mirror of
https://github.com/Z3Prover/z3
synced 2025-08-17 16:52:15 +00:00
Additional BDD operations; BDD vectors and finite domain abstraction
This commit is contained in:
parent
9275d1e57a
commit
42233ab5c8
6 changed files with 1432 additions and 32 deletions
108
src/math/dd/dd_fdd.h
Normal file
108
src/math/dd/dd_fdd.h
Normal file
|
@ -0,0 +1,108 @@
|
|||
/*++
|
||||
Copyright (c) 2021 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
dd_fdd
|
||||
|
||||
Abstract:
|
||||
|
||||
Finite domain abstraction for using BDDs as sets of integers, inspired by BuDDy's fdd module.
|
||||
|
||||
Author:
|
||||
|
||||
Jakob Rath 2021-04-20
|
||||
Nikolaj Bjorner (nbjorner) 2021-04-20
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "math/dd/dd_bdd.h"
|
||||
#include "util/vector.h"
|
||||
#include "util/rational.h"
|
||||
|
||||
namespace dd {
|
||||
|
||||
enum class find_t { empty, singleton, multiple };
|
||||
std::ostream& operator<<(std::ostream& out, find_t x);
|
||||
|
||||
/**
|
||||
* Finite domain abstraction over BDDs.
|
||||
*/
|
||||
class fdd {
|
||||
unsigned_vector m_pos2var; // pos -> BDD var
|
||||
unsigned_vector m_var2pos; // var -> pos (pos = place number in the bit representation, 0 is LSB's place)
|
||||
bdd_manager* m;
|
||||
bddv m_var;
|
||||
|
||||
static unsigned_vector seq(unsigned count, unsigned start = 0, unsigned step = 1) {
|
||||
unsigned_vector result;
|
||||
unsigned k = start;
|
||||
for (unsigned i = 0; i < count; ++i, k += step)
|
||||
result.push_back(k);
|
||||
return result;
|
||||
}
|
||||
|
||||
unsigned var2pos(unsigned var) const;
|
||||
|
||||
bool contains(bdd const& b, bool_vector const& value) const;
|
||||
|
||||
rational bits2rational(bool_vector const& v) const;
|
||||
|
||||
bool_vector rational2bits(rational const& r) const;
|
||||
|
||||
public:
|
||||
/** Initialize FDD using BDD variables from 0 to num_bits-1. */
|
||||
fdd(bdd_manager& manager, unsigned num_bits, unsigned start = 0, unsigned step = 1) : fdd(manager, seq(num_bits, start, step)) { }
|
||||
fdd(bdd_manager& manager, unsigned_vector const& vars) : fdd(manager, unsigned_vector(vars)) { }
|
||||
fdd(bdd_manager& manager, unsigned_vector&& vars);
|
||||
|
||||
unsigned num_bits() const { return m_pos2var.size(); }
|
||||
unsigned_vector const& bdd_vars() const { return m_pos2var; }
|
||||
|
||||
bddv const& var() const { return m_var; }
|
||||
|
||||
/** Equivalent to var() != 0 */
|
||||
bdd non_zero() const;
|
||||
|
||||
/** Checks whether the integer val is contained in the BDD when viewed as set of integers.
|
||||
* Precondition: the bdd only contains variables managed by this fdd.
|
||||
*/
|
||||
bool contains(bdd b, rational const& val) const;
|
||||
|
||||
/** Returns an integer contained in the BDD, if any, and whether the BDD is a singleton.
|
||||
* Precondition: the bdd only contains variables managed by this fdd.
|
||||
*/
|
||||
find_t find(bdd b, rational& out_val) const;
|
||||
|
||||
/** Like find, but returns hint if it is contained in the BDD. */
|
||||
find_t find_hint(bdd b, rational const& hint, rational& out_val) const;
|
||||
|
||||
/*
|
||||
* find largest value at lo or above such that bdd b evaluates to true
|
||||
* at lo and all values between.
|
||||
* dually, find smallest value below hi that evaluates b to true
|
||||
* and all values between the value and hi also evaluate b to true.
|
||||
* \param b - a bdd using variables from this
|
||||
* \param lo/hi - bound to be traversed.
|
||||
* \return false if b is false at lo/hi
|
||||
* \pre variables in b are a subset of variables from the fdd
|
||||
*/
|
||||
bool sup(bdd const& b, bool_vector& lo) const;
|
||||
|
||||
bool inf(bdd const& b, bool_vector& hi) const;
|
||||
|
||||
bool sup(bdd const& b, rational& lo) const;
|
||||
|
||||
bool inf(bdd const& b, rational& hi) const;
|
||||
|
||||
/*
|
||||
* Find the min-max satisfying assignment.
|
||||
* \pre b is not false.
|
||||
*/
|
||||
rational max(bdd b) const;
|
||||
|
||||
rational min(bdd b) const;
|
||||
};
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue