3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 20:38:43 +00:00
This commit is contained in:
Miguel Neves 2017-10-19 19:53:25 -07:00
commit 3dd5630255
22 changed files with 2040 additions and 173 deletions

View file

@ -3,6 +3,7 @@ z3_add_component(sat
ba_solver.cpp
dimacs.cpp
sat_asymm_branch.cpp
sat_bdd.cpp
sat_clause.cpp
sat_clause_set.cpp
sat_clause_use_list.cpp
@ -10,6 +11,7 @@ z3_add_component(sat
sat_config.cpp
sat_drat.cpp
sat_elim_eqs.cpp
sat_elim_vars.cpp
sat_iff3_finder.cpp
sat_integrity_checker.cpp
sat_local_search.cpp

View file

@ -1288,7 +1288,6 @@ namespace sat {
if (!create_asserting_lemma()) {
goto bail_out;
}
active2card();
DEBUG_CODE(VERIFY(validate_conflict(m_lemma, m_A)););
@ -1347,6 +1346,7 @@ namespace sat {
}
bool ba_solver::create_asserting_lemma() {
bool adjusted = false;
adjust_conflict_level:
int64 bound64 = m_bound;
@ -1354,7 +1354,6 @@ namespace sat {
for (bool_var v : m_active_vars) {
slack += get_abs_coeff(v);
}
m_lemma.reset();
m_lemma.push_back(null_literal);
unsigned num_skipped = 0;
@ -1389,26 +1388,32 @@ namespace sat {
}
}
}
if (slack >= 0) {
IF_VERBOSE(20, verbose_stream() << "(sat.card slack: " << slack << " skipped: " << num_skipped << ")\n";);
return false;
}
if (m_overflow) {
return false;
}
if (m_lemma[0] == null_literal) {
if (m_lemma.size() == 1) {
s().set_conflict(justification());
return false;
}
return false;
unsigned old_level = m_conflict_lvl;
m_conflict_lvl = 0;
for (unsigned i = 1; i < m_lemma.size(); ++i) {
m_conflict_lvl = std::max(m_conflict_lvl, lvl(m_lemma[i]));
}
IF_VERBOSE(10, verbose_stream() << "(sat.backjump :new-level " << m_conflict_lvl << " :old-level " << old_level << ")\n";);
IF_VERBOSE(1, verbose_stream() << "(sat.backjump :new-level " << m_conflict_lvl << " :old-level " << old_level << ")\n";);
adjusted = true;
goto adjust_conflict_level;
}
return !m_overflow;
if (!adjusted) {
active2card();
}
return true;
}
/*
@ -1551,7 +1556,7 @@ namespace sat {
m_learned.push_back(c);
}
else {
SASSERT(s().at_base_lvl());
SASSERT(!m_solver || s().at_base_lvl());
m_constraints.push_back(c);
}
literal lit = c->lit();

View file

@ -362,8 +362,8 @@ namespace sat {
// access solver
inline lbool value(bool_var v) const { return value(literal(v, false)); }
inline lbool value(literal lit) const { return m_lookahead ? m_lookahead->value(lit) : m_solver->value(lit); }
inline unsigned lvl(literal lit) const { return m_solver->lvl(lit); }
inline unsigned lvl(bool_var v) const { return m_solver->lvl(v); }
inline unsigned lvl(literal lit) const { return m_lookahead ? 0 : m_solver->lvl(lit); }
inline unsigned lvl(bool_var v) const { return m_lookahead ? 0 : m_solver->lvl(v); }
inline bool inconsistent() const { return m_lookahead ? m_lookahead->inconsistent() : m_solver->inconsistent(); }
inline watch_list& get_wlist(literal l) { return m_lookahead ? m_lookahead->get_wlist(l) : m_solver->get_wlist(l); }
inline watch_list const& get_wlist(literal l) const { return m_lookahead ? m_lookahead->get_wlist(l) : m_solver->get_wlist(l); }

894
src/sat/sat_bdd.cpp Normal file
View file

@ -0,0 +1,894 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
sat_bdd.cpp
Abstract:
Simple BDD package modeled after BuDDy, which is modeled after CUDD.
Author:
Nikolaj Bjorner (nbjorner) 2017-10-13
Revision History:
--*/
#include "sat/sat_bdd.h"
#include "util/trace.h"
#include "util/stopwatch.h"
namespace sat {
bdd_manager::bdd_manager(unsigned num_vars) {
m_cost_metric = bdd_cost;
m_cost_bdd = 0;
for (BDD a = 0; a < 2; ++a) {
for (BDD b = 0; b < 2; ++b) {
for (unsigned op = bdd_and_op; op < bdd_not_op; ++op) {
unsigned index = a + 2*b + 4*op;
m_apply_const.reserve(index+1);
m_apply_const[index] = apply_const(a, b, static_cast<bdd_op>(op));
}
}
}
// add dummy nodes for operations, and true, false bdds.
for (unsigned i = 0; i <= bdd_no_op + 2; ++i) {
m_nodes.push_back(bdd_node(0,0,0));
m_nodes.back().m_refcount = max_rc;
m_nodes.back().m_index = m_nodes.size()-1;
}
m_spare_entry = nullptr;
m_max_num_bdd_nodes = 1 << 24; // up to 16M nodes
m_mark_level = 0;
alloc_free_nodes(1024 + num_vars);
m_disable_gc = false;
m_is_new_node = false;
// add variables
for (unsigned i = 0; i < num_vars; ++i) {
reserve_var(i);
}
}
bdd_manager::~bdd_manager() {
if (m_spare_entry) {
m_alloc.deallocate(sizeof(*m_spare_entry), m_spare_entry);
}
for (auto* e : m_op_cache) {
SASSERT(e != m_spare_entry);
m_alloc.deallocate(sizeof(*e), e);
}
}
bdd_manager::BDD bdd_manager::apply_const(BDD a, BDD b, bdd_op op) {
SASSERT(is_const(a) && is_const(b));
switch (op) {
case bdd_and_op:
return (a == true_bdd && b == true_bdd) ? true_bdd : false_bdd;
case bdd_or_op:
return (a == true_bdd || b == true_bdd) ? true_bdd : false_bdd;
case bdd_xor_op:
return (a == b) ? false_bdd : true_bdd;
default:
return false_bdd;
}
}
bdd_manager::BDD bdd_manager::apply(BDD arg1, BDD arg2, bdd_op op) {
bool first = true;
SASSERT(well_formed());
while (true) {
try {
return apply_rec(arg1, arg2, op);
}
catch (mem_out) {
try_reorder();
if (!first) throw;
first = false;
}
}
SASSERT(well_formed());
}
bdd bdd_manager::mk_true() { return bdd(true_bdd, this); }
bdd bdd_manager::mk_false() { return bdd(false_bdd, this); }
bdd bdd_manager::mk_and(bdd const& a, bdd const& b) { return bdd(apply(a.root, b.root, bdd_and_op), this); }
bdd bdd_manager::mk_or(bdd const& a, bdd const& b) { return bdd(apply(a.root, b.root, bdd_or_op), this); }
bdd bdd_manager::mk_xor(bdd const& a, bdd const& b) { return bdd(apply(a.root, b.root, bdd_xor_op), this); }
bdd bdd_manager::mk_exists(unsigned v, bdd const& b) { return mk_exists(1, &v, b); }
bdd bdd_manager::mk_forall(unsigned v, bdd const& b) { return mk_forall(1, &v, b); }
bool bdd_manager::check_result(op_entry*& e1, op_entry const* e2, BDD a, BDD b, BDD c) {
if (e1 != e2) {
SASSERT(e2->m_result != -1);
push_entry(e1);
e1 = nullptr;
return true;
}
else {
e1->m_bdd1 = a;
e1->m_bdd2 = b;
e1->m_op = c;
SASSERT(e1->m_result == -1);
return false;
}
}
bdd_manager::BDD bdd_manager::apply_rec(BDD a, BDD b, bdd_op op) {
switch (op) {
case bdd_and_op:
if (a == b) return a;
if (is_false(a) || is_false(b)) return false_bdd;
if (is_true(a)) return b;
if (is_true(b)) return a;
break;
case bdd_or_op:
if (a == b) return a;
if (is_false(a)) return b;
if (is_false(b)) return a;
if (is_true(a) || is_true(b)) return true_bdd;
break;
case bdd_xor_op:
if (a == b) return false_bdd;
if (is_false(a)) return b;
if (is_false(b)) return a;
break;
default:
UNREACHABLE();
break;
}
if (is_const(a) && is_const(b)) {
return m_apply_const[a + 2*b + 4*op];
}
op_entry * e1 = pop_entry(a, b, op);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, a, b, op)) {
SASSERT(!m_free_nodes.contains(e2->m_result));
return e2->m_result;
}
// SASSERT(well_formed());
BDD r;
if (level(a) == level(b)) {
push(apply_rec(lo(a), lo(b), op));
push(apply_rec(hi(a), hi(b), op));
r = make_node(level(a), read(2), read(1));
}
else if (level(a) > level(b)) {
push(apply_rec(lo(a), b, op));
push(apply_rec(hi(a), b, op));
r = make_node(level(a), read(2), read(1));
}
else {
push(apply_rec(a, lo(b), op));
push(apply_rec(a, hi(b), op));
r = make_node(level(b), read(2), read(1));
}
pop(2);
e1->m_result = r;
// SASSERT(well_formed());
SASSERT(!m_free_nodes.contains(r));
return r;
}
void bdd_manager::push(BDD b) {
m_bdd_stack.push_back(b);
}
void bdd_manager::pop(unsigned num_scopes) {
m_bdd_stack.shrink(m_bdd_stack.size() - num_scopes);
}
bdd_manager::BDD bdd_manager::read(unsigned index) {
return m_bdd_stack[m_bdd_stack.size() - index];
}
bdd_manager::op_entry* bdd_manager::pop_entry(BDD l, BDD r, BDD op) {
op_entry* result = nullptr;
if (m_spare_entry) {
result = m_spare_entry;
m_spare_entry = nullptr;
result->m_bdd1 = l;
result->m_bdd2 = r;
result->m_op = op;
}
else {
void * mem = m_alloc.allocate(sizeof(op_entry));
result = new (mem) op_entry(l, r, op);
}
result->m_result = -1;
return result;
}
void bdd_manager::push_entry(op_entry* e) {
SASSERT(!m_spare_entry);
m_spare_entry = e;
}
bdd_manager::BDD bdd_manager::make_node(unsigned lvl, BDD l, BDD h) {
m_is_new_node = false;
if (l == h) {
return l;
}
SASSERT(is_const(l) || level(l) < lvl);
SASSERT(is_const(h) || level(h) < lvl);
bdd_node n(lvl, l, h);
node_table::entry* e = m_node_table.insert_if_not_there2(n);
if (e->get_data().m_index != 0) {
unsigned result = e->get_data().m_index;
return result;
}
e->get_data().m_refcount = 0;
bool do_gc = m_free_nodes.empty();
if (do_gc && !m_disable_gc) {
gc();
e = m_node_table.insert_if_not_there2(n);
e->get_data().m_refcount = 0;
}
if (do_gc && m_free_nodes.size()*3 < m_nodes.size()) {
if (m_nodes.size() > m_max_num_bdd_nodes) {
throw mem_out();
}
alloc_free_nodes(m_nodes.size()/2);
}
SASSERT(!m_free_nodes.empty());
unsigned result = m_free_nodes.back();
m_free_nodes.pop_back();
e->get_data().m_index = result;
m_nodes[result] = e->get_data();
m_is_new_node = true;
SASSERT(!m_free_nodes.contains(result));
SASSERT(m_nodes[result].m_index == result);
return result;
}
void bdd_manager::try_cnf_reorder(bdd const& b) {
m_cost_bdd = b.root;
m_cost_metric = cnf_cost;
try_reorder();
m_cost_metric = bdd_cost;
m_cost_bdd = 0;
}
void bdd_manager::try_reorder() {
gc();
for (auto* e : m_op_cache) {
m_alloc.deallocate(sizeof(*e), e);
}
m_op_cache.reset();
init_reorder();
for (unsigned i = 0; i < m_var2level.size(); ++i) {
sift_var(i);
}
SASSERT(m_op_cache.empty());
SASSERT(well_formed());
}
double bdd_manager::current_cost() {
switch (m_cost_metric) {
case bdd_cost:
return m_nodes.size() - m_free_nodes.size();
case cnf_cost:
return cnf_size(m_cost_bdd);
case dnf_cost:
return dnf_size(m_cost_bdd);
default:
UNREACHABLE();
return 0;
}
}
bool bdd_manager::is_bad_cost(double current_cost, double best_cost) const {
return current_cost > 1.1 * best_cost;
}
void bdd_manager::sift_var(unsigned v) {
unsigned lvl = m_var2level[v];
unsigned start = lvl;
double best_cost = current_cost();
bool first = true;
unsigned max_lvl = m_level2nodes.size()-1;
if (lvl*2 < max_lvl) {
goto go_down;
}
go_up:
TRACE("bdd", tout << "sift up " << lvl << "\n";);
while (lvl < max_lvl) {
sift_up(lvl++);
double cost = current_cost();
if (is_bad_cost(cost, best_cost)) break;
best_cost = std::min(cost, best_cost);
}
if (first) {
first = false;
while (lvl != start) {
sift_up(--lvl);
}
goto go_down;
}
else {
while (current_cost() != best_cost) {
sift_up(--lvl);
}
return;
}
go_down:
TRACE("bdd", tout << "sift down " << lvl << "\n";);
while (lvl > 0) {
sift_up(--lvl);
double cost = current_cost();
if (is_bad_cost(cost, best_cost)) break;
best_cost = std::min(cost, best_cost);
}
if (first) {
first = false;
while (lvl != start) {
sift_up(lvl++);
}
goto go_up;
}
else {
while (current_cost() != best_cost) {
sift_up(lvl++);
}
return;
}
}
void bdd_manager::sift_up(unsigned lvl) {
if (m_level2nodes[lvl].empty()) return;
// SASSERT(well_formed());
// exchange level and level + 1.
m_S.reset();
m_T.reset();
m_to_free.reset();
m_disable_gc = true;
for (unsigned n : m_level2nodes[lvl + 1]) {
BDD l = lo(n);
BDD h = hi(n);
if (l == 0 && h == 0) continue;
if ((is_const(l) || level(l) != lvl) &&
(is_const(h) || level(h) != lvl)) {
m_S.push_back(n);
}
else {
reorder_decref(l);
reorder_decref(h);
m_T.push_back(n);
}
TRACE("bdd", tout << "remove " << n << "\n";);
m_node_table.remove(m_nodes[n]);
}
m_level2nodes[lvl + 1].reset();
m_level2nodes[lvl + 1].append(m_T);
for (unsigned n : m_level2nodes[lvl]) {
bdd_node& node = m_nodes[n];
m_node_table.remove(node);
node.m_level = lvl + 1;
if (m_reorder_rc[n] == 0) {
m_to_free.push_back(n);
}
else {
TRACE("bdd", tout << "set level " << n << " to " << lvl + 1 << "\n";);
m_node_table.insert(node);
m_level2nodes[lvl + 1].push_back(n);
}
}
m_level2nodes[lvl].reset();
m_level2nodes[lvl].append(m_S);
for (unsigned n : m_S) {
m_nodes[n].m_level = lvl;
m_node_table.insert(m_nodes[n]);
}
for (unsigned n : m_T) {
BDD l = lo(n);
BDD h = hi(n);
if (l == 0 && h == 0) continue;
BDD a, b, c, d;
if (level(l) == lvl + 1) {
a = lo(l);
b = hi(l);
}
else {
a = b = l;
}
if (level(h) == lvl + 1) {
c = lo(h);
d = hi(h);
}
else {
c = d = h;
}
unsigned ac = make_node(lvl, a, c);
if (is_new_node()) {
m_level2nodes[lvl].push_back(ac);
m_reorder_rc.reserve(ac+1);
reorder_incref(a);
reorder_incref(c);
}
unsigned bd = make_node(lvl, b, d);
if (is_new_node()) {
m_level2nodes[lvl].push_back(bd);
m_reorder_rc.reserve(bd+1);
reorder_incref(b);
reorder_incref(d);
}
m_nodes[n].m_lo = ac;
m_nodes[n].m_hi = bd;
reorder_incref(ac);
reorder_incref(bd);
TRACE("bdd", tout << "transform " << n << " " << " " << a << " " << b << " " << c << " " << d << " " << ac << " " << bd << "\n";);
m_node_table.insert(m_nodes[n]);
}
unsigned v = m_level2var[lvl];
unsigned w = m_level2var[lvl+1];
std::swap(m_level2var[lvl], m_level2var[lvl+1]);
std::swap(m_var2level[v], m_var2level[w]);
m_disable_gc = false;
// add orphaned nodes to free-list
for (unsigned i = 0; i < m_to_free.size(); ++i) {
unsigned n = m_to_free[i];
bdd_node& node = m_nodes[n];
if (!node.is_internal()) {
SASSERT(!m_free_nodes.contains(n));
SASSERT(node.m_refcount == 0);
m_free_nodes.push_back(n);
m_node_table.remove(node);
BDD l = lo(n);
BDD h = hi(n);
node.set_internal();
reorder_decref(l);
if (!m_nodes[l].is_internal() && m_reorder_rc[l] == 0) {
m_to_free.push_back(l);
}
reorder_decref(h);
if (!m_nodes[h].is_internal() && m_reorder_rc[h] == 0) {
m_to_free.push_back(h);
}
}
}
TRACE("bdd", tout << "sift " << lvl << "\n"; display(tout); );
DEBUG_CODE(
for (unsigned i = 0; i < m_level2nodes.size(); ++i) {
for (unsigned n : m_level2nodes[i]) {
bdd_node const& node = m_nodes[n];
SASSERT(node.m_level == i);
}
});
TRACE("bdd",
for (unsigned i = 0; i < m_nodes.size(); ++i) {
if (m_reorder_rc[i] != 0) {
tout << i << " " << m_reorder_rc[i] << "\n";
}});
// SASSERT(well_formed());
}
void bdd_manager::init_reorder() {
m_level2nodes.reset();
unsigned sz = m_nodes.size();
m_reorder_rc.fill(sz, 0);
for (unsigned i = 0; i < sz; ++i) {
if (m_nodes[i].m_refcount > 0)
m_reorder_rc[i] = UINT_MAX;
}
for (unsigned i = 0; i < sz; ++i) {
bdd_node const& n = m_nodes[i];
if (n.is_internal()) continue;
unsigned lvl = n.m_level;
SASSERT(i == m_nodes[i].m_index);
m_level2nodes.reserve(lvl + 1);
m_level2nodes[lvl].push_back(i);
reorder_incref(n.m_lo);
reorder_incref(n.m_hi);
}
TRACE("bdd",
display(tout);
for (unsigned i = 0; i < sz; ++i) {
bdd_node const& n = m_nodes[i];
if (n.is_internal()) continue;
unsigned lvl = n.m_level;
tout << i << " lvl: " << lvl << " rc: " << m_reorder_rc[i] << " lo " << n.m_lo << " hi " << n.m_hi << "\n";
}
);
}
void bdd_manager::reorder_incref(unsigned n) {
if (m_reorder_rc[n] != UINT_MAX) m_reorder_rc[n]++;
}
void bdd_manager::reorder_decref(unsigned n) {
if (m_reorder_rc[n] != UINT_MAX) m_reorder_rc[n]--;
}
void bdd_manager::reserve_var(unsigned i) {
while (m_var2level.size() <= i) {
unsigned v = m_var2level.size();
m_var2bdd.push_back(make_node(v, false_bdd, true_bdd));
m_var2bdd.push_back(make_node(v, true_bdd, false_bdd));
m_nodes[m_var2bdd[2*v]].m_refcount = max_rc;
m_nodes[m_var2bdd[2*v+1]].m_refcount = max_rc;
m_var2level.push_back(v);
m_level2var.push_back(v);
}
}
bdd bdd_manager::mk_var(unsigned i) {
reserve_var(i);
return bdd(m_var2bdd[2*i], this);
}
bdd bdd_manager::mk_nvar(unsigned i) {
reserve_var(i);
return bdd(m_var2bdd[2*i+1], this);
}
bdd bdd_manager::mk_not(bdd b) {
bool first = true;
while (true) {
try {
return bdd(mk_not_rec(b.root), this);
}
catch (mem_out) {
try_reorder();
if (!first) throw;
first = false;
}
}
}
bdd_manager::BDD bdd_manager::mk_not_rec(BDD b) {
if (is_true(b)) return false_bdd;
if (is_false(b)) return true_bdd;
op_entry* e1 = pop_entry(b, b, bdd_not_op);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, b, b, bdd_not_op))
return e2->m_result;
push(mk_not_rec(lo(b)));
push(mk_not_rec(hi(b)));
BDD r = make_node(level(b), read(2), read(1));
pop(2);
e1->m_result = r;
return r;
}
bdd bdd_manager::mk_ite(bdd const& c, bdd const& t, bdd const& e) {
bool first = true;
while (true) {
try {
return bdd(mk_ite_rec(c.root, t.root, e.root), this);
}
catch (mem_out) {
try_reorder();
if (!first) throw;
first = false;
}
}
}
bdd_manager::BDD bdd_manager::mk_ite_rec(BDD a, BDD b, BDD c) {
if (is_true(a)) return b;
if (is_false(a)) return c;
if (b == c) return b;
if (is_true(b)) return apply(a, c, bdd_or_op);
if (is_false(c)) return apply(a, b, bdd_and_op);
if (is_false(b)) return apply(mk_not_rec(a), c, bdd_and_op);
if (is_true(c)) return apply(mk_not_rec(a), b, bdd_or_op);
SASSERT(!is_const(a) && !is_const(b) && !is_const(c));
op_entry * e1 = pop_entry(a, b, c);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, a, b, c))
return e2->m_result;
unsigned la = level(a), lb = level(b), lc = level(c);
BDD r;
BDD a1, b1, c1, a2, b2, c2;
unsigned lvl = la;
if (la >= lb && la >= lc) {
a1 = lo(a), a2 = hi(a);
lvl = la;
}
else {
a1 = a, a2 = a;
}
if (lb >= la && lb >= lc) {
b1 = lo(b), b2 = hi(b);
lvl = lb;
}
else {
b1 = b, b2 = b;
}
if (lc >= la && lc >= lb) {
c1 = lo(c), c2 = hi(c);
lvl = lc;
}
else {
c1 = c, c2 = c;
}
push(mk_ite_rec(a1, b1, c1));
push(mk_ite_rec(a2, b2, c2));
r = make_node(lvl, read(2), read(1));
pop(2);
e1->m_result = r;
return r;
}
bdd bdd_manager::mk_exists(unsigned n, unsigned const* vars, bdd const& b) {
// SASSERT(well_formed());
return bdd(mk_quant(n, vars, b.root, bdd_or_op), this);
}
bdd bdd_manager::mk_forall(unsigned n, unsigned const* vars, bdd const& b) {
return bdd(mk_quant(n, vars, b.root, bdd_and_op), this);
}
bdd_manager::BDD bdd_manager::mk_quant(unsigned n, unsigned const* vars, BDD b, bdd_op op) {
BDD result = b;
for (unsigned i = 0; i < n; ++i) {
result = mk_quant_rec(m_var2level[vars[i]], result, op);
}
return result;
}
bdd_manager::BDD bdd_manager::mk_quant_rec(unsigned l, BDD b, bdd_op op) {
unsigned lvl = level(b);
BDD r;
if (is_const(b)) {
r = b;
}
else if (lvl == l) {
r = apply(lo(b), hi(b), op);
}
else if (lvl < l) {
r = b;
}
else {
BDD a = level2bdd(l);
bdd_op q_op = op == bdd_and_op ? bdd_and_proj_op : bdd_or_proj_op;
op_entry * e1 = pop_entry(a, b, q_op);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, a, b, q_op)) {
r = e2->m_result;
}
else {
SASSERT(e1->m_result == -1);
push(mk_quant_rec(l, lo(b), op));
push(mk_quant_rec(l, hi(b), op));
r = make_node(lvl, read(2), read(1));
pop(2);
e1->m_result = r;
}
}
SASSERT(r != UINT_MAX);
return r;
}
double bdd_manager::count(BDD b, unsigned z) {
init_mark();
m_count.resize(m_nodes.size());
m_count[0] = z;
m_count[1] = 1-z;
set_mark(0);
set_mark(1);
m_todo.push_back(b);
while (!m_todo.empty()) {
BDD r = m_todo.back();
if (is_marked(r)) {
m_todo.pop_back();
}
else if (!is_marked(lo(r))) {
SASSERT (is_const(r) || r != lo(r));
m_todo.push_back(lo(r));
}
else if (!is_marked(hi(r))) {
SASSERT (is_const(r) || r != hi(r));
m_todo.push_back(hi(r));
}
else {
m_count[r] = m_count[lo(r)] + m_count[hi(r)];
set_mark(r);
m_todo.pop_back();
}
}
return m_count[b];
}
unsigned bdd_manager::bdd_size(bdd const& b) {
init_mark();
set_mark(0);
set_mark(1);
unsigned sz = 0;
m_todo.push_back(b.root);
while (!m_todo.empty()) {
BDD r = m_todo.back();
m_todo.pop_back();
if (!is_marked(r)) {
++sz;
set_mark(r);
if (!is_marked(lo(r))) {
m_todo.push_back(lo(r));
}
if (!is_marked(hi(r))) {
m_todo.push_back(hi(r));
}
}
}
return sz;
}
void bdd_manager::alloc_free_nodes(unsigned n) {
for (unsigned i = 0; i < n; ++i) {
m_free_nodes.push_back(m_nodes.size());
m_nodes.push_back(bdd_node());
m_nodes.back().m_index = m_nodes.size() - 1;
}
m_free_nodes.reverse();
}
void bdd_manager::gc() {
m_free_nodes.reset();
IF_VERBOSE(3, verbose_stream() << "(bdd :gc " << m_nodes.size() << ")\n";);
svector<bool> reachable(m_nodes.size(), false);
for (unsigned i = m_bdd_stack.size(); i-- > 0; ) {
reachable[m_bdd_stack[i]] = true;
m_todo.push_back(m_bdd_stack[i]);
}
for (unsigned i = m_nodes.size(); i-- > 2; ) {
if (m_nodes[i].m_refcount > 0) {
reachable[i] = true;
m_todo.push_back(i);
}
}
while (!m_todo.empty()) {
BDD b = m_todo.back();
m_todo.pop_back();
SASSERT(reachable[b]);
if (is_const(b)) continue;
if (!reachable[lo(b)]) {
reachable[lo(b)] = true;
m_todo.push_back(lo(b));
}
if (!reachable[hi(b)]) {
reachable[hi(b)] = true;
m_todo.push_back(hi(b));
}
}
for (unsigned i = m_nodes.size(); i-- > 2; ) {
if (!reachable[i]) {
m_nodes[i].set_internal();
SASSERT(m_nodes[i].m_refcount == 0);
m_free_nodes.push_back(i);
}
}
// sort free nodes so that adjacent nodes are picked in order of use
std::sort(m_free_nodes.begin(), m_free_nodes.end());
m_free_nodes.reverse();
ptr_vector<op_entry> to_delete, to_keep;
for (auto* e : m_op_cache) {
if (e->m_result != -1) {
to_delete.push_back(e);
}
else {
to_keep.push_back(e);
}
}
m_op_cache.reset();
for (op_entry* e : to_delete) {
m_alloc.deallocate(sizeof(*e), e);
}
for (op_entry* e : to_keep) {
m_op_cache.insert(e);
}
m_node_table.reset();
// re-populate node cache
for (unsigned i = m_nodes.size(); i-- > 2; ) {
if (reachable[i]) {
SASSERT(m_nodes[i].m_index == i);
m_node_table.insert(m_nodes[i]);
}
}
SASSERT(well_formed());
}
void bdd_manager::init_mark() {
m_mark.resize(m_nodes.size());
++m_mark_level;
if (m_mark_level == 0) {
m_mark.fill(0);
++m_mark_level;
}
}
std::ostream& bdd_manager::display(std::ostream& out, bdd const& b) {
init_mark();
m_todo.push_back(b.root);
m_reorder_rc.reserve(m_nodes.size());
while (!m_todo.empty()) {
BDD r = m_todo.back();
if (is_marked(r)) {
m_todo.pop_back();
}
else if (lo(r) == 0 && hi(r) == 0) {
set_mark(r);
m_todo.pop_back();
}
else if (!is_marked(lo(r))) {
m_todo.push_back(lo(r));
}
else if (!is_marked(hi(r))) {
m_todo.push_back(hi(r));
}
else {
out << r << " : " << var(r) << " @ " << level(r) << " " << lo(r) << " " << hi(r) << " " << m_reorder_rc[r] << "\n";
set_mark(r);
m_todo.pop_back();
}
}
return out;
}
bool bdd_manager::well_formed() {
bool ok = true;
for (unsigned n : m_free_nodes) {
ok &= (lo(n) == 0 && hi(n) == 0 && m_nodes[n].m_refcount == 0);
if (!ok) {
IF_VERBOSE(0,
verbose_stream() << "free node is not internal " << n << " " << lo(n) << " " << hi(n) << " " << m_nodes[n].m_refcount << "\n";
display(verbose_stream()););
UNREACHABLE();
return false;
}
}
for (bdd_node const& n : m_nodes) {
if (n.is_internal()) continue;
unsigned lvl = n.m_level;
BDD lo = n.m_lo;
BDD hi = n.m_hi;
ok &= is_const(lo) || level(lo) < lvl;
ok &= is_const(hi) || level(hi) < lvl;
ok &= is_const(lo) || !m_nodes[lo].is_internal();
ok &= is_const(hi) || !m_nodes[hi].is_internal();
if (!ok) {
IF_VERBOSE(0, display(verbose_stream() << n.m_index << " lo " << lo << " hi " << hi << "\n"););
UNREACHABLE();
return false;
}
}
return ok;
}
std::ostream& bdd_manager::display(std::ostream& out) {
m_reorder_rc.reserve(m_nodes.size());
for (unsigned i = 0; i < m_nodes.size(); ++i) {
bdd_node const& n = m_nodes[i];
if (n.is_internal()) continue;
out << i << " : v" << m_level2var[n.m_level] << " " << n.m_lo << " " << n.m_hi << " rc " << m_reorder_rc[i] << "\n";
}
for (unsigned i = 0; i < m_level2nodes.size(); ++i) {
out << "level: " << i << " : " << m_level2nodes[i] << "\n";
}
return out;
}
bdd& bdd::operator=(bdd const& other) { unsigned r1 = root; root = other.root; m->inc_ref(root); m->dec_ref(r1); return *this; }
std::ostream& operator<<(std::ostream& out, bdd const& b) { return b.display(out); }
}

258
src/sat/sat_bdd.h Normal file
View file

@ -0,0 +1,258 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
sat_bdd
Abstract:
Simple BDD package modeled after BuDDy, which is modeled after CUDD.
Author:
Nikolaj Bjorner (nbjorner) 2017-10-13
Revision History:
--*/
#ifndef SAT_BDD_H_
#define SAT_BDD_H_
#include "util/vector.h"
#include "util/map.h"
#include "util/small_object_allocator.h"
namespace sat {
class bdd;
class bdd_manager {
friend bdd;
typedef unsigned BDD;
enum bdd_op {
bdd_and_op = 2,
bdd_or_op = 3,
bdd_xor_op = 4,
bdd_not_op = 5,
bdd_and_proj_op = 6,
bdd_or_proj_op = 7,
bdd_no_op = 8,
};
struct bdd_node {
bdd_node(unsigned level, BDD lo, BDD hi):
m_refcount(0),
m_level(level),
m_lo(lo),
m_hi(hi),
m_index(0)
{}
bdd_node(): m_refcount(0), m_level(0), m_lo(0), m_hi(0), m_index(0) {}
unsigned m_refcount : 10;
unsigned m_level : 22;
BDD m_lo;
BDD m_hi;
unsigned m_index;
unsigned hash() const { return mk_mix(m_level, m_lo, m_hi); }
bool is_internal() const { return m_lo == 0 && m_hi == 0; }
void set_internal() { m_lo = 0; m_hi = 0; }
};
enum cost_metric {
cnf_cost,
dnf_cost,
bdd_cost
};
struct hash_node {
unsigned operator()(bdd_node const& n) const { return n.hash(); }
};
struct eq_node {
bool operator()(bdd_node const& a, bdd_node const& b) const {
return a.m_lo == b.m_lo && a.m_hi == b.m_hi && a.m_level == b.m_level;
}
};
typedef hashtable<bdd_node, hash_node, eq_node> node_table;
struct op_entry {
op_entry(BDD l, BDD r, BDD op):
m_bdd1(l),
m_bdd2(r),
m_op(op),
m_result(0)
{}
BDD m_bdd1;
BDD m_bdd2;
BDD m_op;
BDD m_result;
unsigned hash() const { return mk_mix(m_bdd1, m_bdd2, m_op); }
};
struct hash_entry {
unsigned operator()(op_entry* e) const { return e->hash(); }
};
struct eq_entry {
bool operator()(op_entry * a, op_entry * b) const {
return a->m_bdd1 == b->m_bdd2 && a->m_bdd2 == b->m_bdd2 && a->m_op == b->m_op;
}
};
typedef ptr_hashtable<op_entry, hash_entry, eq_entry> op_table;
svector<bdd_node> m_nodes;
op_table m_op_cache;
node_table m_node_table;
unsigned_vector m_apply_const;
svector<BDD> m_bdd_stack;
op_entry* m_spare_entry;
svector<BDD> m_var2bdd;
unsigned_vector m_var2level, m_level2var;
unsigned_vector m_free_nodes;
small_object_allocator m_alloc;
mutable svector<unsigned> m_mark;
mutable unsigned m_mark_level;
mutable svector<double> m_count;
mutable svector<BDD> m_todo;
bool m_disable_gc;
bool m_is_new_node;
unsigned m_max_num_bdd_nodes;
unsigned_vector m_S, m_T, m_to_free; // used for reordering
vector<unsigned_vector> m_level2nodes;
unsigned_vector m_reorder_rc;
cost_metric m_cost_metric;
BDD m_cost_bdd;
BDD make_node(unsigned level, BDD l, BDD r);
bool is_new_node() const { return m_is_new_node; }
BDD apply_const(BDD a, BDD b, bdd_op op);
BDD apply(BDD arg1, BDD arg2, bdd_op op);
BDD mk_quant(unsigned n, unsigned const* vars, BDD b, bdd_op op);
BDD apply_rec(BDD arg1, BDD arg2, bdd_op op);
BDD mk_not_rec(BDD b);
BDD mk_ite_rec(BDD a, BDD b, BDD c);
BDD mk_quant_rec(unsigned lvl, BDD b, bdd_op op);
void push(BDD b);
void pop(unsigned num_scopes);
BDD read(unsigned index);
op_entry* pop_entry(BDD l, BDD r, BDD op);
void push_entry(op_entry* e);
bool check_result(op_entry*& e1, op_entry const* e2, BDD a, BDD b, BDD c);
double count(BDD b, unsigned z);
void alloc_free_nodes(unsigned n);
void init_mark();
void set_mark(unsigned i) { m_mark[i] = m_mark_level; }
bool is_marked(unsigned i) { return m_mark[i] == m_mark_level; }
void init_reorder();
void reorder_incref(unsigned n);
void reorder_decref(unsigned n);
void sift_up(unsigned level);
void sift_var(unsigned v);
double current_cost();
bool is_bad_cost(double new_cost, double best_cost) const;
static const BDD false_bdd = 0;
static const BDD true_bdd = 1;
static const unsigned max_rc = (1 << 10) - 1;
inline bool is_true(BDD b) const { return b == true_bdd; }
inline bool is_false(BDD b) const { return b == false_bdd; }
inline bool is_const(BDD b) const { return b <= 1; }
inline unsigned level(BDD b) const { return m_nodes[b].m_level; }
inline unsigned var(BDD b) const { return m_level2var[level(b)]; }
inline BDD lo(BDD b) const { return m_nodes[b].m_lo; }
inline BDD hi(BDD b) const { return m_nodes[b].m_hi; }
inline void inc_ref(BDD b) { if (m_nodes[b].m_refcount != max_rc) m_nodes[b].m_refcount++; VERIFY(!m_free_nodes.contains(b)); }
inline void dec_ref(BDD b) { if (m_nodes[b].m_refcount != max_rc) m_nodes[b].m_refcount--; VERIFY(!m_free_nodes.contains(b)); }
inline BDD level2bdd(unsigned l) const { return m_var2bdd[m_level2var[l]]; }
double dnf_size(BDD b) { return count(b, 0); }
double cnf_size(BDD b) { return count(b, 1); }
unsigned bdd_size(bdd const& b);
bdd mk_not(bdd b);
bdd mk_and(bdd const& a, bdd const& b);
bdd mk_or(bdd const& a, bdd const& b);
bdd mk_xor(bdd const& a, bdd const& b);
void reserve_var(unsigned v);
bool well_formed();
public:
struct mem_out {};
bdd_manager(unsigned nodes);
~bdd_manager();
void set_max_num_nodes(unsigned n) { m_max_num_bdd_nodes = n; }
bdd mk_var(unsigned i);
bdd mk_nvar(unsigned i);
bdd mk_true();
bdd mk_false();
bdd mk_exists(unsigned n, unsigned const* vars, bdd const & b);
bdd mk_forall(unsigned n, unsigned const* vars, bdd const & b);
bdd mk_exists(unsigned v, bdd const& b);
bdd mk_forall(unsigned v, bdd const& b);
bdd mk_ite(bdd const& c, bdd const& t, bdd const& e);
std::ostream& display(std::ostream& out);
std::ostream& display(std::ostream& out, bdd const& b);
void gc();
void try_reorder();
void try_cnf_reorder(bdd const& b);
};
class bdd {
friend class bdd_manager;
unsigned root;
bdd_manager* m;
bdd(unsigned root, bdd_manager* m): root(root), m(m) { m->inc_ref(root); }
public:
bdd(bdd & other): root(other.root), m(other.m) { m->inc_ref(root); }
bdd(bdd && other): root(0), m(other.m) { std::swap(root, other.root); }
bdd& operator=(bdd const& other);
~bdd() { m->dec_ref(root); }
bdd lo() const { return bdd(m->lo(root), m); }
bdd hi() const { return bdd(m->hi(root), m); }
unsigned var() const { return m->var(root); }
bool is_true() const { return root == bdd_manager::true_bdd; }
bool is_false() const { return root == bdd_manager::false_bdd; }
bdd operator!() { return m->mk_not(*this); }
bdd operator&&(bdd const& other) { return m->mk_and(*this, other); }
bdd operator||(bdd const& other) { return m->mk_or(*this, other); }
bdd operator^(bdd const& other) { return m->mk_xor(*this, other); }
bdd operator|=(bdd const& other) { return *this = *this || other; }
bdd operator&=(bdd const& other) { return *this = *this && other; }
std::ostream& display(std::ostream& out) const { return m->display(out, *this); }
bool operator==(bdd const& other) const { return root == other.root; }
bool operator!=(bdd const& other) const { return root != other.root; }
double cnf_size() const { return m->cnf_size(root); }
double dnf_size() const { return m->dnf_size(root); }
unsigned bdd_size() const { return m->bdd_size(*this); }
};
std::ostream& operator<<(std::ostream& out, bdd const& b);
}
#endif

335
src/sat/sat_elim_vars.cpp Normal file
View file

@ -0,0 +1,335 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
sat_elim_vars.cpp
Abstract:
Helper class for eliminating variables
Author:
Nikolaj Bjorner (nbjorner) 2017-10-14
Revision History:
--*/
#include "sat/sat_simplifier.h"
#include "sat/sat_elim_vars.h"
#include "sat/sat_solver.h"
namespace sat{
elim_vars::elim_vars(simplifier& s) : simp(s), s(s.s), m(20) {
m_mark_lim = 0;
m_max_literals = 11;
m_miss = 0;
m_hit1 = 0;
m_hit2 = 0;
}
bool elim_vars::operator()(bool_var v) {
if (s.value(v) != l_undef)
return false;
literal pos_l(v, false);
literal neg_l(v, true);
unsigned num_bin_pos = simp.get_num_non_learned_bin(pos_l);
if (num_bin_pos > m_max_literals) return false;
unsigned num_bin_neg = simp.get_num_non_learned_bin(neg_l);
if (num_bin_neg > m_max_literals) return false;
clause_use_list & pos_occs = simp.m_use_list.get(pos_l);
clause_use_list & neg_occs = simp.m_use_list.get(neg_l);
unsigned clause_size = num_bin_pos + num_bin_neg + pos_occs.size() + neg_occs.size();
if (clause_size == 0) {
return false;
}
reset_mark();
mark_var(v);
if (!mark_literals(pos_occs)) return false;
if (!mark_literals(neg_occs)) return false;
if (!mark_literals(pos_l)) return false;
if (!mark_literals(neg_l)) return false;
// associate index with each variable.
sort_marked();
bdd b1 = elim_var(v);
double sz1 = b1.cnf_size();
if (sz1 > 2*clause_size) {
++m_miss;
return false;
}
if (sz1 <= clause_size) {
++m_hit1;
return elim_var(v, b1);
}
m.try_cnf_reorder(b1);
sz1 = b1.cnf_size();
if (sz1 <= clause_size) {
++m_hit2;
return elim_var(v, b1);
}
++m_miss;
return false;
}
bool elim_vars::elim_var(bool_var v, bdd const& b) {
literal pos_l(v, false);
literal neg_l(v, true);
clause_use_list & pos_occs = simp.m_use_list.get(pos_l);
clause_use_list & neg_occs = simp.m_use_list.get(neg_l);
// eliminate variable
simp.m_pos_cls.reset();
simp.m_neg_cls.reset();
simp.collect_clauses(pos_l, simp.m_pos_cls);
simp.collect_clauses(neg_l, simp.m_neg_cls);
model_converter::entry & mc_entry = s.m_mc.mk(model_converter::ELIM_VAR, v);
simp.save_clauses(mc_entry, simp.m_pos_cls);
simp.save_clauses(mc_entry, simp.m_neg_cls);
s.m_eliminated[v] = true;
++s.m_stats.m_elim_var_bdd;
simp.remove_bin_clauses(pos_l);
simp.remove_bin_clauses(neg_l);
simp.remove_clauses(pos_occs, pos_l);
simp.remove_clauses(neg_occs, neg_l);
pos_occs.reset();
neg_occs.reset();
literal_vector lits;
add_clauses(b, lits);
return true;
}
bdd elim_vars::elim_var(bool_var v) {
unsigned index = 0;
for (bool_var w : m_vars) {
m_var2index[w] = index++;
}
literal pos_l(v, false);
literal neg_l(v, true);
clause_use_list & pos_occs = simp.m_use_list.get(pos_l);
clause_use_list & neg_occs = simp.m_use_list.get(neg_l);
bdd b1 = make_clauses(pos_l);
bdd b2 = make_clauses(neg_l);
bdd b3 = make_clauses(pos_occs);
bdd b4 = make_clauses(neg_occs);
bdd b0 = b1 && b2 && b3 && b4;
bdd b = m.mk_exists(m_var2index[v], b0);
TRACE("elim_vars",
tout << "eliminate " << v << "\n";
for (watched const& w : simp.get_wlist(~pos_l)) {
if (w.is_binary_non_learned_clause()) {
tout << pos_l << " " << w.get_literal() << "\n";
}
}
m.display(tout, b1);
for (watched const& w : simp.get_wlist(~neg_l)) {
if (w.is_binary_non_learned_clause()) {
tout << neg_l << " " << w.get_literal() << "\n";
}
}
m.display(tout, b2);
clause_use_list::iterator itp = pos_occs.mk_iterator();
while (!itp.at_end()) {
clause const& c = itp.curr();
tout << c << "\n";
itp.next();
}
m.display(tout, b3);
clause_use_list::iterator itn = neg_occs.mk_iterator();
while (!itn.at_end()) {
clause const& c = itn.curr();
tout << c << "\n";
itn.next();
}
m.display(tout, b4);
tout << "eliminated:\n";
tout << b << "\n";
tout << b.cnf_size() << "\n";
);
return b;
}
void elim_vars::add_clauses(bdd const& b, literal_vector& lits) {
if (b.is_true()) {
// no-op
}
else if (b.is_false()) {
SASSERT(lits.size() > 0);
literal_vector c(lits);
if (simp.cleanup_clause(c))
return;
switch (c.size()) {
case 0:
s.set_conflict(justification());
break;
case 1:
simp.propagate_unit(c[0]);
break;
case 2:
s.m_stats.m_mk_bin_clause++;
simp.add_non_learned_binary_clause(c[0], c[1]);
simp.back_subsumption1(c[0], c[1], false);
break;
default: {
if (c.size() == 3)
s.m_stats.m_mk_ter_clause++;
else
s.m_stats.m_mk_clause++;
clause* cp = s.m_cls_allocator.mk_clause(c.size(), c.c_ptr(), false);
s.m_clauses.push_back(cp);
simp.m_use_list.insert(*cp);
if (simp.m_sub_counter > 0)
simp.back_subsumption1(*cp);
else
simp.back_subsumption0(*cp);
break;
}
}
}
else {
unsigned v = m_vars[b.var()];
lits.push_back(literal(v, false));
add_clauses(b.lo(), lits);
lits.pop_back();
lits.push_back(literal(v, true));
add_clauses(b.hi(), lits);
lits.pop_back();
}
}
void elim_vars::get_clauses(bdd const& b, literal_vector & lits, clause_vector& clauses, literal_vector& units) {
if (b.is_true()) {
return;
}
if (b.is_false()) {
if (lits.size() > 1) {
clause* c = s.m_cls_allocator.mk_clause(lits.size(), lits.c_ptr(), false);
clauses.push_back(c);
}
else {
units.push_back(lits.back());
}
return;
}
// if (v hi lo)
// (v | lo) & (!v | hi)
// if (v T lo) -> (v | lo)
unsigned v = m_vars[b.var()];
lits.push_back(literal(v, false));
get_clauses(b.lo(), lits, clauses, units);
lits.pop_back();
lits.push_back(literal(v, true));
get_clauses(b.hi(), lits, clauses, units);
lits.pop_back();
}
void elim_vars::reset_mark() {
m_vars.reset();
m_mark.resize(s.num_vars());
m_var2index.resize(s.num_vars());
m_occ.resize(s.num_vars());
++m_mark_lim;
if (m_mark_lim == 0) {
++m_mark_lim;
m_mark.fill(0);
}
}
class elim_vars::compare_occ {
elim_vars& ev;
public:
compare_occ(elim_vars& ev):ev(ev) {}
bool operator()(bool_var v1, bool_var v2) const {
return ev.m_occ[v1] < ev.m_occ[v2];
}
};
void elim_vars::sort_marked() {
std::sort(m_vars.begin(), m_vars.end(), compare_occ(*this));
}
void elim_vars::shuffle_vars() {
unsigned sz = m_vars.size();
for (unsigned i = 0; i < sz; ++i) {
unsigned x = m_rand(sz);
unsigned y = m_rand(sz);
std::swap(m_vars[x], m_vars[y]);
}
}
void elim_vars::mark_var(bool_var v) {
if (m_mark[v] != m_mark_lim) {
m_mark[v] = m_mark_lim;
m_vars.push_back(v);
m_occ[v] = 1;
}
else {
++m_occ[v];
}
}
bool elim_vars::mark_literals(clause_use_list & occs) {
clause_use_list::iterator it = occs.mk_iterator();
while (!it.at_end()) {
clause const& c = it.curr();
for (literal l : c) {
mark_var(l.var());
}
if (num_vars() > m_max_literals) return false;
it.next();
}
return true;
}
bool elim_vars::mark_literals(literal lit) {
watch_list& wl = simp.get_wlist(lit);
for (watched const& w : wl) {
if (w.is_binary_non_learned_clause()) {
mark_var(w.get_literal().var());
}
}
return num_vars() <= m_max_literals;
}
bdd elim_vars::make_clauses(clause_use_list & occs) {
bdd result = m.mk_true();
clause_use_list::iterator it = occs.mk_iterator();
while (!it.at_end()) {
clause const& c = it.curr();
bdd cl = m.mk_false();
for (literal l : c) {
cl |= mk_literal(l);
}
it.next();
result &= cl;
}
return result;
}
bdd elim_vars::make_clauses(literal lit) {
bdd result = m.mk_true();
watch_list& wl = simp.get_wlist(~lit);
for (watched const& w : wl) {
if (w.is_binary_non_learned_clause()) {
result &= (mk_literal(lit) || mk_literal(w.get_literal()));
}
}
return result;
}
bdd elim_vars::mk_literal(literal l) {
return l.sign() ? m.mk_nvar(m_var2index[l.var()]) : m.mk_var(m_var2index[l.var()]);
}
};

74
src/sat/sat_elim_vars.h Normal file
View file

@ -0,0 +1,74 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
sat_elim_vars.h
Abstract:
Helper class for eliminating variables
Author:
Nikolaj Bjorner (nbjorner) 2017-10-14
Revision History:
--*/
#ifndef SAT_ELIM_VARS_H_
#define SAT_ELIM_VARS_H_
#include "sat/sat_types.h"
#include "sat/sat_bdd.h"
namespace sat {
class solver;
class simplifier;
class elim_vars {
class compare_occ;
simplifier& simp;
solver& s;
bdd_manager m;
random_gen m_rand;
svector<bool_var> m_vars;
unsigned_vector m_mark;
unsigned m_mark_lim;
unsigned_vector m_var2index;
unsigned_vector m_occ;
unsigned m_miss;
unsigned m_hit1;
unsigned m_hit2;
unsigned m_max_literals;
unsigned num_vars() const { return m_vars.size(); }
void reset_mark();
void mark_var(bool_var v);
void sort_marked();
void shuffle_vars();
bool mark_literals(clause_use_list & occs);
bool mark_literals(literal lit);
bdd make_clauses(clause_use_list & occs);
bdd make_clauses(literal lit);
bdd mk_literal(literal l);
void get_clauses(bdd const& b, literal_vector& lits, clause_vector& clauses, literal_vector& units);
void add_clauses(bdd const& b, literal_vector& lits);
bool elim_var(bool_var v, bdd const& b);
bdd elim_var(bool_var v);
public:
elim_vars(simplifier& s);
bool operator()(bool_var v);
unsigned hit2() const { return m_hit1; } // first round bdd construction is minimal
unsigned hit1() const { return m_hit2; } // minimal after reshufling
unsigned miss() const { return m_miss; } // not-minimal
};
};
#endif

View file

@ -415,14 +415,21 @@ namespace sat {
}
bool lookahead::missed_propagation() const {
if (inconsistent()) return false;
for (literal l1 : m_trail) {
SASSERT(is_true(l1));
for (literal l2 : m_binary[l1.index()]) {
VERIFY(is_true(l2));
if (is_undef(l2)) return true;
}
unsigned sz = m_ternary_count[(~l1).index()];
for (binary b : m_ternary[(~l1).index()]) {
if (sz-- == 0) break;
if (!(is_true(b.m_u) || is_true(b.m_v) || (is_undef(b.m_v) && is_undef(b.m_u)))) {
std::cout << b.m_u << " " << b.m_v << "\n";
std::cout << get_level(b.m_u) << " " << get_level(b.m_v) << " level: " << m_level << "\n";
UNREACHABLE();
}
if ((is_false(b.m_u) && is_undef(b.m_v)) || (is_false(b.m_v) && is_undef(b.m_u)))
return true;
}
@ -430,6 +437,7 @@ namespace sat {
for (nary * n : m_nary_clauses) {
if (n->size() == 1 && !is_true(n->get_head())) {
for (literal lit : *n) {
VERIFY(!is_undef(lit));
if (is_undef(lit)) return true;
}
}
@ -1465,35 +1473,7 @@ namespace sat {
m_lookahead_reward += 3.3 * pow(0.5, nonfixed - 2);
break;
case ternary_reward:
if (nonfixed == 2) {
literal l1 = null_literal;
literal l2 = null_literal;
for (literal lit : *n) {
if (!is_fixed(lit)) {
if (l1 == null_literal) {
l1 = lit;
}
else {
SASSERT(l2 != null_literal);
l2 = lit;
break;
}
}
}
if (l1 == null_literal) {
set_conflict();
continue;
}
else if (l2 == null_literal) {
propagated(l1);
}
else {
m_lookahead_reward += (*m_heur)[l1.index()] * (*m_heur)[l2.index()];
}
}
else {
m_lookahead_reward += (double)0.001;
}
UNREACHABLE();
break;
case unit_literal_reward:
break;
@ -1662,7 +1642,7 @@ namespace sat {
}
SASSERT(m_qhead == m_trail.size() || (inconsistent() && m_qhead < m_trail.size()));
//SASSERT(!missed_conflict());
//SASSERT(inconsistent() || !missed_propagation());
//VERIFY(!missed_propagation());
TRACE("sat_verbose", display(tout << scope_lvl() << " " << (inconsistent()?"unsat":"sat") << "\n"););
}
@ -1705,6 +1685,7 @@ namespace sat {
unsat = inconsistent();
pop_lookahead1(lit, num_units);
}
// VERIFY(!missed_propagation());
if (unsat) {
TRACE("sat", tout << "backtracking and settting " << ~lit << "\n";);
lookahead_backtrack();
@ -1790,74 +1771,10 @@ namespace sat {
bool lookahead::check_autarky(literal l, unsigned level) {
return false;
#if 0
// no propagations are allowed to reduce clauses.
for (nary * cp : m_nary[(~l).index()]) {
clause& c = *cp;
unsigned sz = c.size();
bool found = false;
for (unsigned i = 0; !found && i < sz; ++i) {
found = is_true(c[i]);
if (found) {
TRACE("sat", tout << c[i] << " is true in " << c << "\n";);
}
}
IF_VERBOSE(2, verbose_stream() << "skip autarky " << l << "\n";);
if (!found) return false;
}
//
// bail out if there is a pending binary propagation.
// In general, we would have to check, recursively that
// a binary propagation does not create reduced clauses.
//
literal_vector const& lits = m_binary[l.index()];
TRACE("sat", tout << l << ": " << lits << "\n";);
for (unsigned i = 0; i < lits.size(); ++i) {
literal l2 = lits[i];
if (is_true(l2)) continue;
SASSERT(!is_false(l2));
return false;
}
return true;
#endif
}
void lookahead::update_lookahead_reward(literal l, unsigned level) {
if (m_lookahead_reward == 0) {
if (!check_autarky(l, level)) {
// skip
}
else if (get_lookahead_reward(l) == 0) {
++m_stats.m_autarky_propagations;
IF_VERBOSE(1, verbose_stream() << "(sat.lookahead autarky " << l << ")\n";);
TRACE("sat", tout << "autarky: " << l << " @ " << m_stamp[l.var()]
<< " "
<< (!m_binary[l.index()].empty() || m_nary_count[l.index()] != 0) << "\n";);
lookahead_backtrack();
assign(l);
propagate();
}
else {
++m_stats.m_autarky_equivalences;
// l => p is known, but p => l is possibly not.
// add p => l.
// justification: any consequence of l
// that is not a consequence of p does not
// reduce the clauses.
literal p = get_parent(l);
SASSERT(p != null_literal);
if (m_stamp[p.var()] > m_stamp[l.var()]) {
TRACE("sat", tout << "equivalence " << l << " == " << p << "\n"; display(tout););
IF_VERBOSE(1, verbose_stream() << "(sat.lookahead equivalence " << l << " == " << p << ")\n";);
add_binary(~l, p);
set_level(l, p);
}
}
}
else {
void lookahead::update_lookahead_reward(literal l, unsigned level) {
if (m_lookahead_reward != 0) {
inc_lookahead_reward(l, m_lookahead_reward);
}
}
@ -1900,7 +1817,6 @@ namespace sat {
literal last_changed = null_literal;
unsigned num_iterations = 0;
while (change && num_iterations < m_config.m_dl_max_iterations && !inconsistent()) {
change = false;
num_iterations++;
for (unsigned i = 0; !inconsistent() && i < m_lookahead.size(); ++i) {
literal lit = m_lookahead[i].m_lit;

View file

@ -248,6 +248,7 @@ namespace sat {
inline void set_undef(literal l) { m_stamp[l.var()] = 0; }
inline unsigned get_level(literal l) const { return m_stamp[l.var()] & UINT_MAX - 1; }
void set_level(literal d, literal s) { m_stamp[d.var()] = (m_stamp[s.var()] & ~0x1) + d.sign(); }
unsigned get_level(literal d) const { return m_stamp[d.var()]; }
lbool value(literal l) const { return is_undef(l) ? l_undef : is_true(l) ? l_true : l_false; }
// set the level within a scope of the search.

View file

@ -38,6 +38,21 @@ namespace sat {
return *this;
}
void model_converter::process_stack(model & m, literal_vector const& c, elim_stackv const& stack) const {
SASSERT(!stack.empty());
unsigned sz = stack.size();
for (unsigned i = sz; i-- > 0; ) {
unsigned csz = stack[i].first;
literal lit = stack[i].second;
bool sat = false;
for (unsigned j = 0; !sat && j < csz; ++j) {
sat = value_at(c[j], m) == l_true;
}
if (!sat) {
m[lit.var()] = lit.sign() ? l_false : l_true;
}
}
}
void model_converter::operator()(model & m) const {
vector<entry>::const_iterator begin = m_entries.begin();
@ -49,17 +64,25 @@ namespace sat {
// and the following procedure flips its value.
bool sat = false;
bool var_sign = false;
unsigned index = 0;
literal_vector clause;
for (literal l : it->m_clauses) {
if (l == null_literal) {
// end of clause
if (!sat) {
m[it->var()] = var_sign ? l_false : l_true;
break;
}
elim_stack* s = it->m_elim_stack[index];
if (s) {
process_stack(m, clause, s->stack());
}
sat = false;
continue;
++index;
clause.reset();
continue;
}
clause.push_back(l);
if (sat)
continue;
bool sign = l.sign();
@ -142,6 +165,7 @@ namespace sat {
SASSERT(&e < m_entries.end());
for (literal l : c) e.m_clauses.push_back(l);
e.m_clauses.push_back(null_literal);
e.m_elim_stack.push_back(nullptr);
TRACE("sat_mc_bug", tout << "adding: " << c << "\n";);
}
@ -152,6 +176,7 @@ namespace sat {
e.m_clauses.push_back(l1);
e.m_clauses.push_back(l2);
e.m_clauses.push_back(null_literal);
e.m_elim_stack.push_back(nullptr);
TRACE("sat_mc_bug", tout << "adding (binary): " << l1 << " " << l2 << "\n";);
}
@ -163,9 +188,21 @@ namespace sat {
for (unsigned i = 0; i < sz; ++i)
e.m_clauses.push_back(c[i]);
e.m_clauses.push_back(null_literal);
e.m_elim_stack.push_back(nullptr);
// TRACE("sat_mc_bug", tout << "adding (wrapper): "; for (literal l : c) tout << l << " "; tout << "\n";);
}
void model_converter::insert(entry & e, literal_vector const& c, elim_stackv const& elims) {
SASSERT(c.contains(literal(e.var(), false)) || c.contains(literal(e.var(), true)));
SASSERT(m_entries.begin() <= &e);
SASSERT(&e < m_entries.end());
for (literal l : c) e.m_clauses.push_back(l);
e.m_clauses.push_back(null_literal);
e.m_elim_stack.push_back(elims.empty() ? nullptr : alloc(elim_stack, elims));
TRACE("sat_mc_bug", tout << "adding: " << c << "\n";);
}
bool model_converter::check_invariant(unsigned num_vars) const {
// After a variable v occurs in an entry n and the entry has kind ELIM_VAR,
// then the variable must not occur in any other entry occurring after it.
@ -226,13 +263,8 @@ namespace sat {
unsigned model_converter::max_var(unsigned min) const {
unsigned result = min;
vector<entry>::const_iterator it = m_entries.begin();
vector<entry>::const_iterator end = m_entries.end();
for (; it != end; ++it) {
literal_vector::const_iterator lvit = it->m_clauses.begin();
literal_vector::const_iterator lvend = it->m_clauses.end();
for (; lvit != lvend; ++lvit) {
literal l = *lvit;
for (entry const& e : m_entries) {
for (literal l : e.m_clauses) {
if (l != null_literal) {
if (l.var() > result)
result = l.var();

View file

@ -20,6 +20,7 @@ Revision History:
#define SAT_MODEL_CONVERTER_H_
#include "sat/sat_types.h"
#include "util/ref_vector.h"
namespace sat {
/**
@ -36,25 +37,47 @@ namespace sat {
it can be converted into a general Z3 model_converter
*/
class model_converter {
public:
typedef svector<std::pair<unsigned, literal>> elim_stackv;
class elim_stack {
unsigned m_refcount;
elim_stackv m_stack;
public:
elim_stack(elim_stackv const& stack):
m_refcount(0),
m_stack(stack) {
}
~elim_stack() { }
void inc_ref() { ++m_refcount; }
void dec_ref() { if (0 == --m_refcount) dealloc(this); }
elim_stackv const& stack() const { return m_stack; }
};
enum kind { ELIM_VAR = 0, BLOCK_LIT };
class entry {
friend class model_converter;
unsigned m_var:31;
unsigned m_kind:1;
literal_vector m_clauses; // the different clauses are separated by null_literal
sref_vector<elim_stack> m_elim_stack;
entry(kind k, bool_var v):m_var(v), m_kind(k) {}
public:
entry(entry const & src):
m_var(src.m_var),
m_kind(src.m_kind),
m_clauses(src.m_clauses) {
m_clauses(src.m_clauses),
m_elim_stack(src.m_elim_stack) {
}
bool_var var() const { return m_var; }
kind get_kind() const { return static_cast<kind>(m_kind); }
};
private:
vector<entry> m_entries;
void process_stack(model & m, literal_vector const& clause, elim_stackv const& stack) const;
public:
model_converter();
~model_converter();
@ -65,6 +88,7 @@ namespace sat {
void insert(entry & e, clause const & c);
void insert(entry & e, literal l1, literal l2);
void insert(entry & e, clause_wrapper const & c);
void insert(entry & c, literal_vector const& covered_clause, elim_stackv const& elim_stack);
bool empty() const { return m_entries.empty(); }

View file

@ -39,6 +39,7 @@ def_module_params('sat',
('lookahead.cube.fraction', DOUBLE, 0.4, 'adaptive fraction to create lookahead cubes. Used when lookahead_cube is true'),
('lookahead.cube.cutoff', UINT, 0, 'cut-off depth to create cubes. Only enabled when non-zero. Used when lookahead_cube is true.'),
('lookahead_search', BOOL, False, 'use lookahead solver'),
('lookahead.preselect', BOOL, False, 'use pre-selection of subset of variables for branching'),
('lookahead_simplify', BOOL, False, 'use lookahead solver during simplification'),
('lookahead.reward', SYMBOL, 'march_cu', 'select lookahead heuristic: ternary, heule_schur (Heule Schur), heuleu (Heule Unit), unit, or march_cu'),
('dimacs.display', BOOL, False, 'display SAT instance in DIMACS format and return unknown instead of solving'),

View file

@ -21,6 +21,7 @@ Revision History:
#include "sat/sat_simplifier.h"
#include "sat/sat_simplifier_params.hpp"
#include "sat/sat_solver.h"
#include "sat/sat_elim_vars.h"
#include "util/stopwatch.h"
#include "util/trace.h"
@ -190,6 +191,12 @@ namespace sat {
// scoped_finalize _scoped_finalize(*this);
for (bool_var v = 0; v < s.num_vars(); ++v) {
if (!s.m_eliminated[v] && !is_external(v)) {
insert_elim_todo(v);
}
}
do {
if (m_subsumption)
subsume();
@ -323,19 +330,15 @@ namespace sat {
cs.set_end(it2);
}
void simplifier::mark_all_but(clause const & c, literal l) {
unsigned sz = c.size();
for (unsigned i = 0; i < sz; i++) {
if (c[i] == l)
continue;
mark_visited(c[i]);
}
void simplifier::mark_all_but(clause const & c, literal l1) {
for (literal l2 : c)
if (l2 != l1)
mark_visited(l2);
}
void simplifier::unmark_all(clause const & c) {
unsigned sz = c.size();
for (unsigned i = 0; i < sz; i++)
unmark_visited(c[i]);
for (literal l : c)
unmark_visited(l);
}
/**
@ -945,7 +948,7 @@ namespace sat {
}
bool process_var(bool_var v) {
return !s.s.is_assumption(v) && !s.was_eliminated(v);
return !s.s.is_assumption(v) && !s.was_eliminated(v) && !s.is_external(v);
}
void operator()(unsigned num_vars) {
@ -962,6 +965,169 @@ namespace sat {
literal l = m_queue.next();
process(l);
}
cce();
}
//
// Resolve intersection
// Find literals that are in the intersection of all resolvents with l.
//
bool ri(literal l, literal_vector& inter) {
if (!process_var(l.var())) return false;
bool first = true;
for (watched & w : s.get_wlist(l)) {
if (w.is_binary_non_learned_clause()) {
literal lit = w.get_literal();
if (s.is_marked(~lit) && lit != ~l) continue;
if (!first) {
inter.reset();
return false;
}
first = false;
inter.push_back(lit);
}
}
clause_use_list & neg_occs = s.m_use_list.get(~l);
clause_use_list::iterator it = neg_occs.mk_iterator();
while (!it.at_end()) {
bool tautology = false;
clause & c = it.curr();
for (literal lit : c) {
if (s.is_marked(~lit) && lit != ~l) {
tautology = true;
break;
}
}
if (!tautology) {
if (first) {
for (literal lit : c) {
if (lit != ~l) inter.push_back(lit);
}
first = false;
}
else {
unsigned j = 0;
unsigned sz = inter.size();
for (unsigned i = 0; i < sz; ++i) {
literal lit1 = inter[i];
for (literal lit2 : c) {
if (lit1 == lit2) {
inter[j++] = lit1;
break;
}
}
}
inter.shrink(j);
if (j == 0) return false;
}
}
it.next();
}
return first;
}
literal_vector m_covered_clause;
literal_vector m_intersection;
sat::model_converter::elim_stackv m_elim_stack;
unsigned m_ala_qhead;
/*
* C \/ l l \/ lit
* -------------------
* C \/ l \/ ~lit
*/
void add_ala() {
for (; m_ala_qhead < m_covered_clause.size(); ++m_ala_qhead) {
literal l = m_covered_clause[m_ala_qhead];
for (watched & w : s.get_wlist(~l)) {
if (w.is_binary_clause()) {
literal lit = w.get_literal();
if (!s.is_marked(lit) && !s.is_marked(~lit)) {
//std::cout << "ALA " << ~lit << "\n";
m_covered_clause.push_back(~lit);
s.mark_visited(~lit);
}
}
}
}
}
bool add_cla(literal& blocked) {
for (unsigned i = 0; i < m_covered_clause.size(); ++i) {
m_intersection.reset();
if (ri(m_covered_clause[i], m_intersection)) {
blocked = m_covered_clause[i];
return true;
}
for (literal l : m_intersection) {
if (!s.is_marked(l)) {
s.mark_visited(l);
m_covered_clause.push_back(l);
}
}
if (!m_intersection.empty()) {
m_elim_stack.push_back(std::make_pair(m_covered_clause.size(), m_covered_clause[i]));
}
}
return false;
}
bool cla(literal& blocked) {
bool is_tautology = false;
for (literal l : m_covered_clause) s.mark_visited(l);
unsigned num_iterations = 0, sz;
m_elim_stack.reset();
m_ala_qhead = 0;
do {
do {
++num_iterations;
sz = m_covered_clause.size();
is_tautology = add_cla(blocked);
}
while (m_covered_clause.size() > sz && !is_tautology);
break;
//if (is_tautology) break;
//sz = m_covered_clause.size();
// unsound? add_ala();
}
while (m_covered_clause.size() > sz);
for (literal l : m_covered_clause) s.unmark_visited(l);
// if (is_tautology) std::cout << "taut: " << num_iterations << " " << m_covered_clause.size() << " " << m_elim_stack.size() << "\n";
return is_tautology;
}
// perform covered clause elimination.
// first extract the covered literal addition (CLA).
// then check whether the CLA is blocked.
bool cce(clause& c, literal& blocked) {
m_covered_clause.reset();
for (literal l : c) m_covered_clause.push_back(l);
return cla(blocked);
}
bool cce(literal lit, literal l2, literal& blocked) {
m_covered_clause.reset();
m_covered_clause.push_back(lit);
m_covered_clause.push_back(l2);
return cla(blocked);
}
void cce() {
m_to_remove.reset();
literal blocked;
for (clause* cp : s.s.m_clauses) {
clause& c = *cp;
if (c.was_removed()) continue;
if (cce(c, blocked)) {
model_converter::entry * new_entry = 0;
block_covered_clause(c, blocked, new_entry);
s.m_num_covered_clauses++;
}
}
for (clause* c : m_to_remove) {
s.remove_clause(*c);
}
m_to_remove.reset();
}
void process(literal l) {
@ -971,6 +1137,7 @@ namespace sat {
return;
}
literal blocked = null_literal;
m_to_remove.reset();
{
clause_use_list & occs = s.m_use_list.get(l);
@ -981,19 +1148,8 @@ namespace sat {
SASSERT(c.contains(l));
s.mark_all_but(c, l);
if (all_tautology(l)) {
TRACE("blocked_clause", tout << "new blocked clause: " << c << "\n";);
if (new_entry == 0)
new_entry = &(mc.mk(model_converter::BLOCK_LIT, l.var()));
m_to_remove.push_back(&c);
block_clause(c, l, new_entry);
s.m_num_blocked_clauses++;
mc.insert(*new_entry, c);
unsigned sz = c.size();
for (unsigned i = 0; i < sz; i++) {
literal lit = c[i];
if (lit != l && process_var(lit.var())) {
m_queue.decreased(~lit);
}
}
}
s.unmark_all(c);
it.next();
@ -1017,13 +1173,13 @@ namespace sat {
literal l2 = it->get_literal();
s.mark_visited(l2);
if (all_tautology(l)) {
if (new_entry == 0)
new_entry = &(mc.mk(model_converter::BLOCK_LIT, l.var()));
TRACE("blocked_clause", tout << "new blocked clause: " << l2 << " " << l << "\n";);
s.remove_bin_clause_half(l2, l, it->is_learned());
block_binary(it, l, new_entry);
s.m_num_blocked_clauses++;
m_queue.decreased(~l2);
mc.insert(*new_entry, l, l2);
}
else if (cce(l, l2, blocked)) {
model_converter::entry * blocked_entry = 0;
block_covered_binary(it, l, blocked, blocked_entry);
s.m_num_covered_clauses++;
}
else {
*it2 = *it;
@ -1035,6 +1191,47 @@ namespace sat {
}
}
void prepare_block_clause(clause& c, literal l, model_converter::entry*& new_entry) {
TRACE("blocked_clause", tout << "new blocked clause: " << c << "\n";);
if (new_entry == 0)
new_entry = &(mc.mk(model_converter::BLOCK_LIT, l.var()));
m_to_remove.push_back(&c);
for (literal lit : c) {
if (lit != l && process_var(lit.var())) {
m_queue.decreased(~lit);
}
}
}
void block_clause(clause& c, literal l, model_converter::entry *& new_entry) {
prepare_block_clause(c, l, new_entry);
mc.insert(*new_entry, c);
}
void block_covered_clause(clause& c, literal l, model_converter::entry *& new_entry) {
prepare_block_clause(c, l, new_entry);
mc.insert(*new_entry, m_covered_clause, m_elim_stack);
}
void prepare_block_binary(watch_list::iterator it, literal l, literal blocked, model_converter::entry *& new_entry) {
if (new_entry == 0)
new_entry = &(mc.mk(model_converter::BLOCK_LIT, blocked.var()));
literal l2 = it->get_literal();
TRACE("blocked_clause", tout << "new blocked clause: " << l2 << " " << l << "\n";);
s.remove_bin_clause_half(l2, l, it->is_learned());
m_queue.decreased(~l2);
}
void block_binary(watch_list::iterator it, literal l, model_converter::entry *& new_entry) {
prepare_block_binary(it, l, l, new_entry);
mc.insert(*new_entry, l, it->get_literal());
}
void block_covered_binary(watch_list::iterator it, literal l, literal blocked, model_converter::entry *& new_entry) {
prepare_block_binary(it, l, blocked, new_entry);
mc.insert(*new_entry, m_covered_clause, m_elim_stack);
}
bool all_tautology(literal l) {
watch_list & wlist = s.get_wlist(l);
m_counter -= wlist.size();
@ -1076,9 +1273,11 @@ namespace sat {
simplifier & m_simplifier;
stopwatch m_watch;
unsigned m_num_blocked_clauses;
unsigned m_num_covered_clauses;
blocked_cls_report(simplifier & s):
m_simplifier(s),
m_num_blocked_clauses(s.m_num_blocked_clauses) {
m_num_blocked_clauses(s.m_num_blocked_clauses),
m_num_covered_clauses(s.m_num_covered_clauses) {
m_watch.start();
}
@ -1087,6 +1286,8 @@ namespace sat {
IF_VERBOSE(SAT_VB_LVL,
verbose_stream() << " (sat-blocked-clauses :elim-blocked-clauses "
<< (m_simplifier.m_num_blocked_clauses - m_num_blocked_clauses)
<< " :elim-covered-clauses "
<< (m_simplifier.m_num_covered_clauses - m_num_covered_clauses)
<< mem_stat()
<< " :time " << std::fixed << std::setprecision(2) << m_watch.get_seconds() << ")\n";);
}
@ -1308,7 +1509,6 @@ namespace sat {
clause_use_list & neg_occs = m_use_list.get(neg_l);
unsigned num_pos = pos_occs.size() + num_bin_pos;
unsigned num_neg = neg_occs.size() + num_bin_neg;
m_elim_counter -= num_pos + num_neg;
TRACE("resolution", tout << v << " num_pos: " << num_pos << " neg_pos: " << num_neg << "\n";);
@ -1349,7 +1549,6 @@ namespace sat {
collect_clauses(pos_l, m_pos_cls);
collect_clauses(neg_l, m_neg_cls);
m_elim_counter -= num_pos * num_neg + before_lits;
TRACE("resolution_detail", tout << "collecting number of after_clauses\n";);
unsigned before_clauses = num_pos + num_neg;
@ -1371,7 +1570,10 @@ namespace sat {
TRACE("resolution", tout << "found var to eliminate, before: " << before_clauses << " after: " << after_clauses << "\n";);
m_elim_counter -= num_pos * num_neg + before_lits;
// eliminate variable
++s.m_stats.m_elim_var_res;
model_converter::entry & mc_entry = s.m_mc.mk(model_converter::ELIM_VAR, v);
save_clauses(mc_entry, m_pos_cls);
save_clauses(mc_entry, m_neg_cls);
@ -1454,14 +1656,17 @@ namespace sat {
elim_var_report rpt(*this);
bool_var_vector vars;
order_vars_for_elim(vars);
sat::elim_vars elim_bdd(*this);
for (bool_var v : vars) {
checkpoint();
if (m_elim_counter < 0)
if (m_elim_counter < 0)
break;
if (try_eliminate(v)) {
m_num_elim_vars++;
}
else if (elim_bdd(v)) {
m_num_elim_vars++;
}
}
m_pos_cls.finalize();
@ -1498,12 +1703,13 @@ namespace sat {
st.update("subsumed", m_num_subsumed);
st.update("subsumption resolution", m_num_sub_res);
st.update("elim literals", m_num_elim_lits);
st.update("elim bool vars", m_num_elim_vars);
st.update("elim blocked clauses", m_num_blocked_clauses);
st.update("elim covered clauses", m_num_covered_clauses);
}
void simplifier::reset_statistics() {
m_num_blocked_clauses = 0;
m_num_covered_clauses = 0;
m_num_subsumed = 0;
m_num_sub_res = 0;
m_num_elim_lits = 0;

View file

@ -49,6 +49,7 @@ namespace sat {
class simplifier {
friend class ba_solver;
friend class elim_vars;
solver & s;
unsigned m_num_calls;
use_list m_use_list;
@ -89,6 +90,7 @@ namespace sat {
// stats
unsigned m_num_blocked_clauses;
unsigned m_num_covered_clauses;
unsigned m_num_subsumed;
unsigned m_num_elim_vars;
unsigned m_num_sub_res;

View file

@ -4038,6 +4038,8 @@ namespace sat {
st.update("dyn subsumption resolution", m_dyn_sub_res);
st.update("blocked correction sets", m_blocked_corr_sets);
st.update("units", m_units);
st.update("elim bool vars", m_elim_var_res);
st.update("elim bool vars bdd", m_elim_var_bdd);
}
void stats::reset() {

View file

@ -67,6 +67,8 @@ namespace sat {
unsigned m_dyn_sub_res;
unsigned m_non_learned_generation;
unsigned m_blocked_corr_sets;
unsigned m_elim_var_res;
unsigned m_elim_var_bdd;
unsigned m_units;
stats() { reset(); }
void reset();
@ -179,6 +181,7 @@ namespace sat {
friend class local_search;
friend struct mk_stat;
friend class ccc;
friend class elim_vars;
public:
solver(params_ref const & p, reslimit& l);
~solver();

View file

@ -1153,6 +1153,8 @@ struct sat2goal::imp {
}
}
}
//s.display(std::cout);
//r.display(std::cout);
}
void add_clause(sat::literal_vector const& lits, expr_ref_vector& lemmas) {

View file

@ -63,12 +63,16 @@ class parallel_tactic : public tactic {
unsigned num_units() const { return m_units; }
unsigned cube_size() const { return m_cube.size(); }
solver& get_solver() { return *m_solver; }
solver const& get_solver() const { return *m_solver; }
params_ref const& params() const { return m_params; }
params_ref& params() { return m_params; }
solver_state* clone(params_ref const& p, expr* cube) {
ast_manager& m = m_solver->get_manager();
ast_manager* new_m = alloc(ast_manager, m, !m.proof_mode());
@ -114,7 +118,7 @@ private:
m_conflicts_decay_rate = 75;
m_max_conflicts = m_conflicts_lower_bound;
m_progress = 0;
m_num_threads = omp_get_num_procs(); // TBD adjust by possible threads used inside each solver.
m_num_threads = 2 * omp_get_num_procs(); // TBD adjust by possible threads used inside each solver.
}
unsigned get_max_conflicts() {
@ -175,16 +179,14 @@ private:
}
}
lbool simplify(solver& s) {
params_ref p;
p.copy(m_params);
p.set_uint("max_conflicts", 10);
p.set_bool("lookahead_simplify", true);
s.updt_params(p);
lbool is_sat = s.check_sat(0,0);
p.set_uint("max_conflicts", get_max_conflicts());
p.set_bool("lookahead_simplify", false);
s.updt_params(p);
lbool simplify(solver_state& s) {
s.params().set_uint("max_conflicts", 10);
s.params().set_bool("lookahead_simplify", true);
s.get_solver().updt_params(s.params());
lbool is_sat = s.get_solver().check_sat(0,0);
s.params().set_uint("max_conflicts", get_max_conflicts());
s.params().set_bool("lookahead_simplify", false);
s.get_solver().updt_params(s.params());
return is_sat;
}
@ -228,12 +230,10 @@ private:
return l_undef;
}
lbool solve(solver& s) {
params_ref p;
p.copy(m_params);
p.set_uint("max_conflicts", get_max_conflicts());
s.updt_params(p);
return s.check_sat(0, 0);
lbool solve(solver_state& s) {
s.params().set_uint("max_conflicts", get_max_conflicts());
s.get_solver().updt_params(s.params());
return s.get_solver().check_sat(0, 0);
}
void remove_unsat(svector<int>& unsat) {
@ -260,6 +260,25 @@ private:
}
lbool solve(model_ref& mdl) {
{
solver_state& st = *m_solvers[0];
st.params().set_uint("restart.max", 200);
st.get_solver().updt_params(st.params());
lbool is_sat = st.get_solver().check_sat(0, 0);
st.params().set_uint("restart.max", UINT_MAX);
st.get_solver().updt_params(st.params());
switch (is_sat) {
case l_true:
get_model(mdl, 0);
return l_true;
case l_false:
return l_false;
default:
break;
}
}
while (true) {
int sz = pick_solvers();
@ -276,7 +295,7 @@ private:
#pragma omp parallel for
for (int i = 0; i < sz; ++i) {
lbool is_sat = simplify(m_solvers[i]->get_solver());
lbool is_sat = simplify(*m_solvers[i]);
switch (is_sat) {
case l_false:
#pragma omp critical (parallel_tactic)
@ -305,7 +324,7 @@ private:
#pragma omp parallel for
for (int i = 0; i < sz; ++i) {
lbool is_sat = solve(m_solvers[i]->get_solver());
lbool is_sat = solve(*m_solvers[i]);
switch (is_sat) {
case l_false:
#pragma omp critical (parallel_tactic)
@ -328,6 +347,7 @@ private:
remove_unsat(unsat);
sz = std::min(max_num_splits(), sz);
sz = std::min(static_cast<int>(m_num_threads/2), sz);
if (sz == 0) continue;
@ -360,9 +380,9 @@ private:
}
std::ostream& display(std::ostream& out) {
out << "branches: " << m_solvers.size() << "\n";
for (solver_state* s : m_solvers) {
out << "solver units " << s->num_units() << "\n";
out << "cube " << s->cube() << "\n";
out << "cube " << s->cube_size() << " units " << s->num_units() << "\n";
}
m_stats.display(out);
return out;

View file

@ -16,6 +16,7 @@ add_executable(test-z3
arith_rewriter.cpp
arith_simplifier_plugin.cpp
ast.cpp
bdd.cpp
bit_blaster.cpp
bits.cpp
bit_vector.cpp

83
src/test/bdd.cpp Normal file
View file

@ -0,0 +1,83 @@
#include "sat/sat_bdd.h"
namespace sat {
static void test1() {
bdd_manager m(20);
bdd v0 = m.mk_var(0);
bdd v1 = m.mk_var(1);
bdd v2 = m.mk_var(2);
bdd c1 = v0 && v1 && v2;
bdd c2 = v2 && v0 && v1;
std::cout << c1 << "\n";
SASSERT(c1 == c2);
std::cout << "cnf size: " << c1.cnf_size() << "\n";
c1 = v0 || v1 || v2;
c2 = v2 || v1 || v0;
std::cout << c1 << "\n";
SASSERT(c1 == c2);
std::cout << "cnf size: " << c1.cnf_size() << "\n";
}
static void test2() {
bdd_manager m(20);
bdd v0 = m.mk_var(0);
bdd v1 = m.mk_var(1);
bdd v2 = m.mk_var(2);
SASSERT(m.mk_ite(v0,v0,v1) == (v0 || v1));
SASSERT(m.mk_ite(v0,v1,v1) == v1);
SASSERT(m.mk_ite(v1,v0,v1) == (v0 && v1));
SASSERT(m.mk_ite(v1,v0,v0) == v0);
SASSERT(m.mk_ite(v0,!v0,v1) == (!v0 && v1));
SASSERT(m.mk_ite(v0,v1,!v0) == (!v0 || v1));
SASSERT(!(v0 && v1) == (!v0 || !v1));
SASSERT(!(v0 || v1) == (!v0 && !v1));
}
static void test3() {
bdd_manager m(20);
bdd v0 = m.mk_var(0);
bdd v1 = m.mk_var(1);
bdd v2 = m.mk_var(2);
bdd c1 = (v0 && v1) || v2;
bdd c2 = m.mk_exists(0, c1);
std::cout << c1 << "\n";
std::cout << c2 << "\n";
SASSERT(c2 == (v1 || v2));
c2 = m.mk_exists(1, c1);
SASSERT(c2 == (v0 || v2));
c2 = m.mk_exists(2, c1);
SASSERT(c2.is_true());
SASSERT(m.mk_exists(3, c1) == c1);
c1 = (v0 && v1) || (v1 && v2) || (!v0 && !v2);
c2 = m.mk_exists(0, c1);
SASSERT(c2 == (v1 || (v1 && v2) || !v2));
c2 = m.mk_exists(1, c1);
SASSERT(c2 == (v0 || v2 || (!v0 && !v2)));
c2 = m.mk_exists(2, c1);
SASSERT(c2 == ((v0 && v1) || v1 || !v0));
}
void test4() {
bdd_manager m(3);
bdd v0 = m.mk_var(0);
bdd v1 = m.mk_var(1);
bdd v2 = m.mk_var(2);
bdd c1 = (v0 && v2) || v1;
std::cout << "before reorder:\n";
std::cout << c1 << "\n";
std::cout << c1.bdd_size() << "\n";
m.gc();
m.try_reorder();
std::cout << "after reorder:\n";
std::cout << c1 << "\n";
std::cout << c1.bdd_size() << "\n";
}
}
void tst_bdd() {
sat::test1();
sat::test2();
sat::test3();
sat::test4();
}

View file

@ -245,6 +245,7 @@ int main(int argc, char ** argv) {
TST_ARGV(sat_lookahead);
TST_ARGV(sat_local_search);
TST_ARGV(cnf_backbones);
TST(bdd);
//TST_ARGV(hs);
}

View file

@ -410,7 +410,7 @@ public:
void fill(unsigned sz, T const & elem) {
resize(sz);
fill(sz, elem);
fill(elem);
}
bool contains(T const & elem) const {
@ -472,6 +472,11 @@ typedef svector<char> char_vector;
typedef svector<signed char> signed_char_vector;
typedef svector<double> double_vector;
inline std::ostream& operator<<(std::ostream& out, unsigned_vector const& v) {
for (unsigned u : v) out << u << " ";
return out;
}
template<typename Hash, typename Vec>
struct vector_hash_tpl {
Hash m_hash;