mirror of
https://github.com/Z3Prover/z3
synced 2026-01-20 17:14:43 +00:00
add formatting
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
31cbb4b144
commit
40efe27066
2 changed files with 166 additions and 147 deletions
|
|
@ -1,3 +1,12 @@
|
|||
/*++
|
||||
Copyright (c) 2025 Lorenz Winkler
|
||||
|
||||
Module Name:
|
||||
|
||||
theory_finite_lattice_refutation.cpp
|
||||
|
||||
--*/
|
||||
|
||||
#include "smt/theory_finite_set_lattice_refutation.h"
|
||||
#include "ast/rewriter/finite_set_axioms.h"
|
||||
#include "smt/smt_theory.h"
|
||||
|
|
@ -7,63 +16,61 @@
|
|||
|
||||
const int NUM_WORDS = 5;
|
||||
// some example have shown, the introduction of large conflict clauses can severely slow down refutation
|
||||
const int MAX_DECISION_LITERALS=10;
|
||||
const int MAX_DECISION_LITERALS = 10;
|
||||
|
||||
namespace smt {
|
||||
reachability_matrix::reachability_matrix(context& ctx, theory_finite_set_lattice_refutation& t_lattice):
|
||||
reachable(NUM_WORDS*NUM_WORDS*64, 0),
|
||||
links(NUM_WORDS*NUM_WORDS*64*64, {nullptr, nullptr}),
|
||||
link_dls(NUM_WORDS*NUM_WORDS*64*64, 0),
|
||||
non_links(NUM_WORDS*NUM_WORDS*64),
|
||||
non_link_justifications(NUM_WORDS*NUM_WORDS*64*64, {nullptr, nullptr}), largest_var(0), max_size(NUM_WORDS*64), ctx(ctx), t_lattice_refutation(t_lattice) {}
|
||||
reachability_matrix::reachability_matrix(context &ctx, theory_finite_set_lattice_refutation &t_lattice)
|
||||
: reachable(NUM_WORDS * NUM_WORDS * 64, 0), links(NUM_WORDS * NUM_WORDS * 64 * 64, {nullptr, nullptr}),
|
||||
link_dls(NUM_WORDS * NUM_WORDS * 64 * 64, 0), non_links(NUM_WORDS * NUM_WORDS * 64),
|
||||
non_link_justifications(NUM_WORDS * NUM_WORDS * 64 * 64, {nullptr, nullptr}), largest_var(0),
|
||||
max_size(NUM_WORDS * 64), ctx(ctx), t_lattice_refutation(t_lattice) {}
|
||||
|
||||
int reachability_matrix::get_max_var(){
|
||||
int reachability_matrix::get_max_var() {
|
||||
return largest_var;
|
||||
}
|
||||
|
||||
inline int reachability_matrix::get_word_index(int row, int col) const{
|
||||
return (row * NUM_WORDS) + (col / 64);
|
||||
inline int reachability_matrix::get_word_index(int row, int col) const {
|
||||
return (row * NUM_WORDS) + (col / 64);
|
||||
};
|
||||
|
||||
inline uint64_t reachability_matrix::get_bitmask(int col) const{
|
||||
return 1ull << (col%64);
|
||||
inline uint64_t reachability_matrix::get_bitmask(int col) const {
|
||||
return 1ull << (col % 64);
|
||||
};
|
||||
|
||||
bool reachability_matrix::is_reachability_forbidden(theory_var source, theory_var dest){
|
||||
bool reachability_matrix::is_reachability_forbidden(theory_var source, theory_var dest) {
|
||||
return non_links[get_word_index(source, dest)] & get_bitmask(dest);
|
||||
}
|
||||
|
||||
bool reachability_matrix::in_bounds(theory_var source, theory_var dest){
|
||||
return source >= 0 && dest >= 0 && source < max_size && dest<max_size;
|
||||
bool reachability_matrix::in_bounds(theory_var source, theory_var dest) {
|
||||
return source >= 0 && dest >= 0 && source < max_size && dest < max_size;
|
||||
}
|
||||
|
||||
bool reachability_matrix::is_reachable(theory_var source, theory_var dest){
|
||||
return reachable[get_word_index(source,dest)] & get_bitmask(dest);
|
||||
bool reachability_matrix::is_reachable(theory_var source, theory_var dest) {
|
||||
return reachable[get_word_index(source, dest)] & get_bitmask(dest);
|
||||
}
|
||||
|
||||
bool reachability_matrix::is_linked(theory_var source, theory_var dest){
|
||||
return links[source*max_size+dest].first != nullptr;
|
||||
bool reachability_matrix::is_linked(theory_var source, theory_var dest) {
|
||||
return links[source * max_size + dest].first != nullptr;
|
||||
}
|
||||
|
||||
bool reachability_matrix::bitwise_or_rows(int source_dest, int source){
|
||||
bool reachability_matrix::bitwise_or_rows(int source_dest, int source) {
|
||||
bool changes = false;
|
||||
for (int i = 0; i < NUM_WORDS; i++)
|
||||
{
|
||||
uint64_t old_value = reachable[source_dest*NUM_WORDS+i];
|
||||
uint64_t new_value = reachable[source_dest*NUM_WORDS+i] | reachable[source*NUM_WORDS+i];
|
||||
if(old_value == new_value){
|
||||
for (int i = 0; i < NUM_WORDS; i++) {
|
||||
uint64_t old_value = reachable[source_dest * NUM_WORDS + i];
|
||||
uint64_t new_value = reachable[source_dest * NUM_WORDS + i] | reachable[source * NUM_WORDS + i];
|
||||
if (old_value == new_value) {
|
||||
continue;
|
||||
}
|
||||
ctx.push_trail(value_trail(reachable[source_dest*NUM_WORDS+i]));
|
||||
reachable[source_dest*NUM_WORDS+i] = new_value;
|
||||
ctx.push_trail(value_trail(reachable[source_dest * NUM_WORDS + i]));
|
||||
reachable[source_dest * NUM_WORDS + i] = new_value;
|
||||
changes = true;
|
||||
check_reachability_conflict_word(source_dest, i);
|
||||
}
|
||||
return changes;
|
||||
}
|
||||
|
||||
bool reachability_matrix::set_reachability(theory_var source, theory_var dest, enode_pair reachability_witness){
|
||||
if (!in_bounds(source, dest) || is_reachable(source, dest)){
|
||||
bool reachability_matrix::set_reachability(theory_var source, theory_var dest, enode_pair reachability_witness) {
|
||||
if (!in_bounds(source, dest) || is_reachable(source, dest)) {
|
||||
return false;
|
||||
}
|
||||
ctx.push_trail(value_trail(largest_var));
|
||||
|
|
@ -72,27 +79,24 @@ namespace smt {
|
|||
int word_idx = get_word_index(source, dest);
|
||||
ctx.push_trail(value_trail(reachable[word_idx]));
|
||||
reachable[word_idx] |= get_bitmask(dest);
|
||||
ctx.push_trail(value_trail(links[source*max_size + dest]));
|
||||
links[source*max_size+dest] = reachability_witness;
|
||||
ctx.push_trail(value_trail(link_dls[source*max_size+dest]));
|
||||
TRACE(finite_set, tout << "set_reachability(" << source << "," << dest <<"), dl: "<<ctx.get_scope_level());
|
||||
link_dls[source*max_size+dest] = ctx.get_scope_level();
|
||||
ctx.push_trail(value_trail(links[source * max_size + dest]));
|
||||
links[source * max_size + dest] = reachability_witness;
|
||||
ctx.push_trail(value_trail(link_dls[source * max_size + dest]));
|
||||
TRACE(finite_set, tout << "set_reachability(" << source << "," << dest << "), dl: " << ctx.get_scope_level());
|
||||
link_dls[source * max_size + dest] = ctx.get_scope_level();
|
||||
|
||||
check_reachability_conflict(source, dest);
|
||||
// update reachability of source
|
||||
bitwise_or_rows(source, dest);
|
||||
|
||||
|
||||
for (int i = 0; i <= largest_var; i++)
|
||||
{ //update reachability of i to the nodes reachable from dest
|
||||
if(!is_reachable(i, source) || i == source){
|
||||
for (int i = 0; i <= largest_var; i++) { // update reachability of i to the nodes reachable from dest
|
||||
if (!is_reachable(i, source) || i == source) {
|
||||
continue;
|
||||
}
|
||||
bitwise_or_rows(i, source);
|
||||
}
|
||||
if(conflict_word>=0 && conflict_row >=0){
|
||||
for (int i = conflict_word*64; i < conflict_word*64+64; i++)
|
||||
{
|
||||
if (conflict_word >= 0 && conflict_row >= 0) {
|
||||
for (int i = conflict_word * 64; i < conflict_word * 64 + 64; i++) {
|
||||
check_reachability_conflict(conflict_row, i);
|
||||
}
|
||||
conflict_word = -1;
|
||||
|
|
@ -101,73 +105,76 @@ namespace smt {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool reachability_matrix::set_non_reachability(theory_var source, theory_var dest, enode_pair non_reachability_witness){
|
||||
if(is_reachability_forbidden(source, dest)){
|
||||
bool reachability_matrix::set_non_reachability(theory_var source, theory_var dest,
|
||||
enode_pair non_reachability_witness) {
|
||||
if (is_reachability_forbidden(source, dest)) {
|
||||
return false;
|
||||
}
|
||||
ctx.push_trail(value_trail(largest_var));
|
||||
largest_var = std::max({largest_var, source, dest});
|
||||
ctx.push_trail(value_trail(non_links[get_word_index(source, dest)]));
|
||||
non_links[get_word_index(source, dest)] |= get_bitmask(dest);
|
||||
ctx.push_trail(value_trail(non_link_justifications[source*max_size+dest]));
|
||||
non_link_justifications[source*max_size+dest] = non_reachability_witness;
|
||||
ctx.push_trail(value_trail(non_link_justifications[source * max_size + dest]));
|
||||
non_link_justifications[source * max_size + dest] = non_reachability_witness;
|
||||
check_reachability_conflict(source, dest);
|
||||
return true;
|
||||
}
|
||||
|
||||
theory_finite_set_lattice_refutation::theory_finite_set_lattice_refutation(theory_finite_set& th):
|
||||
m(th.m), ctx(th.ctx), th(th), u(m), bs(m), m_assumption(m), reachability(th.ctx, *this) {}
|
||||
theory_finite_set_lattice_refutation::theory_finite_set_lattice_refutation(theory_finite_set &th)
|
||||
: m(th.m), ctx(th.ctx), th(th), u(m), bs(m), m_assumption(m), reachability(th.ctx, *this) {}
|
||||
|
||||
// determines if the two enodes capture a subset relation:
|
||||
// checks, whether intersect_expr = intersect(subset, return_value) for some return value
|
||||
// otherwise return null
|
||||
enode* theory_finite_set_lattice_refutation::get_superset(enode* subset, enode* intersect_expr){
|
||||
expr* arg1 = nullptr, *arg2 = nullptr;
|
||||
if(u.is_intersect(intersect_expr->get_expr(), arg1, arg2)){
|
||||
if(arg1 == subset->get_expr()){
|
||||
enode *theory_finite_set_lattice_refutation::get_superset(enode *subset, enode *intersect_expr) {
|
||||
expr *arg1 = nullptr, *arg2 = nullptr;
|
||||
if (u.is_intersect(intersect_expr->get_expr(), arg1, arg2)) {
|
||||
if (arg1 == subset->get_expr()) {
|
||||
return ctx.get_enode(arg2);
|
||||
}
|
||||
if(arg2 == subset->get_expr()){
|
||||
if (arg2 == subset->get_expr()) {
|
||||
return ctx.get_enode(arg1);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_equality(theory_var v1, theory_var v2){
|
||||
void theory_finite_set_lattice_refutation::add_equality(theory_var v1, theory_var v2) {
|
||||
auto n1 = th.get_enode(v1);
|
||||
auto n2 = th.get_enode(v2);
|
||||
|
||||
enode* subset = n1;
|
||||
enode* superset = get_superset(n1, n2);
|
||||
if(superset == nullptr){
|
||||
enode *subset = n1;
|
||||
enode *superset = get_superset(n1, n2);
|
||||
if (superset == nullptr) {
|
||||
subset = n2;
|
||||
superset = get_superset(n2, n1);
|
||||
}
|
||||
if(superset == nullptr){
|
||||
if (superset == nullptr) {
|
||||
add_set_equality(n1, n2);
|
||||
return;
|
||||
}
|
||||
TRACE(finite_set, tout << "new_eq_intersection: " << enode_pp(subset, ctx) << "("<<th.get_th_var(subset)<<")" << "\\subseteq " << enode_pp(superset, ctx)<<"("<<th.get_th_var(superset)<<")");
|
||||
TRACE(finite_set, tout << "new_eq_intersection: " << enode_pp(subset, ctx) << "(" << th.get_th_var(subset)
|
||||
<< ")" << "\\subseteq " << enode_pp(superset, ctx) << "(" << th.get_th_var(superset)
|
||||
<< ")");
|
||||
add_subset(subset->get_th_var(th.get_id()), superset->get_th_var(th.get_id()), {n1, n2});
|
||||
};
|
||||
|
||||
void reachability_matrix::get_path(theory_var source, theory_var dest, vector<enode_pair>& path, int& num_decisions){
|
||||
void reachability_matrix::get_path(theory_var source, theory_var dest, vector<enode_pair> &path,
|
||||
int &num_decisions) {
|
||||
SASSERT(is_reachable(source, dest));
|
||||
vector<bool> visited(max_size, false);
|
||||
if(source != dest){
|
||||
if (source != dest) {
|
||||
visited[source] = true;
|
||||
}
|
||||
num_decisions = 0;
|
||||
do{
|
||||
do {
|
||||
bool success = false;
|
||||
// TRACE(finite_set, tout << "get_path:source: "<<source);
|
||||
for (int i = 0; i <= largest_var; i++)
|
||||
{
|
||||
if(!visited[i] && is_linked(source, i) && ((is_reachable(i, dest)) || i == dest)){
|
||||
path.push_back(links[source*max_size+i]);
|
||||
if(link_dls[source*max_size+i] != 0){
|
||||
num_decisions +=1;
|
||||
for (int i = 0; i <= largest_var; i++) {
|
||||
if (!visited[i] && is_linked(source, i) && ((is_reachable(i, dest)) || i == dest)) {
|
||||
path.push_back(links[source * max_size + i]);
|
||||
if (link_dls[source * max_size + i] != 0) {
|
||||
num_decisions += 1;
|
||||
}
|
||||
|
||||
source = i;
|
||||
|
|
@ -177,131 +184,134 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
SASSERT(success);
|
||||
}while(source != dest);
|
||||
TRACE(finite_set, tout << "get_path_num_decisions: "<<num_decisions);
|
||||
} while (source != dest);
|
||||
TRACE(finite_set, tout << "get_path_num_decisions: " << num_decisions);
|
||||
}
|
||||
|
||||
bool reachability_matrix::check_reachability_conflict(theory_var source, theory_var dest){
|
||||
if(is_reachable(source,dest) && is_reachability_forbidden(source, dest)){
|
||||
TRACE(finite_set, tout << "found_conflict1: "<<source<<" -> "<<dest);
|
||||
bool reachability_matrix::check_reachability_conflict(theory_var source, theory_var dest) {
|
||||
if (is_reachable(source, dest) && is_reachability_forbidden(source, dest)) {
|
||||
TRACE(finite_set, tout << "found_conflict1: " << source << " -> " << dest);
|
||||
vector<enode_pair> path;
|
||||
int num_decisions;
|
||||
get_path(source, dest, path, num_decisions);
|
||||
// TRACE(finite_set, tout << "found path: "<<source<<" -> "<<dest<<" length: "<<path.size());
|
||||
if(num_decisions <= MAX_DECISION_LITERALS){
|
||||
TRACE(finite_set, tout << "num_decisions: "<<num_decisions<<" path_length: "<<path.size());
|
||||
if (num_decisions <= MAX_DECISION_LITERALS) {
|
||||
TRACE(finite_set, tout << "num_decisions: " << num_decisions << " path_length: " << path.size());
|
||||
|
||||
enode_pair diseq = non_link_justifications[source*max_size+dest];
|
||||
enode_pair diseq = non_link_justifications[source * max_size + dest];
|
||||
t_lattice_refutation.trigger_conflict(path, diseq);
|
||||
}
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool reachability_matrix::check_reachability_conflict_word(int row, int word){
|
||||
if(reachable[row*NUM_WORDS+word] & non_links[row*NUM_WORDS+word]){
|
||||
|
||||
// somewhere in this word there is a conflict
|
||||
conflict_row = row;
|
||||
conflict_word = word;
|
||||
return true;
|
||||
|
||||
bool reachability_matrix::check_reachability_conflict_word(int row, int word) {
|
||||
if (reachable[row * NUM_WORDS + word] & non_links[row * NUM_WORDS + word]) {
|
||||
// somewhere in this word there is a conflict
|
||||
conflict_row = row;
|
||||
conflict_word = word;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void reachability_matrix::print_relations(){
|
||||
TRACE(finite_set, tout << "largest_var: "<<largest_var);
|
||||
for (size_t i = 0; i < max_size; i++)
|
||||
{
|
||||
for (size_t j = 0; j < max_size; j++)
|
||||
{
|
||||
if((reachable[get_word_index(i,j)]&get_bitmask(j)) || is_reachable(i,j)){
|
||||
TRACE(finite_set, tout << "reachable: "<<i<<"->"<<j<<" :"<<is_reachable(i,j));
|
||||
void reachability_matrix::print_relations() {
|
||||
TRACE(finite_set, tout << "largest_var: " << largest_var);
|
||||
for (size_t i = 0; i < max_size; i++) {
|
||||
for (size_t j = 0; j < max_size; j++) {
|
||||
if ((reachable[get_word_index(i, j)] & get_bitmask(j)) || is_reachable(i, j)) {
|
||||
TRACE(finite_set, tout << "reachable: " << i << "->" << j << " :" << is_reachable(i, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void theory_finite_set_lattice_refutation::trigger_conflict(vector<enode_pair> equalities, enode_pair clashing_disequality){
|
||||
auto eq_expr = m.mk_not(m.mk_eq(clashing_disequality.first->get_expr(), clashing_disequality.second->get_expr()));
|
||||
void theory_finite_set_lattice_refutation::trigger_conflict(vector<enode_pair> equalities,
|
||||
enode_pair clashing_disequality) {
|
||||
auto eq_expr =
|
||||
m.mk_not(m.mk_eq(clashing_disequality.first->get_expr(), clashing_disequality.second->get_expr()));
|
||||
auto disequality_literal = ctx.get_literal(eq_expr);
|
||||
auto j1 = ext_theory_conflict_justification(th.get_id(), ctx, 1, &disequality_literal, equalities.size(), equalities.data());
|
||||
auto j1 = ext_theory_conflict_justification(th.get_id(), ctx, 1, &disequality_literal, equalities.size(),
|
||||
equalities.data());
|
||||
auto justification = ctx.mk_justification(j1);
|
||||
TRACE(finite_set, tout << "conflict_literal: "<<disequality_literal);
|
||||
|
||||
TRACE(finite_set, tout << "conflict_literal: " << disequality_literal);
|
||||
|
||||
TRACE(finite_set, tout << "setting_partial_order_conflict");
|
||||
ctx.set_conflict(justification);
|
||||
}
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_disequality(theory_var v1, theory_var v2){
|
||||
void theory_finite_set_lattice_refutation::add_disequality(theory_var v1, theory_var v2) {
|
||||
auto n1 = th.get_enode(v1);
|
||||
auto n2 = th.get_enode(v2);
|
||||
|
||||
enode* subset = n1;
|
||||
enode* superset = get_superset(n1, n2);
|
||||
if(superset == nullptr){
|
||||
enode *subset = n1;
|
||||
enode *superset = get_superset(n1, n2);
|
||||
if (superset == nullptr) {
|
||||
subset = n2;
|
||||
superset = get_superset(n2, n1);
|
||||
}
|
||||
if(superset == nullptr){
|
||||
if (superset == nullptr) {
|
||||
return;
|
||||
}
|
||||
TRACE(finite_set, tout << "new_diseq_intersection: " << enode_pp(subset, ctx) << "("<<th.get_th_var(subset)<<")" << "\\not\\subseteq " << enode_pp(superset, ctx)<<"("<<th.get_th_var(superset)<<")");
|
||||
TRACE(finite_set, tout << "new_diseq_intersection: " << enode_pp(subset, ctx) << "(" << th.get_th_var(subset)
|
||||
<< ")" << "\\not\\subseteq " << enode_pp(superset, ctx) << "(" << th.get_th_var(superset)
|
||||
<< ")");
|
||||
add_not_subset(subset->get_th_var(th.get_id()), superset->get_th_var(th.get_id()), {n1, n2});
|
||||
};
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_subset(theory_var subset_th, theory_var superset_th, enode_pair justifying_equality){
|
||||
if(!reachability.in_bounds(subset_th, superset_th)){
|
||||
void theory_finite_set_lattice_refutation::add_subset(theory_var subset_th, theory_var superset_th,
|
||||
enode_pair justifying_equality) {
|
||||
if (!reachability.in_bounds(subset_th, superset_th)) {
|
||||
return;
|
||||
}
|
||||
if (subset_th == null_theory_var || superset_th == null_theory_var){
|
||||
if (subset_th == null_theory_var || superset_th == null_theory_var) {
|
||||
return;
|
||||
}
|
||||
reachability.set_reachability(subset_th, superset_th, justifying_equality);
|
||||
SASSERT(reachability.is_reachable(subset_th, superset_th));
|
||||
if(reachability.is_reachable(superset_th, subset_th)){
|
||||
if (reachability.is_reachable(superset_th, subset_th)) {
|
||||
TRACE(finite_set, tout << "cycle_detected: " << subset_th << " <--> " << superset_th);
|
||||
vector<enode_pair> path;
|
||||
int num_decisions;
|
||||
reachability.get_path(subset_th, subset_th, path, num_decisions);
|
||||
// we propagate the equality
|
||||
// build justification to be used by all propagated equalities
|
||||
auto j1 = ctx.mk_justification(ext_theory_conflict_justification(th.get_id(), ctx, 0, nullptr, path.size(), path.data()));
|
||||
auto j1 = ctx.mk_justification(
|
||||
ext_theory_conflict_justification(th.get_id(), ctx, 0, nullptr, path.size(), path.data()));
|
||||
|
||||
for (size_t i = 0; i < path.size()-1; i++)
|
||||
{
|
||||
for (size_t i = 0; i < path.size() - 1; i++) {
|
||||
auto set1 = path[i].first;
|
||||
auto set2 = path[i+1].first;
|
||||
auto set2 = path[i + 1].first;
|
||||
ctx.add_eq(set1, set2, eq_justification(j1));
|
||||
TRACE(finite_set, tout << "added_equality: " << set1 << " == " << set2);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_not_subset(theory_var subset_th, theory_var superset_th, enode_pair justifying_disequality){
|
||||
if(!reachability.in_bounds(subset_th, superset_th)){
|
||||
void theory_finite_set_lattice_refutation::add_not_subset(theory_var subset_th, theory_var superset_th,
|
||||
enode_pair justifying_disequality) {
|
||||
if (!reachability.in_bounds(subset_th, superset_th)) {
|
||||
return;
|
||||
}
|
||||
if (subset_th == null_theory_var || superset_th == null_theory_var){
|
||||
if (subset_th == null_theory_var || superset_th == null_theory_var) {
|
||||
return;
|
||||
}
|
||||
reachability.set_non_reachability(subset_th, superset_th, justifying_disequality);
|
||||
SASSERT(reachability.is_reachability_forbidden(subset_th, superset_th));
|
||||
}
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_set_equality(enode* set1, enode* set2){
|
||||
void theory_finite_set_lattice_refutation::add_set_equality(enode *set1, enode *set2) {
|
||||
theory_var set1_th = set1->get_th_var(th.get_id());
|
||||
theory_var set2_th = set2->get_th_var(th.get_id());
|
||||
if(!reachability.in_bounds(set1_th, set2_th)){
|
||||
if (!reachability.in_bounds(set1_th, set2_th)) {
|
||||
return;
|
||||
}
|
||||
reachability.set_reachability(set1_th, set2_th, {set1, set2});
|
||||
SASSERT(reachability.is_reachable(set1_th, set2_th));
|
||||
|
||||
|
||||
reachability.set_reachability(set2_th, set1_th, {set2, set1});
|
||||
SASSERT(reachability.is_reachable(set2_th, set1_th));
|
||||
}
|
||||
}
|
||||
} // namespace smt
|
||||
|
|
|
|||
|
|
@ -1,3 +1,12 @@
|
|||
/*++
|
||||
Copyright (c) 2025 Lorenz Winkler
|
||||
|
||||
Module Name:
|
||||
|
||||
theory_finite_lattice_refutation.h
|
||||
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ast/finite_set_decl_plugin.h"
|
||||
|
|
@ -9,8 +18,7 @@ namespace smt {
|
|||
class theory_finite_set;
|
||||
|
||||
class theory_finite_set_lattice_refutation;
|
||||
class reachability_matrix{
|
||||
|
||||
class reachability_matrix {
|
||||
std::vector<uint64_t> reachable;
|
||||
std::vector<enode_pair> links;
|
||||
std::vector<uint64_t> link_dls;
|
||||
|
|
@ -21,8 +29,8 @@ namespace smt {
|
|||
|
||||
int max_size;
|
||||
|
||||
context& ctx;
|
||||
theory_finite_set_lattice_refutation& t_lattice_refutation;
|
||||
context &ctx;
|
||||
theory_finite_set_lattice_refutation &t_lattice_refutation;
|
||||
int conflict_row = -1;
|
||||
int conflict_word = -1;
|
||||
|
||||
|
|
@ -30,42 +38,43 @@ namespace smt {
|
|||
bool bitwise_or_rows(int source_dest, int source);
|
||||
inline int get_word_index(int row, int col) const;
|
||||
inline uint64_t get_bitmask(int col) const;
|
||||
public:
|
||||
void get_path(theory_var source, theory_var dest, vector<enode_pair>& path, int& num_decisions);
|
||||
reachability_matrix(context& ctx, theory_finite_set_lattice_refutation& t_lattice);
|
||||
bool in_bounds(theory_var source, theory_var dest);
|
||||
bool is_reachable(theory_var source, theory_var dest);
|
||||
bool is_reachability_forbidden(theory_var source, theory_var dest);
|
||||
bool is_linked(theory_var source, theory_var dest);
|
||||
|
||||
bool check_reachability_conflict(theory_var source, theory_var dest);
|
||||
bool check_reachability_conflict_word(int row, int word);
|
||||
public:
|
||||
void get_path(theory_var source, theory_var dest, vector<enode_pair> &path, int &num_decisions);
|
||||
reachability_matrix(context &ctx, theory_finite_set_lattice_refutation &t_lattice);
|
||||
bool in_bounds(theory_var source, theory_var dest);
|
||||
bool is_reachable(theory_var source, theory_var dest);
|
||||
bool is_reachability_forbidden(theory_var source, theory_var dest);
|
||||
bool is_linked(theory_var source, theory_var dest);
|
||||
|
||||
bool set_reachability(theory_var source, theory_var dest, enode_pair reachability_witness);
|
||||
bool set_non_reachability(theory_var source, theory_var dest, enode_pair non_reachability_witness);
|
||||
int get_max_var();
|
||||
void print_relations();
|
||||
|
||||
bool check_reachability_conflict(theory_var source, theory_var dest);
|
||||
bool check_reachability_conflict_word(int row, int word);
|
||||
|
||||
bool set_reachability(theory_var source, theory_var dest, enode_pair reachability_witness);
|
||||
bool set_non_reachability(theory_var source, theory_var dest, enode_pair non_reachability_witness);
|
||||
int get_max_var();
|
||||
void print_relations();
|
||||
};
|
||||
|
||||
class theory_finite_set_lattice_refutation {
|
||||
ast_manager &m;
|
||||
context &ctx;
|
||||
theory_finite_set &th;
|
||||
ast_manager &m;
|
||||
context &ctx;
|
||||
theory_finite_set &th;
|
||||
finite_set_util u;
|
||||
expr_ref_vector bs;
|
||||
expr_ref m_assumption;
|
||||
reachability_matrix reachability;
|
||||
|
||||
enode* get_superset(enode*, enode*);
|
||||
enode *get_superset(enode *, enode *);
|
||||
void add_subset(theory_var subset, theory_var superset, enode_pair justifying_equality);
|
||||
void add_not_subset(theory_var subset, theory_var superset, enode_pair justifying_disequality);
|
||||
void propagate_new_subset(theory_var v1, theory_var v2);
|
||||
void add_set_equality(enode* set1, enode* set2);
|
||||
public:
|
||||
void trigger_conflict(vector<enode_pair> equalities, enode_pair clashing_disequality);
|
||||
theory_finite_set_lattice_refutation(theory_finite_set &th);
|
||||
void add_equality(theory_var v1, theory_var v2);
|
||||
void add_disequality(theory_var v1, theory_var v2);
|
||||
void add_set_equality(enode *set1, enode *set2);
|
||||
|
||||
public:
|
||||
void trigger_conflict(vector<enode_pair> equalities, enode_pair clashing_disequality);
|
||||
theory_finite_set_lattice_refutation(theory_finite_set &th);
|
||||
void add_equality(theory_var v1, theory_var v2);
|
||||
void add_disequality(theory_var v1, theory_var v2);
|
||||
};
|
||||
}
|
||||
} // namespace smt
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue