mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 20:38:43 +00:00
Fix some PEP-8 violations in Python code (#5295)
* reformat python code using autopep8 * manually wrap some too long lines and adjust some checks * run autopep8 in aggressive mode * run autopep8 in very aggressive mode * manually reformat z3types.py * unify: use double quotes * use sys.version_info instead of sys.version * drop accidentally commited src/util/z3_version.h
This commit is contained in:
parent
f1545b04d2
commit
3d8865d925
File diff suppressed because it is too large
Load diff
|
@ -1,6 +1,6 @@
|
|||
############################################
|
||||
# Copyright (c) 2012 Microsoft Corporation
|
||||
#
|
||||
#
|
||||
# Z3 Python interface for Z3 numerals
|
||||
#
|
||||
# Author: Leonardo de Moura (leonardo)
|
||||
|
@ -12,18 +12,20 @@ from fractions import Fraction
|
|||
|
||||
from .z3 import _get_ctx
|
||||
|
||||
|
||||
def _to_numeral(num, ctx=None):
|
||||
if isinstance(num, Numeral):
|
||||
return num
|
||||
else:
|
||||
return Numeral(num, ctx)
|
||||
|
||||
|
||||
class Numeral:
|
||||
"""
|
||||
A Z3 numeral can be used to perform computations over arbitrary
|
||||
precision integers, rationals and real algebraic numbers.
|
||||
It also automatically converts python numeric values.
|
||||
|
||||
|
||||
>>> Numeral(2)
|
||||
2
|
||||
>>> Numeral("3/2") + 1
|
||||
|
@ -35,9 +37,9 @@ class Numeral:
|
|||
>>> Numeral(Sqrt(2)) + Numeral(Sqrt(3))
|
||||
3.1462643699?
|
||||
|
||||
Z3 numerals can be used to perform computations with
|
||||
Z3 numerals can be used to perform computations with
|
||||
values in a Z3 model.
|
||||
|
||||
|
||||
>>> s = Solver()
|
||||
>>> x = Real('x')
|
||||
>>> s.add(x*x == 2)
|
||||
|
@ -49,34 +51,34 @@ class Numeral:
|
|||
1.4142135623?
|
||||
>>> m[x] + 1
|
||||
1.4142135623? + 1
|
||||
|
||||
|
||||
The previous result is a Z3 expression.
|
||||
|
||||
>>> (m[x] + 1).sexpr()
|
||||
'(+ (root-obj (+ (^ x 2) (- 2)) 2) 1.0)'
|
||||
|
||||
|
||||
>>> Numeral(m[x]) + 1
|
||||
2.4142135623?
|
||||
>>> Numeral(m[x]).is_pos()
|
||||
True
|
||||
>>> Numeral(m[x])**2
|
||||
2
|
||||
|
||||
|
||||
We can also isolate the roots of polynomials.
|
||||
|
||||
>>> x0, x1, x2 = RealVarVector(3)
|
||||
>>> r0 = isolate_roots(x0**5 - x0 - 1)
|
||||
>>> r0
|
||||
[1.1673039782?]
|
||||
|
||||
|
||||
In the following example, we are isolating the roots
|
||||
of a univariate polynomial (on x1) obtained after substituting
|
||||
x0 -> r0[0]
|
||||
|
||||
|
||||
>>> r1 = isolate_roots(x1**2 - x0 + 1, [ r0[0] ])
|
||||
>>> r1
|
||||
[-0.4090280898?, 0.4090280898?]
|
||||
|
||||
|
||||
Similarly, in the next example we isolate the roots of
|
||||
a univariate polynomial (on x2) obtained after substituting
|
||||
x0 -> r0[0] and x1 -> r1[0]
|
||||
|
@ -85,10 +87,11 @@ class Numeral:
|
|||
[2.8538479564?]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, num, ctx=None):
|
||||
if isinstance(num, Ast):
|
||||
self.ast = num
|
||||
self.ctx = _get_ctx(ctx)
|
||||
self.ast = num
|
||||
self.ctx = _get_ctx(ctx)
|
||||
elif isinstance(num, RatNumRef) or isinstance(num, AlgebraicNumRef):
|
||||
self.ast = num.ast
|
||||
self.ctx = num.ctx
|
||||
|
@ -102,13 +105,13 @@ class Numeral:
|
|||
self.ctx = v.ctx
|
||||
Z3_inc_ref(self.ctx_ref(), self.as_ast())
|
||||
assert Z3_algebraic_is_value(self.ctx_ref(), self.ast)
|
||||
|
||||
|
||||
def __del__(self):
|
||||
Z3_dec_ref(self.ctx_ref(), self.as_ast())
|
||||
|
||||
def is_integer(self):
|
||||
""" Return True if the numeral is integer.
|
||||
|
||||
|
||||
>>> Numeral(2).is_integer()
|
||||
True
|
||||
>>> (Numeral(Sqrt(2)) * Numeral(Sqrt(2))).is_integer()
|
||||
|
@ -129,13 +132,13 @@ class Numeral:
|
|||
True
|
||||
>>> Numeral(Sqrt(2)).is_rational()
|
||||
False
|
||||
|
||||
|
||||
"""
|
||||
return Z3_get_ast_kind(self.ctx_ref(), self.as_ast()) == Z3_NUMERAL_AST
|
||||
|
||||
def denominator(self):
|
||||
""" Return the denominator if `self` is rational.
|
||||
|
||||
|
||||
>>> Numeral("2/3").denominator()
|
||||
3
|
||||
"""
|
||||
|
@ -144,14 +147,13 @@ class Numeral:
|
|||
|
||||
def numerator(self):
|
||||
""" Return the numerator if `self` is rational.
|
||||
|
||||
|
||||
>>> Numeral("2/3").numerator()
|
||||
2
|
||||
"""
|
||||
assert(self.is_rational())
|
||||
return Numeral(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
|
||||
|
||||
|
||||
def is_irrational(self):
|
||||
""" Return True if the numeral is irrational.
|
||||
|
||||
|
@ -169,7 +171,7 @@ class Numeral:
|
|||
|
||||
"""
|
||||
assert(self.is_integer())
|
||||
if sys.version_info[0] >= 3:
|
||||
if sys.version_info.major >= 3:
|
||||
return int(Z3_get_numeral_string(self.ctx_ref(), self.as_ast()))
|
||||
else:
|
||||
return long(Z3_get_numeral_string(self.ctx_ref(), self.as_ast()))
|
||||
|
@ -183,9 +185,9 @@ class Numeral:
|
|||
return Fraction(self.numerator().as_long(), self.denominator().as_long())
|
||||
|
||||
def approx(self, precision=10):
|
||||
"""Return a numeral that approximates the numeral `self`.
|
||||
The result `r` is such that |r - self| <= 1/10^precision
|
||||
|
||||
"""Return a numeral that approximates the numeral `self`.
|
||||
The result `r` is such that |r - self| <= 1/10^precision
|
||||
|
||||
If `self` is rational, then the result is `self`.
|
||||
|
||||
>>> x = Numeral(2).root(2)
|
||||
|
@ -199,9 +201,9 @@ class Numeral:
|
|||
return self.upper(precision)
|
||||
|
||||
def upper(self, precision=10):
|
||||
"""Return a upper bound that approximates the numeral `self`.
|
||||
The result `r` is such that r - self <= 1/10^precision
|
||||
|
||||
"""Return a upper bound that approximates the numeral `self`.
|
||||
The result `r` is such that r - self <= 1/10^precision
|
||||
|
||||
If `self` is rational, then the result is `self`.
|
||||
|
||||
>>> x = Numeral(2).root(2)
|
||||
|
@ -218,9 +220,9 @@ class Numeral:
|
|||
return Numeral(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx)
|
||||
|
||||
def lower(self, precision=10):
|
||||
"""Return a lower bound that approximates the numeral `self`.
|
||||
The result `r` is such that self - r <= 1/10^precision
|
||||
|
||||
"""Return a lower bound that approximates the numeral `self`.
|
||||
The result `r` is such that self - r <= 1/10^precision
|
||||
|
||||
If `self` is rational, then the result is `self`.
|
||||
|
||||
>>> x = Numeral(2).root(2)
|
||||
|
@ -236,7 +238,7 @@ class Numeral:
|
|||
|
||||
def sign(self):
|
||||
""" Return the sign of the numeral.
|
||||
|
||||
|
||||
>>> Numeral(2).sign()
|
||||
1
|
||||
>>> Numeral(-3).sign()
|
||||
|
@ -245,10 +247,10 @@ class Numeral:
|
|||
0
|
||||
"""
|
||||
return Z3_algebraic_sign(self.ctx_ref(), self.ast)
|
||||
|
||||
|
||||
def is_pos(self):
|
||||
""" Return True if the numeral is positive.
|
||||
|
||||
|
||||
>>> Numeral(2).is_pos()
|
||||
True
|
||||
>>> Numeral(-3).is_pos()
|
||||
|
@ -260,7 +262,7 @@ class Numeral:
|
|||
|
||||
def is_neg(self):
|
||||
""" Return True if the numeral is negative.
|
||||
|
||||
|
||||
>>> Numeral(2).is_neg()
|
||||
False
|
||||
>>> Numeral(-3).is_neg()
|
||||
|
@ -272,7 +274,7 @@ class Numeral:
|
|||
|
||||
def is_zero(self):
|
||||
""" Return True if the numeral is zero.
|
||||
|
||||
|
||||
>>> Numeral(2).is_zero()
|
||||
False
|
||||
>>> Numeral(-3).is_zero()
|
||||
|
@ -353,7 +355,7 @@ class Numeral:
|
|||
|
||||
def __rdiv__(self, other):
|
||||
""" Return the numeral `other / self`.
|
||||
>>> 3 / Numeral(2)
|
||||
>>> 3 / Numeral(2)
|
||||
3/2
|
||||
>>> 3 / Numeral(2).root(2)
|
||||
2.1213203435?
|
||||
|
@ -388,7 +390,7 @@ class Numeral:
|
|||
3
|
||||
"""
|
||||
return Numeral(Z3_algebraic_power(self.ctx_ref(), self.ast, k), self.ctx)
|
||||
|
||||
|
||||
def __pow__(self, k):
|
||||
""" Return the numeral `self^k`.
|
||||
|
||||
|
@ -415,7 +417,7 @@ class Numeral:
|
|||
def __rlt__(self, other):
|
||||
""" Return True if `other < self`.
|
||||
|
||||
>>> 2 < Numeral(Sqrt(2))
|
||||
>>> 2 < Numeral(Sqrt(2))
|
||||
False
|
||||
"""
|
||||
return self > other
|
||||
|
@ -440,7 +442,6 @@ class Numeral:
|
|||
"""
|
||||
return self < other
|
||||
|
||||
|
||||
def __le__(self, other):
|
||||
""" Return True if `self <= other`.
|
||||
|
||||
|
@ -456,7 +457,7 @@ class Numeral:
|
|||
def __rle__(self, other):
|
||||
""" Return True if `other <= self`.
|
||||
|
||||
>>> 2 <= Numeral(Sqrt(2))
|
||||
>>> 2 <= Numeral(Sqrt(2))
|
||||
False
|
||||
"""
|
||||
return self >= other
|
||||
|
@ -523,13 +524,14 @@ class Numeral:
|
|||
def ctx_ref(self):
|
||||
return self.ctx.ref()
|
||||
|
||||
|
||||
def eval_sign_at(p, vs):
|
||||
"""
|
||||
"""
|
||||
Evaluate the sign of the polynomial `p` at `vs`. `p` is a Z3
|
||||
Expression containing arithmetic operators: +, -, *, ^k where k is
|
||||
an integer; and free variables x that is_var(x) is True. Moreover,
|
||||
all variables must be real.
|
||||
|
||||
|
||||
The result is 1 if the polynomial is positive at the given point,
|
||||
-1 if negative, and 0 if zero.
|
||||
|
||||
|
@ -547,15 +549,16 @@ def eval_sign_at(p, vs):
|
|||
_vs[i] = vs[i].ast
|
||||
return Z3_algebraic_eval(p.ctx_ref(), p.as_ast(), num, _vs)
|
||||
|
||||
|
||||
def isolate_roots(p, vs=[]):
|
||||
"""
|
||||
Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the
|
||||
Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the
|
||||
roots of the univariate polynomial p(vs[0], ..., vs[len(vs)-1], x_n).
|
||||
|
||||
|
||||
Remarks:
|
||||
* p is a Z3 expression that contains only arithmetic terms and free variables.
|
||||
* forall i in [0, n) vs is a numeral.
|
||||
|
||||
|
||||
The result is a list of numerals
|
||||
|
||||
>>> x0 = RealVar(0)
|
||||
|
@ -573,5 +576,4 @@ def isolate_roots(p, vs=[]):
|
|||
for i in range(num):
|
||||
_vs[i] = vs[i].ast
|
||||
_roots = AstVector(Z3_algebraic_roots(p.ctx_ref(), p.as_ast(), num, _vs), p.ctx)
|
||||
return [ Numeral(r) for r in _roots ]
|
||||
|
||||
return [Numeral(r) for r in _roots]
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
############################################
|
||||
# Copyright (c) 2012 Microsoft Corporation
|
||||
#
|
||||
#
|
||||
# Z3 Python interface for Z3 polynomials
|
||||
#
|
||||
# Author: Leonardo de Moura (leonardo)
|
||||
|
@ -8,16 +8,17 @@
|
|||
|
||||
from .z3 import *
|
||||
|
||||
|
||||
def subresultants(p, q, x):
|
||||
"""
|
||||
Return the non-constant subresultants of 'p' and 'q' with respect to the "variable" 'x'.
|
||||
|
||||
'p', 'q' and 'x' are Z3 expressions where 'p' and 'q' are arithmetic terms.
|
||||
Note that, any subterm that cannot be viewed as a polynomial is assumed to be a variable.
|
||||
Example: f(a) is a considered to be a variable b in the polynomial
|
||||
Example: f(a) is a considered to be a variable b in the polynomial
|
||||
|
||||
f(a)*f(a) + 2*f(a) + 1
|
||||
|
||||
f(a)*f(a) + 2*f(a) + 1
|
||||
|
||||
>>> x, y = Reals('x y')
|
||||
>>> subresultants(2*x + y, 3*x - 2*y + 2, x)
|
||||
[-7*y + 4]
|
||||
|
@ -29,6 +30,7 @@ def subresultants(p, q, x):
|
|||
"""
|
||||
return AstVector(Z3_polynomial_subresultants(p.ctx_ref(), p.as_ast(), q.as_ast(), x.as_ast()), p.ctx)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
if doctest.testmod().failed:
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -1,8 +1,8 @@
|
|||
############################################
|
||||
# Copyright (c) 2013 Microsoft Corporation
|
||||
#
|
||||
#
|
||||
# Z3 Python interface for Z3 Real Closed Fields
|
||||
# that may contain
|
||||
# that may contain
|
||||
# - computable transcendentals
|
||||
# - infinitesimals
|
||||
# - algebraic extensions
|
||||
|
@ -14,42 +14,48 @@ from .z3core import *
|
|||
from .z3printer import *
|
||||
from fractions import Fraction
|
||||
|
||||
|
||||
def _to_rcfnum(num, ctx=None):
|
||||
if isinstance(num, RCFNum):
|
||||
return num
|
||||
else:
|
||||
return RCFNum(num, ctx)
|
||||
|
||||
|
||||
def Pi(ctx=None):
|
||||
ctx = z3.get_ctx(ctx)
|
||||
return RCFNum(Z3_rcf_mk_pi(ctx.ref()), ctx)
|
||||
|
||||
|
||||
def E(ctx=None):
|
||||
ctx = z3.get_ctx(ctx)
|
||||
return RCFNum(Z3_rcf_mk_e(ctx.ref()), ctx)
|
||||
|
||||
|
||||
def MkInfinitesimal(name="eps", ctx=None):
|
||||
# Todo: remove parameter name.
|
||||
# For now, we keep it for backward compatibility.
|
||||
ctx = z3.get_ctx(ctx)
|
||||
return RCFNum(Z3_rcf_mk_infinitesimal(ctx.ref()), ctx)
|
||||
|
||||
|
||||
def MkRoots(p, ctx=None):
|
||||
ctx = z3.get_ctx(ctx)
|
||||
num = len(p)
|
||||
_tmp = []
|
||||
_as = (RCFNumObj * num)()
|
||||
_rs = (RCFNumObj * num)()
|
||||
_tmp = []
|
||||
_as = (RCFNumObj * num)()
|
||||
_rs = (RCFNumObj * num)()
|
||||
for i in range(num):
|
||||
_a = _to_rcfnum(p[i], ctx)
|
||||
_tmp.append(_a) # prevent GC
|
||||
_tmp.append(_a) # prevent GC
|
||||
_as[i] = _a.num
|
||||
nr = Z3_rcf_mk_roots(ctx.ref(), num, _as, _rs)
|
||||
r = []
|
||||
r = []
|
||||
for i in range(nr):
|
||||
r.append(RCFNum(_rs[i], ctx))
|
||||
return r
|
||||
|
||||
|
||||
class RCFNum:
|
||||
def __init__(self, num, ctx=None):
|
||||
# TODO: add support for converting AST numeral values into RCFNum
|
||||
|
@ -65,7 +71,7 @@ class RCFNum:
|
|||
|
||||
def ctx_ref(self):
|
||||
return self.ctx.ref()
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
return Z3_rcf_num_to_string(self.ctx_ref(), self.num, False, in_html_mode())
|
||||
|
||||
|
@ -112,10 +118,10 @@ class RCFNum:
|
|||
|
||||
def __pow__(self, k):
|
||||
return self.power(k)
|
||||
|
||||
|
||||
def decimal(self, prec=5):
|
||||
return Z3_rcf_num_to_decimal_string(self.ctx_ref(), self.num, prec)
|
||||
|
||||
|
||||
def __lt__(self, other):
|
||||
v = _to_rcfnum(other, self.ctx)
|
||||
return Z3_rcf_lt(self.ctx_ref(), self.num, v.num)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
############################################
|
||||
# Copyright (c) 2012 Microsoft Corporation
|
||||
#
|
||||
#
|
||||
# Z3 Python interface
|
||||
#
|
||||
# Author: Leonardo de Moura (leonardo)
|
||||
|
@ -8,123 +8,234 @@
|
|||
|
||||
import ctypes
|
||||
|
||||
|
||||
class Z3Exception(Exception):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def __str__(self):
|
||||
return str(self.value)
|
||||
|
||||
|
||||
class ContextObj(ctypes.c_void_p):
|
||||
def __init__(self, context): self._as_parameter_ = context
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, context):
|
||||
self._as_parameter_ = context
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class Config(ctypes.c_void_p):
|
||||
def __init__(self, config): self._as_parameter_ = config
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, config):
|
||||
self._as_parameter_ = config
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class Symbol(ctypes.c_void_p):
|
||||
def __init__(self, symbol): self._as_parameter_ = symbol
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, symbol):
|
||||
self._as_parameter_ = symbol
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class Sort(ctypes.c_void_p):
|
||||
def __init__(self, sort): self._as_parameter_ = sort
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, sort):
|
||||
self._as_parameter_ = sort
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class FuncDecl(ctypes.c_void_p):
|
||||
def __init__(self, decl): self._as_parameter_ = decl
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, decl):
|
||||
self._as_parameter_ = decl
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class Ast(ctypes.c_void_p):
|
||||
def __init__(self, ast): self._as_parameter_ = ast
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, ast):
|
||||
self._as_parameter_ = ast
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class Pattern(ctypes.c_void_p):
|
||||
def __init__(self, pattern): self._as_parameter_ = pattern
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, pattern):
|
||||
self._as_parameter_ = pattern
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class Model(ctypes.c_void_p):
|
||||
def __init__(self, model): self._as_parameter_ = model
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, model):
|
||||
self._as_parameter_ = model
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class Literals(ctypes.c_void_p):
|
||||
def __init__(self, literals): self._as_parameter_ = literals
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, literals):
|
||||
self._as_parameter_ = literals
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class Constructor(ctypes.c_void_p):
|
||||
def __init__(self, constructor): self._as_parameter_ = constructor
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, constructor):
|
||||
self._as_parameter_ = constructor
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class ConstructorList(ctypes.c_void_p):
|
||||
def __init__(self, constructor_list): self._as_parameter_ = constructor_list
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, constructor_list):
|
||||
self._as_parameter_ = constructor_list
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class GoalObj(ctypes.c_void_p):
|
||||
def __init__(self, goal): self._as_parameter_ = goal
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, goal):
|
||||
self._as_parameter_ = goal
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class TacticObj(ctypes.c_void_p):
|
||||
def __init__(self, tactic): self._as_parameter_ = tactic
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, tactic):
|
||||
self._as_parameter_ = tactic
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class ProbeObj(ctypes.c_void_p):
|
||||
def __init__(self, probe): self._as_parameter_ = probe
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, probe):
|
||||
self._as_parameter_ = probe
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class ApplyResultObj(ctypes.c_void_p):
|
||||
def __init__(self, obj): self._as_parameter_ = obj
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, obj):
|
||||
self._as_parameter_ = obj
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class StatsObj(ctypes.c_void_p):
|
||||
def __init__(self, statistics): self._as_parameter_ = statistics
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, statistics):
|
||||
self._as_parameter_ = statistics
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class SolverObj(ctypes.c_void_p):
|
||||
def __init__(self, solver): self._as_parameter_ = solver
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, solver):
|
||||
self._as_parameter_ = solver
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class SolverCallbackObj(ctypes.c_void_p):
|
||||
def __init__(self, solver): self._as_parameter_ = solver
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, solver):
|
||||
self._as_parameter_ = solver
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class FixedpointObj(ctypes.c_void_p):
|
||||
def __init__(self, fixedpoint): self._as_parameter_ = fixedpoint
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, fixedpoint):
|
||||
self._as_parameter_ = fixedpoint
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class OptimizeObj(ctypes.c_void_p):
|
||||
def __init__(self, optimize): self._as_parameter_ = optimize
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, optimize):
|
||||
self._as_parameter_ = optimize
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class ModelObj(ctypes.c_void_p):
|
||||
def __init__(self, model): self._as_parameter_ = model
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, model):
|
||||
self._as_parameter_ = model
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class AstVectorObj(ctypes.c_void_p):
|
||||
def __init__(self, vector): self._as_parameter_ = vector
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, vector):
|
||||
self._as_parameter_ = vector
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class AstMapObj(ctypes.c_void_p):
|
||||
def __init__(self, ast_map): self._as_parameter_ = ast_map
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, ast_map):
|
||||
self._as_parameter_ = ast_map
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class Params(ctypes.c_void_p):
|
||||
def __init__(self, params): self._as_parameter_ = params
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, params):
|
||||
self._as_parameter_ = params
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class ParamDescrs(ctypes.c_void_p):
|
||||
def __init__(self, paramdescrs): self._as_parameter_ = paramdescrs
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, paramdescrs):
|
||||
self._as_parameter_ = paramdescrs
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class FuncInterpObj(ctypes.c_void_p):
|
||||
def __init__(self, f): self._as_parameter_ = f
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, f):
|
||||
self._as_parameter_ = f
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class FuncEntryObj(ctypes.c_void_p):
|
||||
def __init__(self, e): self._as_parameter_ = e
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, e):
|
||||
self._as_parameter_ = e
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
||||
|
||||
class RCFNumObj(ctypes.c_void_p):
|
||||
def __init__(self, e): self._as_parameter_ = e
|
||||
def from_param(obj): return obj
|
||||
def __init__(self, e):
|
||||
self._as_parameter_ = e
|
||||
|
||||
|
||||
|
||||
def from_param(obj):
|
||||
return obj
|
||||
|
|
|
@ -1,21 +1,22 @@
|
|||
############################################
|
||||
# Copyright (c) 2012 Microsoft Corporation
|
||||
#
|
||||
#
|
||||
# Z3 Python interface
|
||||
#
|
||||
# Authors: Leonardo de Moura (leonardo)
|
||||
# ThanhVu (Vu) Nguyen <tnguyen@cs.unm.edu>
|
||||
############################################
|
||||
"""
|
||||
Usage:
|
||||
Usage:
|
||||
import common_z3 as CM_Z3
|
||||
"""
|
||||
|
||||
import ctypes
|
||||
from .z3 import *
|
||||
|
||||
|
||||
def vset(seq, idfun=None, as_list=True):
|
||||
# This functions preserves the order of arguments while removing duplicates.
|
||||
# This functions preserves the order of arguments while removing duplicates.
|
||||
# This function is from https://code.google.com/p/common-python-vu/source/browse/vu_common.py
|
||||
# (Thanhu's personal code). It has been copied here to avoid a dependency on vu_common.py.
|
||||
"""
|
||||
|
@ -24,36 +25,36 @@ def vset(seq, idfun=None, as_list=True):
|
|||
>>> vset([[11,2],1, [10,['9',1]],2, 1, [11,2],[3,3],[10,99],1,[10,['9',1]]],idfun=repr)
|
||||
[[11, 2], 1, [10, ['9', 1]], 2, [3, 3], [10, 99]]
|
||||
"""
|
||||
|
||||
|
||||
def _uniq_normal(seq):
|
||||
d_ = {}
|
||||
for s in seq:
|
||||
if s not in d_:
|
||||
d_[s] = None
|
||||
yield s
|
||||
|
||||
def _uniq_idfun(seq,idfun):
|
||||
|
||||
def _uniq_idfun(seq, idfun):
|
||||
d_ = {}
|
||||
for s in seq:
|
||||
h_ = idfun(s)
|
||||
if h_ not in d_:
|
||||
d_[h_] = None
|
||||
yield s
|
||||
|
||||
|
||||
if idfun is None:
|
||||
res = _uniq_normal(seq)
|
||||
else:
|
||||
res = _uniq_idfun(seq,idfun)
|
||||
|
||||
return list(res) if as_list else res
|
||||
else:
|
||||
res = _uniq_idfun(seq, idfun)
|
||||
|
||||
return list(res) if as_list else res
|
||||
|
||||
|
||||
def get_z3_version(as_str=False):
|
||||
major = ctypes.c_uint(0)
|
||||
minor = ctypes.c_uint(0)
|
||||
build = ctypes.c_uint(0)
|
||||
rev = ctypes.c_uint(0)
|
||||
Z3_get_version(major,minor, build, rev)
|
||||
rev = ctypes.c_uint(0)
|
||||
Z3_get_version(major, minor, build, rev)
|
||||
rs = map(int, (major.value, minor.value, build.value, rev.value))
|
||||
if as_str:
|
||||
return "{}.{}.{}.{}".format(*rs)
|
||||
|
@ -64,9 +65,9 @@ def get_z3_version(as_str=False):
|
|||
def ehash(v):
|
||||
"""
|
||||
Returns a 'stronger' hash value than the default hash() method.
|
||||
The result from hash() is not enough to distinguish between 2
|
||||
The result from hash() is not enough to distinguish between 2
|
||||
z3 expressions in some cases.
|
||||
|
||||
|
||||
Note: the following doctests will fail with Python 2.x as the
|
||||
default formatting doesn't match that of 3.x.
|
||||
>>> x1 = Bool('x'); x2 = Bool('x'); x3 = Int('x')
|
||||
|
@ -74,7 +75,7 @@ def ehash(v):
|
|||
783810685 783810685 783810685
|
||||
>>> print(ehash(x1), ehash(x2), ehash(x3))
|
||||
x_783810685_1 x_783810685_1 x_783810685_2
|
||||
|
||||
|
||||
"""
|
||||
if z3_debug():
|
||||
assert is_expr(v)
|
||||
|
@ -83,10 +84,11 @@ def ehash(v):
|
|||
|
||||
|
||||
"""
|
||||
In Z3, variables are called *uninterpreted* consts and
|
||||
In Z3, variables are called *uninterpreted* consts and
|
||||
variables are *interpreted* consts.
|
||||
"""
|
||||
|
||||
|
||||
def is_expr_var(v):
|
||||
"""
|
||||
EXAMPLES:
|
||||
|
@ -111,7 +113,8 @@ def is_expr_var(v):
|
|||
True
|
||||
"""
|
||||
|
||||
return is_const(v) and v.decl().kind()==Z3_OP_UNINTERPRETED
|
||||
return is_const(v) and v.decl().kind() == Z3_OP_UNINTERPRETED
|
||||
|
||||
|
||||
def is_expr_val(v):
|
||||
"""
|
||||
|
@ -135,13 +138,11 @@ def is_expr_val(v):
|
|||
False
|
||||
>>> is_expr_val(SafetyInjection)
|
||||
False
|
||||
"""
|
||||
return is_const(v) and v.decl().kind()!=Z3_OP_UNINTERPRETED
|
||||
"""
|
||||
return is_const(v) and v.decl().kind() != Z3_OP_UNINTERPRETED
|
||||
|
||||
|
||||
|
||||
|
||||
def get_vars(f, rs = None):
|
||||
def get_vars(f, rs=None):
|
||||
"""
|
||||
>>> x,y = Ints('x y')
|
||||
>>> a,b = Bools('a b')
|
||||
|
@ -151,15 +152,15 @@ def get_vars(f, rs = None):
|
|||
"""
|
||||
if rs is None:
|
||||
rs = []
|
||||
|
||||
|
||||
if z3_debug():
|
||||
assert is_expr(f)
|
||||
|
||||
if is_const(f):
|
||||
if is_expr_val(f):
|
||||
return rs
|
||||
else: #variable
|
||||
return vset(rs + [f],str)
|
||||
else: # variable
|
||||
return vset(rs + [f], str)
|
||||
|
||||
else:
|
||||
for f_ in f.children():
|
||||
|
@ -168,7 +169,6 @@ def get_vars(f, rs = None):
|
|||
return vset(rs, str)
|
||||
|
||||
|
||||
|
||||
def mk_var(name, vsort):
|
||||
if vsort.kind() == Z3_INT_SORT:
|
||||
v = Int(name)
|
||||
|
@ -179,13 +179,12 @@ def mk_var(name, vsort):
|
|||
elif vsort.kind() == Z3_DATATYPE_SORT:
|
||||
v = Const(name, vsort)
|
||||
else:
|
||||
raise TypeError('Cannot handle this sort (s: %sid: %d)' %(vsort,vsort.kind()))
|
||||
|
||||
raise TypeError("Cannot handle this sort (s: %sid: %d)" % (vsort, vsort.kind()))
|
||||
|
||||
return v
|
||||
|
||||
|
||||
|
||||
def prove(claim,assume=None,verbose=0):
|
||||
def prove(claim, assume=None, verbose=0):
|
||||
"""
|
||||
>>> r,m = prove(BoolVal(True),verbose=0); r,model_str(m,as_str=False)
|
||||
(True, None)
|
||||
|
@ -204,11 +203,11 @@ def prove(claim,assume=None,verbose=0):
|
|||
AssertionError: Assumption is always False!
|
||||
|
||||
>>> r,m = prove(Implies(x,x),assume=y,verbose=2); r,model_str(m,as_str=False)
|
||||
assume:
|
||||
assume:
|
||||
y
|
||||
claim:
|
||||
claim:
|
||||
Implies(x, x)
|
||||
to_prove:
|
||||
to_prove:
|
||||
Implies(y, Implies(x, x))
|
||||
(True, None)
|
||||
|
||||
|
@ -236,52 +235,52 @@ def prove(claim,assume=None,verbose=0):
|
|||
to_prove = claim
|
||||
if assume:
|
||||
if z3_debug():
|
||||
is_proved,_ = prove(Not(assume))
|
||||
is_proved, _ = prove(Not(assume))
|
||||
|
||||
def _f():
|
||||
emsg = "Assumption is always False!"
|
||||
if verbose >= 2:
|
||||
emsg = "{}\n{}".format(assume,emsg)
|
||||
emsg = "{}\n{}".format(assume, emsg)
|
||||
return emsg
|
||||
|
||||
assert is_proved==False, _f()
|
||||
assert is_proved == False, _f()
|
||||
|
||||
to_prove = Implies(assume,to_prove)
|
||||
to_prove = Implies(assume, to_prove)
|
||||
|
||||
if verbose >= 2:
|
||||
print('assume: ')
|
||||
print("assume: ")
|
||||
print(assume)
|
||||
print('claim: ')
|
||||
print("claim: ")
|
||||
print(claim)
|
||||
print('to_prove: ')
|
||||
print("to_prove: ")
|
||||
print(to_prove)
|
||||
|
||||
f = Not(to_prove)
|
||||
|
||||
models = get_models(f,k=1)
|
||||
if models is None: #unknown
|
||||
print('E: cannot solve !')
|
||||
models = get_models(f, k=1)
|
||||
if models is None: # unknown
|
||||
print("E: cannot solve !")
|
||||
return None, None
|
||||
elif models == False: #unsat
|
||||
return True,None
|
||||
else: #sat
|
||||
elif models == False: # unsat
|
||||
return True, None
|
||||
else: # sat
|
||||
if z3_debug():
|
||||
assert isinstance(models,list)
|
||||
assert isinstance(models, list)
|
||||
|
||||
if models:
|
||||
return False, models[0] #the first counterexample
|
||||
return False, models[0] # the first counterexample
|
||||
else:
|
||||
return False, [] #infinite counterexample,models
|
||||
|
||||
return False, [] # infinite counterexample,models
|
||||
|
||||
def get_models(f,k):
|
||||
|
||||
def get_models(f, k):
|
||||
"""
|
||||
Returns the first k models satisfiying f.
|
||||
If f is not satisfiable, returns False.
|
||||
If f cannot be solved, returns None
|
||||
If f is satisfiable, returns the first k models
|
||||
Note that if f is a tautology, e.g.\ True, then the result is []
|
||||
|
||||
Note that if f is a tautology, e.g.\\ True, then the result is []
|
||||
|
||||
Based on http://stackoverflow.com/questions/11867611/z3py-checking-all-solutions-for-equation
|
||||
|
||||
EXAMPLES:
|
||||
|
@ -314,7 +313,7 @@ def get_models(f,k):
|
|||
if z3_debug():
|
||||
assert is_expr(f)
|
||||
assert k >= 1
|
||||
|
||||
|
||||
s = Solver()
|
||||
s.add(f)
|
||||
|
||||
|
@ -323,16 +322,14 @@ def get_models(f,k):
|
|||
while s.check() == sat and i < k:
|
||||
i = i + 1
|
||||
m = s.model()
|
||||
if not m: #if m == []
|
||||
if not m: # if m == []
|
||||
break
|
||||
models.append(m)
|
||||
|
||||
|
||||
#create new constraint to block the current model
|
||||
# create new constraint to block the current model
|
||||
block = Not(And([v() == m[v] for v in m]))
|
||||
s.add(block)
|
||||
|
||||
|
||||
if s.check() == unknown:
|
||||
return None
|
||||
elif s.check() == unsat and i == 0:
|
||||
|
@ -340,7 +337,8 @@ def get_models(f,k):
|
|||
else:
|
||||
return models
|
||||
|
||||
def is_tautology(claim,verbose=0):
|
||||
|
||||
def is_tautology(claim, verbose=0):
|
||||
"""
|
||||
>>> is_tautology(Implies(Bool('x'),Bool('x')))
|
||||
True
|
||||
|
@ -355,38 +353,38 @@ def is_tautology(claim,verbose=0):
|
|||
False
|
||||
|
||||
"""
|
||||
return prove(claim=claim,assume=None,verbose=verbose)[0]
|
||||
return prove(claim=claim, assume=None, verbose=verbose)[0]
|
||||
|
||||
|
||||
def is_contradiction(claim,verbose=0):
|
||||
def is_contradiction(claim, verbose=0):
|
||||
"""
|
||||
>>> x,y=Bools('x y')
|
||||
>>> is_contradiction(BoolVal(False))
|
||||
True
|
||||
|
||||
|
||||
>>> is_contradiction(BoolVal(True))
|
||||
False
|
||||
|
||||
|
||||
>>> is_contradiction(x)
|
||||
False
|
||||
|
||||
|
||||
>>> is_contradiction(Implies(x,y))
|
||||
False
|
||||
|
||||
|
||||
>>> is_contradiction(Implies(x,x))
|
||||
False
|
||||
|
||||
|
||||
>>> is_contradiction(And(x,Not(x)))
|
||||
True
|
||||
"""
|
||||
|
||||
return prove(claim=Not(claim),assume=None,verbose=verbose)[0]
|
||||
return prove(claim=Not(claim), assume=None, verbose=verbose)[0]
|
||||
|
||||
|
||||
def exact_one_model(f):
|
||||
"""
|
||||
return True if f has exactly 1 model, False otherwise.
|
||||
|
||||
|
||||
EXAMPLES:
|
||||
|
||||
>>> x, y = Ints('x y')
|
||||
|
@ -403,30 +401,29 @@ def exact_one_model(f):
|
|||
False
|
||||
"""
|
||||
|
||||
models = get_models(f,k=2)
|
||||
if isinstance(models,list):
|
||||
return len(models)==1
|
||||
models = get_models(f, k=2)
|
||||
if isinstance(models, list):
|
||||
return len(models) == 1
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
|
||||
def myBinOp(op,*L):
|
||||
|
||||
def myBinOp(op, *L):
|
||||
"""
|
||||
>>> myAnd(*[Bool('x'),Bool('y')])
|
||||
And(x, y)
|
||||
|
||||
|
||||
>>> myAnd(*[Bool('x'),None])
|
||||
x
|
||||
|
||||
|
||||
>>> myAnd(*[Bool('x')])
|
||||
x
|
||||
|
||||
|
||||
>>> myAnd(*[])
|
||||
|
||||
|
||||
>>> myAnd(Bool('x'),Bool('y'))
|
||||
And(x, y)
|
||||
|
||||
|
||||
>>> myAnd(*[Bool('x'),Bool('y')])
|
||||
And(x, y)
|
||||
|
||||
|
@ -435,7 +432,7 @@ def myBinOp(op,*L):
|
|||
|
||||
>>> myAnd((Bool('x'),Bool('y')))
|
||||
And(x, y)
|
||||
|
||||
|
||||
>>> myAnd(*[Bool('x'),Bool('y'),True])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
|
@ -444,59 +441,62 @@ def myBinOp(op,*L):
|
|||
|
||||
if z3_debug():
|
||||
assert op == Z3_OP_OR or op == Z3_OP_AND or op == Z3_OP_IMPLIES
|
||||
|
||||
if len(L)==1 and (isinstance(L[0],list) or isinstance(L[0],tuple)):
|
||||
|
||||
if len(L) == 1 and (isinstance(L[0], list) or isinstance(L[0], tuple)):
|
||||
L = L[0]
|
||||
|
||||
if z3_debug():
|
||||
assert all(not isinstance(l,bool) for l in L)
|
||||
assert all(not isinstance(l, bool) for l in L)
|
||||
|
||||
L = [l for l in L if is_expr(l)]
|
||||
if L:
|
||||
if len(L)==1:
|
||||
if len(L) == 1:
|
||||
return L[0]
|
||||
if op == Z3_OP_OR:
|
||||
if op == Z3_OP_OR:
|
||||
return Or(L)
|
||||
if op == Z3_OP_AND:
|
||||
return And(L)
|
||||
return Implies(L[0],L[1])
|
||||
return And(L)
|
||||
return Implies(L[0], L[1])
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def myAnd(*L):
|
||||
return myBinOp(Z3_OP_AND,*L)
|
||||
return myBinOp(Z3_OP_AND, *L)
|
||||
|
||||
|
||||
def myOr(*L):
|
||||
return myBinOp(Z3_OP_OR,*L)
|
||||
return myBinOp(Z3_OP_OR, *L)
|
||||
|
||||
def myImplies(a,b):
|
||||
return myBinOp(Z3_OP_IMPLIES,[a,b])
|
||||
|
||||
|
||||
Iff = lambda f: And(Implies(f[0],f[1]),Implies(f[1],f[0]))
|
||||
def myImplies(a, b):
|
||||
return myBinOp(Z3_OP_IMPLIES, [a, b])
|
||||
|
||||
def model_str(m,as_str=True):
|
||||
|
||||
def Iff(f):
|
||||
return And(Implies(f[0], f[1]), Implies(f[1], f[0]))
|
||||
|
||||
|
||||
def model_str(m, as_str=True):
|
||||
"""
|
||||
Returned a 'sorted' model (so that it's easier to see)
|
||||
The model is sorted by its key,
|
||||
e.g. if the model is y = 3 , x = 10, then the result is
|
||||
The model is sorted by its key,
|
||||
e.g. if the model is y = 3 , x = 10, then the result is
|
||||
x = 10, y = 3
|
||||
|
||||
EXAMPLES:
|
||||
see doctest exampels from function prove()
|
||||
see doctest exampels from function prove()
|
||||
|
||||
"""
|
||||
if z3_debug():
|
||||
assert m is None or m == [] or isinstance(m,ModelRef)
|
||||
assert m is None or m == [] or isinstance(m, ModelRef)
|
||||
|
||||
if m :
|
||||
vs = [(v,m[v]) for v in m]
|
||||
vs = sorted(vs,key=lambda a,_: str(a))
|
||||
if m:
|
||||
vs = [(v, m[v]) for v in m]
|
||||
vs = sorted(vs, key=lambda a, _: str(a))
|
||||
if as_str:
|
||||
return '\n'.join(['{} = {}'.format(k,v) for (k,v) in vs])
|
||||
return "\n".join(["{} = {}".format(k, v) for (k, v) in vs])
|
||||
else:
|
||||
return vs
|
||||
else:
|
||||
return str(m) if as_str else m
|
||||
|
||||
|
|
Loading…
Reference in a new issue