3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 05:18:44 +00:00

generate simple_sign_lemma

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-05-15 16:24:12 -07:00
parent d3bd55d0cf
commit 40cc8c31e5
2 changed files with 7 additions and 9 deletions

View file

@ -74,11 +74,6 @@ void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
point xy (val(bf[0]), val(bf[1]));
rational correct_mult_val = xy.x * xy.y;
lpvar j =m.var();
// We have canonize_sign(m)*m.vars() = m.rvars()
// Let s = canonize_sign(bf). Then we have bf[1]*bf[1] = s*m.rvars()
// s*canonize_sign(m)*val(m).
// Therefore sign*val(m) = val((bf[0])*val(bf[1]), where sign = canonize_sign(bf)*canonize_sign(m)
SASSERT(canonize_sign(bf) == canonize_sign(m));
rational v = val(j);
bool below = v < correct_mult_val;
@ -87,6 +82,7 @@ void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
TRACE("nla_solver", tout << "tang domain = "; print_tangent_domain(a, b, tout); tout << std::endl;);
unsigned lemmas_size_was = c().m_lemma_vec->size();
rational sign(1);
generate_simple_tangent_lemma(m);
generate_two_tang_lines(bf, xy, j);
generate_tang_plane(a.x, a.y, bf[0], bf[1], below, j);
generate_tang_plane(b.x, b.y, bf[0], bf[1], below, j);
@ -103,8 +99,8 @@ void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++)
c().print_specific_lemma((*c().m_lemma_vec)[i], tout); );
}
/*
void tangents::generate_simple_tangent_lemma(const monomial& m) {
void tangents::generate_simple_tangent_lemma(const monomial& m) {
if (m.size() != 2)
return;
TRACE("nla_solver", tout << "m:" << pp_mon(c(), m) << std::endl;);
@ -118,6 +114,7 @@ void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
c().generate_simple_sign_lemma(-sign, m);
return;
}
/*
bool gt = abs(mv) > abs(v);
if (gt) {
for (lpvar j : m.vars()) {
@ -137,9 +134,10 @@ void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
c().mk_ineq(sign, m.var(), llc::GE, v);
}
TRACE("nla_solver", c().print_lemma(tout););
*/
}
// todo : consider using generate_simple_tangent_lemma on each factorization
*/
void tangents::generate_two_tang_lines(const factorization & bf, const point& xy, lpvar j) {
add_empty_lemma();
c().mk_ineq(var(bf[0]), llc::NE, xy.x);

View file

@ -54,7 +54,7 @@ public:
private:
lpvar find_binomial_to_refine();
void generate_explanations_of_tang_lemma(const monomial& m, const factorization& bf, lp::explanation& exp);
void generate_simple_tangent_lemma(const monomial& m);
void tangent_lemma_bf(const monomial& m,const factorization& bf);
void generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j);