3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-19 02:42:02 +00:00

adding ack/model

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-08-28 12:55:31 -07:00
parent 7f0b5bc129
commit 4244ce4aad
31 changed files with 831 additions and 914 deletions

View file

@ -1,281 +0,0 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
ba_internalize.h
Abstract:
INternalize methods for Boolean algebra operators.
Author:
Nikolaj Bjorner (nbjorner) 2020-08-25
--*/
#include "sat/ba/ba_internalize.h"
namespace sat {
literal ba_internalize::internalize(sat_internalizer& si, expr* e, bool sign, bool root) {
m_si = &si;
if (pb.is_pb(e))
return internalize_pb(e, sign, root);
if (m.is_xor(e))
return internalize_xor(e, sign, root);
UNREACHABLE();
return null_literal;
}
literal ba_internalize::internalize_xor(expr* e, bool sign, bool root) {
sat::literal_vector lits;
sat::bool_var v = m_solver.add_var(true);
lits.push_back(literal(v, true));
auto add_expr = [&](expr* a) {
literal lit = m_si->internalize(a);
m_solver.set_external(lit.var());
lits.push_back(lit);
};
expr* e1 = nullptr;
while (m.is_iff(e, e1, e))
add_expr(e1);
add_expr(e);
// ensure that = is converted to xor
for (unsigned i = 1; i + 1 < lits.size(); ++i) {
lits[i].neg();
}
ba.add_xr(lits);
auto* aig = m_solver.get_cut_simplifier();
if (aig) aig->add_xor(~lits.back(), lits.size() - 1, lits.c_ptr() + 1);
sat::literal lit(v, sign);
return literal(v, sign);
}
literal ba_internalize::internalize_pb(expr* e, bool sign, bool root) {
SASSERT(pb.is_pb(e));
app* t = to_app(e);
rational k = pb.get_k(t);
switch (t->get_decl_kind()) {
case OP_AT_MOST_K:
return convert_at_most_k(t, k, root, sign);
case OP_AT_LEAST_K:
return convert_at_least_k(t, k, root, sign);
case OP_PB_LE:
if (pb.has_unit_coefficients(t))
return convert_at_most_k(t, k, root, sign);
else
return convert_pb_le(t, root, sign);
case OP_PB_GE:
if (pb.has_unit_coefficients(t))
return convert_at_least_k(t, k, root, sign);
else
return convert_pb_ge(t, root, sign);
case OP_PB_EQ:
if (pb.has_unit_coefficients(t))
return convert_eq_k(t, k, root, sign);
else
return convert_pb_eq(t, root, sign);
default:
UNREACHABLE();
}
return null_literal;
}
void ba_internalize::check_unsigned(rational const& c) {
if (!c.is_unsigned()) {
throw default_exception("unsigned coefficient expected");
}
}
void ba_internalize::convert_to_wlits(app* t, sat::literal_vector const& lits, svector<wliteral>& wlits) {
for (unsigned i = 0; i < lits.size(); ++i) {
rational c = pb.get_coeff(t, i);
check_unsigned(c);
wlits.push_back(std::make_pair(c.get_unsigned(), lits[i]));
}
}
void ba_internalize::convert_pb_args(app* t, literal_vector& lits) {
for (expr* arg : *t) {
lits.push_back(m_si->internalize(arg));
m_solver.set_external(lits.back().var());
}
}
void ba_internalize::convert_pb_args(app* t, svector<wliteral>& wlits) {
sat::literal_vector lits;
convert_pb_args(t, lits);
convert_to_wlits(t, lits, wlits);
}
literal ba_internalize::convert_pb_le(app* t, bool root, bool sign) {
rational k = pb.get_k(t);
k.neg();
svector<wliteral> wlits;
convert_pb_args(t, wlits);
for (wliteral& wl : wlits) {
wl.second.neg();
k += rational(wl.first);
}
check_unsigned(k);
if (root && m_solver.num_user_scopes() == 0) {
unsigned k1 = k.get_unsigned();
if (sign) {
k1 = 1 - k1;
for (wliteral& wl : wlits) {
wl.second.neg();
k1 += wl.first;
}
}
ba.add_pb_ge(null_bool_var, wlits, k1);
return null_literal;
}
else {
bool_var v = m_solver.add_var(true);
literal lit(v, sign);
ba.add_pb_ge(v, wlits, k.get_unsigned());
TRACE("ba", tout << "root: " << root << " lit: " << lit << "\n";);
return lit;
}
}
literal ba_internalize::convert_pb_ge(app* t, bool root, bool sign) {
rational k = pb.get_k(t);
check_unsigned(k);
svector<wliteral> wlits;
convert_pb_args(t, wlits);
if (root && m_solver.num_user_scopes() == 0) {
unsigned k1 = k.get_unsigned();
if (sign) {
k1 = 1 - k1;
for (wliteral& wl : wlits) {
wl.second.neg();
k1 += wl.first;
}
}
ba.add_pb_ge(sat::null_bool_var, wlits, k1);
return null_literal;
}
else {
sat::bool_var v = m_solver.add_var(true);
sat::literal lit(v, sign);
ba.add_pb_ge(v, wlits, k.get_unsigned());
TRACE("goal2sat", tout << "root: " << root << " lit: " << lit << "\n";);
return lit;
}
}
literal ba_internalize::convert_pb_eq(app* t, bool root, bool sign) {
rational k = pb.get_k(t);
SASSERT(k.is_unsigned());
svector<wliteral> wlits;
convert_pb_args(t, wlits);
bool base_assert = (root && !sign && m_solver.num_user_scopes() == 0);
bool_var v1 = base_assert ? null_bool_var : m_solver.add_var(true);
bool_var v2 = base_assert ? null_bool_var : m_solver.add_var(true);
ba.add_pb_ge(v1, wlits, k.get_unsigned());
k.neg();
for (wliteral& wl : wlits) {
wl.second.neg();
k += rational(wl.first);
}
check_unsigned(k);
ba.add_pb_ge(v2, wlits, k.get_unsigned());
if (base_assert) {
return null_literal;
}
else {
literal l1(v1, false), l2(v2, false);
bool_var v = m_solver.add_var(false);
literal l(v, false);
m_si->mk_clause(~l, l1);
m_si->mk_clause(~l, l2);
m_si->mk_clause(~l1, ~l2, l);
m_si->cache(t, l);
if (sign) l.neg();
return l;
}
}
literal ba_internalize::convert_at_least_k(app* t, rational const& k, bool root, bool sign) {
SASSERT(k.is_unsigned());
literal_vector lits;
convert_pb_args(t, lits);
unsigned k2 = k.get_unsigned();
if (root && m_solver.num_user_scopes() == 0) {
if (sign) {
for (literal& l : lits) l.neg();
k2 = lits.size() + 1 - k2;
}
ba.add_at_least(null_bool_var, lits, k2);
return null_literal;
}
else {
bool_var v = m_solver.add_var(true);
literal lit(v, false);
ba.add_at_least(v, lits, k.get_unsigned());
m_si->cache(t, lit);
if (sign) lit.neg();
TRACE("ba", tout << "root: " << root << " lit: " << lit << "\n";);
return lit;
}
}
literal ba_internalize::convert_at_most_k(app* t, rational const& k, bool root, bool sign) {
SASSERT(k.is_unsigned());
literal_vector lits;
convert_pb_args(t, lits);
for (literal& l : lits) {
l.neg();
}
unsigned k2 = lits.size() - k.get_unsigned();
if (root && m_solver.num_user_scopes() == 0) {
if (sign) {
for (literal& l : lits) l.neg();
k2 = lits.size() + 1 - k2;
}
ba.add_at_least(null_bool_var, lits, k2);
return null_literal;
}
else {
bool_var v = m_solver.add_var(true);
literal lit(v, false);
ba.add_at_least(v, lits, k2);
m_si->cache(t, lit);
if (sign) lit.neg();
return lit;
}
}
literal ba_internalize::convert_eq_k(app* t, rational const& k, bool root, bool sign) {
SASSERT(k.is_unsigned());
literal_vector lits;
convert_pb_args(t, lits);
bool_var v1 = (root && !sign) ? null_bool_var : m_solver.add_var(true);
bool_var v2 = (root && !sign) ? null_bool_var : m_solver.add_var(true);
ba.add_at_least(v1, lits, k.get_unsigned());
for (literal& l : lits) {
l.neg();
}
ba.add_at_least(v2, lits, lits.size() - k.get_unsigned());
if (!root || sign) {
literal l1(v1, false), l2(v2, false);
bool_var v = m_solver.add_var(false);
literal l(v, false);
m_si->mk_clause(~l, l1);
m_si->mk_clause(~l, l2);
m_si->mk_clause(~l1, ~l2, l);
m_si->cache(t, l);
if (sign) l.neg();
return l;
}
else {
return null_literal;
}
}
}