|
||||
unsigned j = column_count() - 1;
|
||||
for (; how_many_to_forget-- > 0; ) {
|
||||
remove_last_column(j --);
|
||||
|
@ -146,12 +184,12 @@ template <typename T, typename X> void static_matrix<T, X>::remove_last_column(u
|
|||
}
|
||||
}
|
||||
m_columns.pop_back();
|
||||
m_vector_of_row_offsets.pop_back();
|
||||
m_work_vector_of_row_offsets.pop_back();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void static_matrix<T, X>::set(unsigned row, unsigned col, T const & val) {
|
||||
if (numeric_traits<T>::is_zero(val)) return;
|
||||
lp_assert(row < row_count() && col < column_count());
|
||||
SASSERT(row < row_count() && col < column_count());
|
||||
auto & r = m_rows[row];
|
||||
unsigned offs_in_cols = m_columns[col].size();
|
||||
m_columns[col].push_back(make_column_cell(row, r.size()));
|
||||
|
@ -229,7 +267,7 @@ template <typename T, typename X> void static_matrix<T, X>::check_consistency()
|
|||
for (unsigned i = 0; i < m_rows.size(); i++) {
|
||||
for (auto & t : m_rows[i]) {
|
||||
std::pair<unsigned, unsigned> p(i, t.var());
|
||||
lp_assert(by_rows.find(p) == by_rows.end());
|
||||
SASSERT(by_rows.find(p) == by_rows.end());
|
||||
by_rows[p] = t.coeff();
|
||||
}
|
||||
}
|
||||
|
@ -237,16 +275,16 @@ template <typename T, typename X> void static_matrix<T, X>::check_consistency()
|
|||
for (unsigned i = 0; i < m_columns.size(); i++) {
|
||||
for (auto & t : m_columns[i]) {
|
||||
std::pair<unsigned, unsigned> p(t.var(), i);
|
||||
lp_assert(by_cols.find(p) == by_cols.end());
|
||||
SASSERT(by_cols.find(p) == by_cols.end());
|
||||
by_cols[p] = get_val(t);
|
||||
}
|
||||
}
|
||||
lp_assert(by_rows.size() == by_cols.size());
|
||||
SASSERT(by_rows.size() == by_cols.size());
|
||||
|
||||
for (auto & t : by_rows) {
|
||||
auto ic = by_cols.find(t.first);
|
||||
lp_assert(ic != by_cols.end());
|
||||
lp_assert(t.second == ic->second);
|
||||
SASSERT(ic != by_cols.end());
|
||||
SASSERT(t.second == ic->second);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue