mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 03:32:28 +00:00 
			
		
		
		
	prove your first finite set theorem
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									30878541c8
								
							
						
					
					
						commit
						4225f1a0f1
					
				
					 3 changed files with 84 additions and 34 deletions
				
			
		|  | @ -33,13 +33,13 @@ namespace smt { | |||
|         // Setup the add_clause callback for axioms
 | ||||
|         std::function<void(expr_ref_vector const &)> add_clause_fn =  | ||||
|             [this](expr_ref_vector const& clause) { | ||||
|                 this->m_lemmas.push_back(clause); | ||||
|                 this->add_clause(clause); | ||||
|             }; | ||||
|         m_axioms.set_add_clause(add_clause_fn); | ||||
|     } | ||||
| 
 | ||||
|     bool theory_finite_set::internalize_atom(app * atom, bool gate_ctx) { | ||||
|         // TRACE(finite_set, tout << "internalize_atom: " << mk_pp(atom, m) << "\n";);
 | ||||
|         TRACE(finite_set, tout << "internalize_atom: " << mk_pp(atom, m) << "\n";); | ||||
| 
 | ||||
|         internalize_term(atom); | ||||
|          | ||||
|  | @ -57,7 +57,7 @@ namespace smt { | |||
|     } | ||||
| 
 | ||||
|     bool theory_finite_set::internalize_term(app * term) { | ||||
|         // TRACE("finite_set", tout << "internalize_term: " << mk_pp(term, m) << "\n";);
 | ||||
|         TRACE(finite_set, tout << "internalize_term: " << mk_pp(term, m) << "\n";); | ||||
|          | ||||
|         // Internalize all arguments first
 | ||||
|         for (expr* arg : *term)  | ||||
|  | @ -84,32 +84,35 @@ namespace smt { | |||
|     } | ||||
| 
 | ||||
|     void theory_finite_set::new_eq_eh(theory_var v1, theory_var v2) { | ||||
|         // TRACE("finite_set", tout << "new_eq_eh: v" << v1 << " = v" << v2 << "\n";);
 | ||||
|         TRACE(finite_set, tout << "new_eq_eh: v" << v1 << " = v" << v2 << "\n";); | ||||
|         // When two sets are equal, propagate membership constraints
 | ||||
|         // This is handled by congruence closure, so no additional work needed here
 | ||||
|     } | ||||
| 
 | ||||
|     void theory_finite_set::new_diseq_eh(theory_var v1, theory_var v2) { | ||||
|         // TRACE("finite_set", tout << "new_diseq_eh: v" << v1 << " != v" << v2 << "\n";);
 | ||||
|         TRACE(finite_set, tout << "new_diseq_eh: v" << v1 << " != v" << v2 << "\n";); | ||||
|         // Disequalities could trigger extensionality axioms
 | ||||
|         // For now, we rely on the final_check to handle this
 | ||||
|     } | ||||
| 
 | ||||
|     final_check_status theory_finite_set::final_check_eh() { | ||||
|         // TRACE("finite_set", tout << "final_check_eh\n";);
 | ||||
|         TRACE(finite_set, tout << "final_check_eh\n";); | ||||
| 
 | ||||
|         // walk all parents of elem in congruence table.
 | ||||
|         // if a parent is of the form elem' in S u T, or similar.
 | ||||
|         // create clauses for elem in S u T.
 | ||||
| 
 | ||||
|         expr* elem1 = nullptr, *set1 = nullptr; | ||||
|         m_lemmas.reset(); | ||||
|         for (auto elem : m_elements) { | ||||
|             if (!ctx.is_relevant(elem)) | ||||
|                 continue; | ||||
|             for (auto p : enode::parents(elem)) { | ||||
|                 if (!u.is_in(p->get_expr(), elem1, set1))  | ||||
|                     continue; | ||||
|                 if (elem->get_root() != p->get_arg(0)->get_root())                     | ||||
|                     continue; // elem is then equal to set1 but not elem1. This is a different case.
 | ||||
|                 if (!ctx.is_relevant(p)) | ||||
|                     continue; | ||||
|                 for (auto sib : *p->get_arg(1)) | ||||
|                     instantiate_axioms(elem->get_expr(), sib->get_expr()); | ||||
|             } | ||||
|  | @ -125,8 +128,21 @@ namespace smt { | |||
|     } | ||||
| 
 | ||||
|     void theory_finite_set::instantiate_axioms(expr* elem, expr* set) { | ||||
|         // TRACE("finite_set", tout << "instantiate_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";);
 | ||||
|         TRACE(finite_set, tout << "instantiate_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";); | ||||
|          | ||||
|         struct insert_obj_pair_table : public trail { | ||||
|             obj_pair_hashtable<expr, expr> &table; | ||||
|             expr *a, *b; | ||||
|             insert_obj_pair_table(obj_pair_hashtable<expr, expr> &t, expr *a, expr *b) :  | ||||
|                 table(t), a(a), b(b) {} | ||||
|             void undo() override { | ||||
|                 table.erase({a, b}); | ||||
|             } | ||||
|         }; | ||||
|         if (m_lemma_exprs.contains({elem, set})) | ||||
|             return; | ||||
|         m_lemma_exprs.insert({elem, set}); | ||||
|         ctx.push_trail(insert_obj_pair_table(m_lemma_exprs, elem, set)); | ||||
|         // Instantiate appropriate axiom based on set structure
 | ||||
|         if (u.is_empty(set)) { | ||||
|             m_axioms.in_empty_axiom(elem); | ||||
|  | @ -162,21 +178,9 @@ namespace smt { | |||
|     } | ||||
| 
 | ||||
|     void theory_finite_set::add_clause(expr_ref_vector const& clause) { | ||||
|         //TRACE("finite_set", 
 | ||||
|         //    tout << "add_clause: " << clause << "\n");
 | ||||
|          | ||||
|         // Convert expressions to literals and assert the clause
 | ||||
|         literal_vector lits; | ||||
|         for (expr* e : clause) { | ||||
|             ctx.internalize(e, false); | ||||
|             literal lit = ctx.get_literal(e); | ||||
|             lits.push_back(lit); | ||||
|         } | ||||
|          | ||||
|         if (!lits.empty()) { | ||||
|             scoped_trace_stream _sts(*this, lits); | ||||
|             ctx.mk_th_axiom(get_id(), lits); | ||||
|         } | ||||
|         TRACE(finite_set, tout << "add_clause: " << clause << "\n"); | ||||
|         ctx.push_trail(push_back_vector(m_lemmas)); | ||||
|         m_lemmas.push_back(clause);         | ||||
|     } | ||||
| 
 | ||||
|     theory * theory_finite_set::mk_fresh(context * new_ctx) { | ||||
|  | @ -188,13 +192,13 @@ namespace smt { | |||
|     } | ||||
| 
 | ||||
|     void theory_finite_set::init_model(model_generator & mg) { | ||||
|         // TRACE("finite_set", tout << "init_model\n";);
 | ||||
|         TRACE(finite_set, tout << "init_model\n";); | ||||
|         // Model generation will use default interpretation for sets
 | ||||
|         // The model will be constructed based on the membership literals that are true
 | ||||
|     } | ||||
| 
 | ||||
|     model_value_proc * theory_finite_set::mk_value(enode * n, model_generator & mg) { | ||||
|         // TRACE("finite_set", tout << "mk_value: " << mk_pp(n->get_expr(), m) << "\n";);
 | ||||
|         TRACE(finite_set, tout << "mk_value: " << mk_pp(n->get_expr(), m) << "\n";); | ||||
|          | ||||
|         // For now, return nullptr to use default model construction
 | ||||
|         // A complete implementation would construct explicit set values
 | ||||
|  | @ -203,16 +207,56 @@ namespace smt { | |||
|     } | ||||
| 
 | ||||
|     bool theory_finite_set::instantiate_false_lemma() { | ||||
|         // Implementation for instantiating false lemma
 | ||||
|         return false; | ||||
|     } | ||||
|     bool theory_finite_set::instantiate_unit_propagation() { | ||||
|         // Implementation for instantiating unit propagation
 | ||||
|         return false; | ||||
|     } | ||||
|     bool theory_finite_set::instantiate_free_lemma() { | ||||
|         // Implementation for instantiating free lemma
 | ||||
|         for (auto const& clause : m_lemmas) { | ||||
|             bool all_false = all_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_false; }); | ||||
|             if (!all_false) | ||||
|                 continue; | ||||
|             assert_clause(clause); | ||||
|             return true; | ||||
|         } | ||||
|         return false; | ||||
|     } | ||||
| 
 | ||||
|     bool theory_finite_set::instantiate_unit_propagation() { | ||||
|         for (auto const &clause : m_lemmas) { | ||||
|             expr *undef = nullptr; | ||||
|             bool is_unit_propagating = true; | ||||
|             for (auto e : clause) { | ||||
|                 switch (ctx.find_assignment(e)) { | ||||
|                 case l_false: continue; | ||||
|                 case l_true: is_unit_propagating = false; break; | ||||
|                 case l_undef: | ||||
|                     if (undef != nullptr)  | ||||
|                         is_unit_propagating = false;                     | ||||
|                     undef = e; | ||||
|                     break; | ||||
|                 } | ||||
|                 if (!is_unit_propagating) | ||||
|                     break; | ||||
|             } | ||||
|             if (!is_unit_propagating || undef == nullptr) | ||||
|                 continue;       | ||||
|             assert_clause(clause); | ||||
|             return true; | ||||
|         } | ||||
|         return false; | ||||
|     } | ||||
| 
 | ||||
|     bool theory_finite_set::instantiate_free_lemma() { | ||||
|         for (auto const& clause : m_lemmas) { | ||||
|             if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; })) | ||||
|                 continue; | ||||
|             assert_clause(clause); | ||||
|             return true; | ||||
|         } | ||||
|         return false; | ||||
|     } | ||||
| 
 | ||||
|     void theory_finite_set::assert_clause(expr_ref_vector const &clause) { | ||||
|         literal_vector lclause; | ||||
|         for (auto e : clause) | ||||
|             lclause.push_back(mk_literal(e)); | ||||
|         ctx.mk_th_axiom(get_id(), lclause); | ||||
|     } | ||||
| 
 | ||||
| }  // namespace smt
 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue