mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
expose import model converter over Python, document it, add partial order axioms for lex, disable linear order axioms, prepare ground for re-adding clauses from reconstruction stack
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
7ed5ca05e3
commit
41ca956012
11 changed files with 202 additions and 81 deletions
|
@ -23,16 +23,12 @@ Revision History:
|
|||
|
||||
namespace sat {
|
||||
|
||||
model_converter::model_converter(): m_solver(nullptr) {
|
||||
model_converter::model_converter(): m_solver(nullptr), m_exposed_lim(0) {
|
||||
}
|
||||
|
||||
model_converter::~model_converter() {
|
||||
reset();
|
||||
}
|
||||
|
||||
void model_converter::reset() {
|
||||
m_entries.finalize();
|
||||
}
|
||||
|
||||
model_converter& model_converter::operator=(model_converter const& other) {
|
||||
copy(other);
|
||||
|
@ -40,21 +36,19 @@ namespace sat {
|
|||
}
|
||||
|
||||
bool model_converter::legal_to_flip(bool_var v) const {
|
||||
// std::cout << "check " << v << " " << m_solver << "\n";
|
||||
if (m_solver && m_solver->is_assumption(v)) {
|
||||
std::cout << "flipping assumption v" << v << "\n";
|
||||
IF_VERBOSE(0, verbose_stream() << "flipping assumption v" << v << "\n";);
|
||||
UNREACHABLE();
|
||||
throw solver_exception("flipping assumption");
|
||||
}
|
||||
if (m_solver && m_solver->is_external(v) && m_solver->is_incremental()) {
|
||||
std::cout << "flipping external v" << v << "\n";
|
||||
IF_VERBOSE(0, verbose_stream() << "flipping external v" << v << "\n";);
|
||||
UNREACHABLE();
|
||||
throw solver_exception("flipping external");
|
||||
}
|
||||
return !m_solver || !m_solver->is_assumption(v);
|
||||
}
|
||||
|
||||
|
||||
void model_converter::process_stack(model & m, literal_vector const& c, elim_stackv const& stack) const {
|
||||
SASSERT(!stack.empty());
|
||||
unsigned sz = stack.size();
|
||||
|
@ -73,46 +67,33 @@ namespace sat {
|
|||
}
|
||||
|
||||
void model_converter::operator()(model & m) const {
|
||||
vector<entry>::const_iterator begin = m_entries.begin();
|
||||
vector<entry>::const_iterator it = m_entries.end();
|
||||
bool first = false;
|
||||
//SASSERT(!m_solver || m_solver->check_clauses(m));
|
||||
while (it != begin) {
|
||||
--it;
|
||||
bool_var v0 = it->var();
|
||||
SASSERT(it->get_kind() != ELIM_VAR || v0 == null_bool_var || m[v0] == l_undef);
|
||||
// if it->get_kind() == BCE, then it might be the case that m[v] != l_undef,
|
||||
literal_vector clause;
|
||||
for (unsigned i = m_entries.size(); i-- > m_exposed_lim; ) {
|
||||
entry const& e = m_entries[i];
|
||||
bool_var v0 = e.var();
|
||||
SASSERT(e.get_kind() != ELIM_VAR || v0 == null_bool_var || m[v0] == l_undef);
|
||||
// if e.get_kind() == BCE, then it might be the case that m[v] != l_undef,
|
||||
// and the following procedure flips its value.
|
||||
bool sat = false;
|
||||
bool var_sign = false;
|
||||
unsigned index = 0;
|
||||
literal_vector clause;
|
||||
clause.reset();
|
||||
VERIFY(v0 == null_bool_var || legal_to_flip(v0));
|
||||
for (literal l : it->m_clauses) {
|
||||
for (literal l : e.m_clauses) {
|
||||
if (l == null_literal) {
|
||||
// end of clause
|
||||
if (!sat && it->get_kind() == ATE) {
|
||||
IF_VERBOSE(0, display(verbose_stream() << "violated ate\n", *it) << "\n");
|
||||
IF_VERBOSE(0, for (unsigned v = 0; v < m.size(); ++v) verbose_stream() << v << " := " << m[v] << "\n";);
|
||||
IF_VERBOSE(0, display(verbose_stream()));
|
||||
UNREACHABLE();
|
||||
first = false;
|
||||
}
|
||||
if (!sat && it->get_kind() != ATE && v0 != null_bool_var) {
|
||||
VERIFY (sat || e.get_kind() != ATE);
|
||||
if (!sat && e.get_kind() != ATE && v0 != null_bool_var) {
|
||||
VERIFY(legal_to_flip(v0));
|
||||
m[v0] = var_sign ? l_false : l_true;
|
||||
//IF_VERBOSE(0, verbose_stream() << "assign " << v0 << " "<< m[v0] << "\n");
|
||||
}
|
||||
elim_stack* st = it->m_elim_stack[index];
|
||||
elim_stack* st = e.m_elim_stack[index];
|
||||
if (st) {
|
||||
process_stack(m, clause, st->stack());
|
||||
}
|
||||
sat = false;
|
||||
if (first && m_solver && !m_solver->check_clauses(m)) {
|
||||
IF_VERBOSE(0, display(verbose_stream() << "after processing stack\n", *it) << "\n");
|
||||
IF_VERBOSE(0, display(verbose_stream()));
|
||||
first = false;
|
||||
}
|
||||
VERIFY(!first || !m_solver || m_solver->check_clauses(m));
|
||||
++index;
|
||||
clause.reset();
|
||||
continue;
|
||||
|
@ -123,7 +104,6 @@ namespace sat {
|
|||
continue;
|
||||
bool sign = l.sign();
|
||||
bool_var v = l.var();
|
||||
if (v >= m.size()) std::cout << v << " model size: " << m.size() << "\n";
|
||||
VERIFY(v < m.size());
|
||||
if (v == v0)
|
||||
var_sign = sign;
|
||||
|
@ -133,25 +113,21 @@ namespace sat {
|
|||
VERIFY(legal_to_flip(v));
|
||||
// clause can be satisfied by assigning v.
|
||||
m[v] = sign ? l_false : l_true;
|
||||
// if (first) std::cout << "set: " << l << "\n";
|
||||
sat = true;
|
||||
if (first && m_solver && !m_solver->check_clauses(m)) {
|
||||
IF_VERBOSE(0, display(verbose_stream() << "after flipping undef\n", *it) << "\n");
|
||||
first = false;
|
||||
}
|
||||
VERIFY(!first || !m_solver || m_solver->check_clauses(m));
|
||||
}
|
||||
}
|
||||
DEBUG_CODE({
|
||||
// all clauses must be satisfied
|
||||
bool sat = false;
|
||||
bool undef = false;
|
||||
for (literal const& l : it->m_clauses) {
|
||||
for (literal const& l : e.m_clauses) {
|
||||
if (l == null_literal) {
|
||||
CTRACE("sat", !sat,
|
||||
if (m_solver) m_solver->display(tout);
|
||||
display(tout);
|
||||
for (unsigned v = 0; v < m.size(); ++v) tout << v << ": " << m[v] << "\n";
|
||||
for (literal const& l2 : it->m_clauses) {
|
||||
for (literal const& l2 : e.m_clauses) {
|
||||
if (l2 == null_literal) tout << "\n"; else tout << l2 << " ";
|
||||
if (&l == &l2) break;
|
||||
}
|
||||
|
@ -179,24 +155,21 @@ namespace sat {
|
|||
*/
|
||||
bool model_converter::check_model(model const & m) const {
|
||||
bool ok = true;
|
||||
vector<entry>::const_iterator begin = m_entries.begin();
|
||||
vector<entry>::const_iterator it = m_entries.end();
|
||||
while (it != begin) {
|
||||
--it;
|
||||
for (entry const & e : m_entries) {
|
||||
bool sat = false;
|
||||
literal_vector::const_iterator it2 = it->m_clauses.begin();
|
||||
literal_vector::const_iterator itbegin = it2;
|
||||
literal_vector::const_iterator end2 = it->m_clauses.end();
|
||||
for (; it2 != end2; ++it2) {
|
||||
literal l = *it2;
|
||||
literal_vector::const_iterator it = e.m_clauses.begin();
|
||||
literal_vector::const_iterator itbegin = it;
|
||||
literal_vector::const_iterator end = e.m_clauses.end();
|
||||
for (; it != end; ++it) {
|
||||
literal l = *it;
|
||||
if (l == null_literal) {
|
||||
// end of clause
|
||||
if (!sat) {
|
||||
TRACE("sat_model_bug", tout << "failed eliminated: " << mk_lits_pp(static_cast<unsigned>(it2 - itbegin), itbegin) << "\n";);
|
||||
TRACE("sat_model_bug", tout << "failed eliminated: " << mk_lits_pp(static_cast<unsigned>(it - itbegin), itbegin) << "\n";);
|
||||
ok = false;
|
||||
}
|
||||
sat = false;
|
||||
itbegin = it2;
|
||||
itbegin = it;
|
||||
itbegin++;
|
||||
continue;
|
||||
}
|
||||
|
@ -239,6 +212,16 @@ namespace sat {
|
|||
stackv().reset();
|
||||
}
|
||||
|
||||
void model_converter::set_clause(entry & e, literal l1, literal l2) {
|
||||
e.m_clause.push_back(l1);
|
||||
e.m_clause.push_back(l2);
|
||||
}
|
||||
|
||||
void model_converter::set_clause(entry & e, clause const & c) {
|
||||
e.m_clause.append(c.size(), c.begin());
|
||||
}
|
||||
|
||||
|
||||
void model_converter::insert(entry & e, clause const & c) {
|
||||
SASSERT(c.contains(e.var()));
|
||||
SASSERT(m_entries.begin() <= &e);
|
||||
|
@ -349,27 +332,27 @@ namespace sat {
|
|||
out << l;
|
||||
}
|
||||
out << ")";
|
||||
for (literal l : entry.m_clauses) {
|
||||
if (l != null_literal && l.var() != null_bool_var) {
|
||||
if (false && m_solver && m_solver->was_eliminated(l.var())) out << "\neliminated: " << l;
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void model_converter::copy(model_converter const & src) {
|
||||
reset();
|
||||
m_entries.reset();
|
||||
m_entries.append(src.m_entries);
|
||||
m_exposed_lim = src.m_exposed_lim;
|
||||
}
|
||||
|
||||
void model_converter::flush(model_converter & src) {
|
||||
VERIFY(this != &src);
|
||||
m_entries.append(src.m_entries);
|
||||
m_exposed_lim = src.m_exposed_lim;
|
||||
src.m_entries.reset();
|
||||
src.m_exposed_lim = 0;
|
||||
}
|
||||
|
||||
void model_converter::collect_vars(bool_var_set & s) const {
|
||||
for (entry const & e : m_entries) s.insert(e.m_var);
|
||||
for (entry const & e : m_entries) {
|
||||
s.insert(e.m_var);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned model_converter::max_var(unsigned min) const {
|
||||
|
@ -398,7 +381,8 @@ namespace sat {
|
|||
|
||||
void model_converter::expand(literal_vector& update_stack) {
|
||||
sat::literal_vector clause;
|
||||
for (entry const& e : m_entries) {
|
||||
for (unsigned i = m_exposed_lim; i < m_entries.size(); ++i) {
|
||||
entry const& e = m_entries[i];
|
||||
unsigned index = 0;
|
||||
clause.reset();
|
||||
for (literal l : e.m_clauses) {
|
||||
|
@ -427,6 +411,56 @@ namespace sat {
|
|||
}
|
||||
}
|
||||
}
|
||||
m_exposed_lim = m_entries.size();
|
||||
}
|
||||
|
||||
void model_converter::init_search(solver& s) {
|
||||
#if 0
|
||||
unsigned j = 0, k = 0;
|
||||
literal_vector clause;
|
||||
for (unsigned i = 0; i < m_entries.size(); ++i) {
|
||||
entry & e = m_entries[i];
|
||||
if (!m_mark[e.var()]) {
|
||||
m_entries[j++] = e;
|
||||
if (i < m_exposed_lim) k++;
|
||||
continue;
|
||||
}
|
||||
clause.reset();
|
||||
// For covered clauses we record the original clause. The role of m_clauses is to record ALA
|
||||
// tautologies and are not part of the clause that is removed.
|
||||
|
||||
if (!e.m_clause.empty()) {
|
||||
clause.append(e.m_clause);
|
||||
s.mk_clause(clause.size(), clause.c_ptr(), false);
|
||||
continue;
|
||||
}
|
||||
for (literal lit : e.m_clauses) {
|
||||
if (lit == null_literal) {
|
||||
s.mk_clause(clause.size(), clause.c_ptr(), false);
|
||||
clause.reset();
|
||||
}
|
||||
else {
|
||||
clause.push_back(lit);
|
||||
}
|
||||
}
|
||||
}
|
||||
m_entries.shrink(j);
|
||||
m_exposed_lim = k;
|
||||
for (bool& m : m_mark) {
|
||||
m = false;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void model_converter::add_clause(unsigned n, literal const* lits) {
|
||||
if (m_entries.empty()) {
|
||||
return;
|
||||
}
|
||||
// TBD: we just mark variables instead of literals because entries don't have directly literal information.
|
||||
for (unsigned i = 0; i < n; ++i) {
|
||||
m_mark.reserve(lits[i].var() + 1);
|
||||
m_mark[lits[i].var()] = true;
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
|
|
@ -72,20 +72,25 @@ namespace sat {
|
|||
bool_var m_var;
|
||||
kind m_kind;
|
||||
literal_vector m_clauses; // the different clauses are separated by null_literal
|
||||
literal_vector m_clause; // original clause in case of CCE
|
||||
sref_vector<elim_stack> m_elim_stack;
|
||||
entry(kind k, bool_var v): m_var(v), m_kind(k) {}
|
||||
public:
|
||||
entry(entry const & src):
|
||||
m_var(src.m_var),
|
||||
m_kind(src.m_kind),
|
||||
m_clauses(src.m_clauses) {
|
||||
m_clauses(src.m_clauses),
|
||||
m_clause(src.m_clause)
|
||||
{
|
||||
m_elim_stack.append(src.m_elim_stack);
|
||||
}
|
||||
bool_var var() const { return m_var; }
|
||||
kind get_kind() const { return m_kind; }
|
||||
};
|
||||
private:
|
||||
vector<entry> m_entries;
|
||||
vector<entry> m_entries; // entries accumulated during SAT search
|
||||
unsigned m_exposed_lim; // last entry that was exposed to model converter.
|
||||
svector<bool> m_mark; // literals that are used in asserted clauses.
|
||||
solver const* m_solver;
|
||||
elim_stackv m_elim_stack;
|
||||
|
||||
|
@ -113,6 +118,8 @@ namespace sat {
|
|||
void insert(entry & e, literal l1, literal l2);
|
||||
void insert(entry & e, clause_wrapper const & c);
|
||||
void insert(entry & c, literal_vector const& covered_clause);
|
||||
void set_clause(entry & e, literal l1, literal l2);
|
||||
void set_clause(entry & e, clause const & c);
|
||||
|
||||
void add_ate(literal_vector const& lits);
|
||||
void add_ate(literal l1, literal l2);
|
||||
|
@ -121,7 +128,9 @@ namespace sat {
|
|||
bool empty() const { return m_entries.empty(); }
|
||||
unsigned size() const { return m_entries.size(); }
|
||||
|
||||
void reset();
|
||||
void init_search(solver& s);
|
||||
void add_clause(unsigned n, literal const* lits);
|
||||
|
||||
bool check_invariant(unsigned num_vars) const;
|
||||
void display(std::ostream & out) const;
|
||||
bool check_model(model const & m) const;
|
||||
|
|
|
@ -1223,8 +1223,6 @@ namespace sat {
|
|||
}
|
||||
for (unsigned i = idx; i > 0; --i) {
|
||||
literal lit = m_covered_clause[i];
|
||||
//s.mark_visited(lit);
|
||||
//continue;
|
||||
if (!s.is_marked(lit)) continue;
|
||||
clause_ante const& ante = m_covered_antecedent[i];
|
||||
if (ante.cls()) {
|
||||
|
@ -1591,6 +1589,7 @@ namespace sat {
|
|||
}
|
||||
}
|
||||
m_mc.insert(new_entry, m_covered_clause);
|
||||
m_mc.set_clause(new_entry, c);
|
||||
}
|
||||
|
||||
void block_covered_binary(watched const& w, literal l1, literal blocked, model_converter::kind k) {
|
||||
|
@ -1600,6 +1599,7 @@ namespace sat {
|
|||
TRACE("blocked_clause", tout << "new blocked clause: " << l2 << " " << l1 << "\n";);
|
||||
s.set_learned(l1, l2);
|
||||
m_mc.insert(new_entry, m_covered_clause);
|
||||
m_mc.set_clause(new_entry, l1, l2);
|
||||
m_queue.decreased(~l2);
|
||||
}
|
||||
|
||||
|
|
|
@ -357,6 +357,9 @@ namespace sat {
|
|||
m_drat.add(m_lemma);
|
||||
}
|
||||
++m_stats.m_non_learned_generation;
|
||||
if (!m_searching) {
|
||||
m_mc.add_clause(num_lits, lits);
|
||||
}
|
||||
}
|
||||
|
||||
switch (num_lits) {
|
||||
|
@ -1832,8 +1835,8 @@ namespace sat {
|
|||
m_min_core_valid = false;
|
||||
m_min_core.reset();
|
||||
m_simplifier.init_search();
|
||||
m_mc.init_search(*this);
|
||||
TRACE("sat", display(tout););
|
||||
|
||||
}
|
||||
|
||||
bool solver::should_simplify() const {
|
||||
|
@ -4485,13 +4488,14 @@ namespace sat {
|
|||
lbool solver::get_bounded_consequences(literal_vector const& asms, bool_var_vector const& vars, vector<literal_vector>& conseq) {
|
||||
bool_var_set unfixed_vars;
|
||||
unsigned num_units = 0, num_iterations = 0;
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
unfixed_vars.insert(vars[i]);
|
||||
for (bool_var v : vars) {
|
||||
unfixed_vars.insert(v);
|
||||
}
|
||||
TRACE("sat", tout << asms << "\n";);
|
||||
m_antecedents.reset();
|
||||
pop_to_base_level();
|
||||
if (inconsistent()) return l_false;
|
||||
flet<bool> _searching(m_searching, true);
|
||||
init_search();
|
||||
propagate(false);
|
||||
if (inconsistent()) return l_false;
|
||||
|
|
|
@ -348,7 +348,6 @@ namespace sat {
|
|||
|
||||
bool limit_reached() {
|
||||
if (!m_rlimit.inc()) {
|
||||
m_mc.reset();
|
||||
m_model_is_current = false;
|
||||
TRACE("sat", tout << "canceled\n";);
|
||||
m_reason_unknown = "sat.canceled";
|
||||
|
|
|
@ -934,7 +934,6 @@ void sat2goal::mc::flush_smc(sat::solver_core& s, atom2bool_var const& map) {
|
|||
void sat2goal::mc::flush_gmc() {
|
||||
sat::literal_vector updates;
|
||||
m_smc.expand(updates);
|
||||
m_smc.reset();
|
||||
if (!m_gmc) m_gmc = alloc(generic_model_converter, m, "sat2goal");
|
||||
// now gmc owns the model converter
|
||||
sat::literal_vector clause;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue