3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 20:05:51 +00:00

use ADT for strings

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2015-12-12 20:46:28 -08:00
parent a7e2fb31e3
commit 3c50508762
10 changed files with 421 additions and 201 deletions

View file

@ -127,6 +127,7 @@ theory_seq::theory_seq(ast_manager& m):
m(m),
m_dam(m_dep_array_value_manager, m_alloc),
m_rep(m, m_dm),
m_cache(m),
m_sort2len_fn(m),
m_factory(0),
m_ineqs(m),
@ -135,6 +136,7 @@ theory_seq::theory_seq(ast_manager& m):
m_axioms_head(0),
m_branch_variable_head(0),
m_incomplete(false),
m_has_length(false),
m_model_completion(false),
m_rewrite(m),
m_util(m),
@ -249,10 +251,10 @@ bool theory_seq::find_branch_candidate(expr* l, ptr_vector<expr> const& rs) {
if (occurs(l, rs[j])) {
return false;
}
std::string s;
zstring s;
if (m_util.str.is_string(rs[j], s)) {
for (size_t k = 1; k < s.length(); ++k) {
v = m_util.str.mk_string(std::string(s.c_str(), k));
v = m_util.str.mk_string(s.extract(0, k));
if (v0) v = m_util.str.mk_concat(v0, v);
if (assume_equality(l, v)) {
return true;
@ -426,6 +428,7 @@ bool theory_seq::is_right_select(expr* a, expr*& b) {
void theory_seq::add_solution(expr* l, expr* r, enode_pair_dependency* deps) {
context& ctx = get_context();
m_rep.update(l, r, deps);
m_cache.reset();
// TBD: skip new equalities for non-internalized terms.
if (ctx.e_internalized(l) && ctx.e_internalized(r)) {
propagate_eq(deps, ctx.get_enode(l), ctx.get_enode(r));
@ -508,6 +511,10 @@ bool theory_seq::internalize_term(app* term) {
}
mk_var(e);
}
if (m_util.str.is_length(term) && !m_has_length) {
m_trail_stack.push(value_trail<theory_seq, bool>(m_has_length));
m_has_length = true;
}
if (!m_util.str.is_concat(term) &&
!m_util.str.is_string(term) &&
!m_util.str.is_empty(term) &&
@ -635,37 +642,49 @@ expr_ref theory_seq::canonize(expr* e, enode_pair_dependency*& eqs) {
expr_ref theory_seq::expand(expr* e, enode_pair_dependency*& eqs) {
enode_pair_dependency* deps = 0;
expr* r = 0;
if (m_cache.find(e, r)) {
return expr_ref(r, m);
}
e = m_rep.find(e, deps);
expr_ref result(m);
expr* e1, *e2;
eqs = m_dm.mk_join(eqs, deps);
if (m_util.str.is_concat(e, e1, e2)) {
return expr_ref(m_util.str.mk_concat(expand(e1, eqs), expand(e2, eqs)), m);
result = m_util.str.mk_concat(expand(e1, eqs), expand(e2, eqs));
}
if (m_util.str.is_empty(e) || m_util.str.is_string(e)) {
return expr_ref(e, m);
else if (m_util.str.is_empty(e) || m_util.str.is_string(e)) {
result = e;
}
if (m.is_eq(e, e1, e2)) {
return expr_ref(m.mk_eq(expand(e1, eqs), expand(e2, eqs)), m);
else if (m.is_eq(e, e1, e2)) {
result = m.mk_eq(expand(e1, eqs), expand(e2, eqs));
}
if (m_util.str.is_prefix(e, e1, e2)) {
return expr_ref(m_util.str.mk_prefix(expand(e1, eqs), expand(e2, eqs)), m);
else if (m_util.str.is_prefix(e, e1, e2)) {
result = m_util.str.mk_prefix(expand(e1, eqs), expand(e2, eqs));
}
if (m_util.str.is_suffix(e, e1, e2)) {
return expr_ref(m_util.str.mk_suffix(expand(e1, eqs), expand(e2, eqs)), m);
else if (m_util.str.is_suffix(e, e1, e2)) {
result = m_util.str.mk_suffix(expand(e1, eqs), expand(e2, eqs));
}
if (m_util.str.is_contains(e, e1, e2)) {
return expr_ref(m_util.str.mk_contains(expand(e1, eqs), expand(e2, eqs)), m);
else if (m_util.str.is_contains(e, e1, e2)) {
result = m_util.str.mk_contains(expand(e1, eqs), expand(e2, eqs));
}
if (m_model_completion && is_var(e)) {
else if (m_model_completion && is_var(e)) {
SASSERT(m_factory);
expr_ref val(m);
val = m_factory->get_fresh_value(m.get_sort(e));
if (val) {
m_rep.update(e, val, 0);
return val;
result = val;
}
else {
result = e;
}
}
return expr_ref(e, m);
else {
result = e;
}
m_cache.insert(e, result);
return result;
}
void theory_seq::add_dependency(enode_pair_dependency*& dep, enode* a, enode* b) {
@ -707,48 +726,18 @@ void theory_seq::deque_axiom(expr* n) {
else if (m_util.str.is_at(n)) {
add_at_axiom(n);
}
}
/*
\brief nodes n1 and n2 are about to get merged.
if n1 occurs in the context of a length application,
then instantiate length axioms for each concatenation in the class of n2.
In this way we ensure that length respects concatenation.
*/
void theory_seq::new_eq_len_concat(enode* n1, enode* n2) {
context& ctx = get_context();
if (n1->get_root() == n2->get_root()) {
return;
else if (m_util.str.is_unit(n)) {
add_length_unit_axiom(n);
}
SASSERT(n1->get_root() != n2->get_root());
if (!m_util.is_seq(n1->get_owner())) {
return;
else if (m_util.str.is_empty(n)) {
add_length_empty_axiom(n);
}
func_decl* f_len = 0;
if (!m_sort2len_fn.find(m.get_sort(n1->get_owner()), f_len)) {
return;
else if (m_util.str.is_concat(n)) {
add_length_concat_axiom(n);
}
enode* r1 = n1->get_root();
enode_vector::const_iterator it = ctx.begin_enodes_of(f_len);
enode_vector::const_iterator end = ctx.end_enodes_of(f_len);
bool has_len = false;
for (; !has_len && it != end; ++it) {
has_len = ((*it)->get_root() == r1);
else if (m_util.str.is_string(n)) {
add_length_string_axiom(n);
}
if (!has_len) {
return;
}
enode* start2 = n2;
do {
expr* o = n2->get_owner();
if (!is_var(o)) {
expr_ref ln(m_util.str.mk_length(o), m);
enque_axiom(ln);
}
n2 = n2->get_next();
}
while (n2 != start2);
}
@ -760,7 +749,7 @@ void theory_seq::new_eq_len_concat(enode* n1, enode* n2) {
lit or s = "" or len(c) = 1
lit or s = "" or !prefix(s, x*s1)
*/
void theory_seq::tightest_prefix(expr* s, expr* x, literal lit) {
void theory_seq::tightest_prefix(expr* s, expr* x, literal lit1, literal lit2) {
expr_ref s1 = mk_skolem(symbol("seq.first"), s);
expr_ref c = mk_skolem(symbol("seq.last"), s);
expr_ref s1c(m_util.str.mk_concat(s1, c), m);
@ -768,26 +757,32 @@ void theory_seq::tightest_prefix(expr* s, expr* x, literal lit) {
expr_ref one(m_autil.mk_int(1), m);
expr_ref emp(m_util.str.mk_empty(m.get_sort(s)), m);
literal s_eq_emp = mk_eq(s, emp, false);
add_axiom(lit, s_eq_emp, mk_eq(s, s1c, false));
add_axiom(lit, s_eq_emp, mk_eq(lc, one, false));
add_axiom(lit, s_eq_emp, ~mk_literal(m_util.str.mk_contains(s, m_util.str.mk_concat(x, s1))));
add_axiom(lit1, lit2, s_eq_emp, mk_eq(s, s1c, false));
add_axiom(lit1, lit2, s_eq_emp, mk_eq(lc, one, false));
add_axiom(lit1, lit2, s_eq_emp, ~mk_literal(m_util.str.mk_contains(s, m_util.str.mk_concat(x, s1))));
}
/*
// index of s in t starting at offset.
let i = Index(t, s, 0):
len(t) = 0 => i = -1
len(t) != 0 & !contains(t, s) => i = -1
len(t) != 0 & contains(t, s) => t = xsy & i = len(x)
len(t) != 0 & contains(t, s) & s != emp => tightest_prefix(x, s)
let i = Index(t, s, offset)
if offset = 0:
(!contains(t, s) -> i = -1)
(s = empty -> i = 0)
(contains(t, s) & s != empty -> t = xsy)
(contains(t, s) -> tightest_prefix(s, x))
if 0 <= offset < len(t):
t = zt' & len(z) == offset
add above constraints with t'
if offset >= len(t):
i = -1
if offset < 0:
?
0 <= offset < len(t) => xy = t & len(x) = offset & (-1 = indexof(t, s, 0) => -1 = i)
& (indexof(t, s, 0) >= 0 => indexof(t, s, 0) + offset = i)
offset = len(t) => i = -1
if offset < 0 or offset >= len(t)
under specified
optional lemmas:
(len(s) > len(t) -> i = -1)
@ -801,20 +796,45 @@ void theory_seq::add_indexof_axiom(expr* i) {
minus_one = m_autil.mk_int(-1);
zero = m_autil.mk_int(0);
emp = m_util.str.mk_empty(m.get_sort(s));
if (m_autil.is_numeral(offset, r) && r.is_zero()) {
literal offset_ne_zero = null_literal;
bool is_num = m_autil.is_numeral(offset, r);
if (is_num && r.is_zero()) {
offset_ne_zero = null_literal;
}
else {
offset_ne_zero = ~mk_eq(offset, zero, false);
}
if (!is_num || r.is_zero()) {
expr_ref x = mk_skolem(m_contains_left_sym, t, s);
expr_ref y = mk_skolem(m_contains_right_sym, t, s);
xsy = m_util.str.mk_concat(x,s,y);
literal cnt = mk_literal(m_util.str.mk_contains(t, s));
literal eq_empty = mk_eq(s, emp, false);
add_axiom(cnt, mk_eq(i, minus_one, false));
add_axiom(~eq_empty, mk_eq(i, zero, false));
add_axiom(~cnt, eq_empty, mk_eq(t, xsy, false));
tightest_prefix(s, x, ~cnt);
add_axiom(offset_ne_zero, cnt, mk_eq(i, minus_one, false));
add_axiom(offset_ne_zero, ~eq_empty, mk_eq(i, zero, false));
add_axiom(offset_ne_zero, ~cnt, eq_empty, mk_eq(t, xsy, false));
tightest_prefix(s, x, ~cnt, offset_ne_zero);
}
else {
// TBD
if (is_num && r.is_zero()) {
return;
}
// offset >= len(t) => indexof(s, t, offset) = -1
expr_ref len_t(m_util.str.mk_length(t), m);
literal offset_ge_len = mk_literal(m_autil.mk_ge(mk_sub(offset, len_t), zero));
add_axiom(offset_ge_len, mk_eq(i, minus_one, false));
// 0 <= offset & offset < len(t) => t = xy
// 0 <= offset & offset < len(t) => len(x) = offset
// 0 <= offset & offset < len(t) & ~contains(s, y) => indexof(t, s, offset) = -1
// 0 <= offset & offset < len(t) & contains(s, y) => index(t, s, offset) = indexof(y, s, 0) + len(t)
expr_ref x = mk_skolem(symbol("seq.indexof.left"), t, s, offset);
expr_ref y = mk_skolem(symbol("seq.indexof.right"), t, s, offset);
expr_ref indexof(m_util.str.mk_index(y, s, zero), m);
// TBD:
//literal offset_ge_0 = mk_literal(m_autil.mk_ge(offset, zero));
//add_axiom(~offset_ge_0, offset_ge_len, mk_eq(indexof, i, false));
//add_axiom(~offset_ge_0, offset_ge_len, mk_eq(m_util.str.mk_length(x), offset, false));
//add_axiom(~offset_ge_0, offset_ge_len, mk_eq(t, m_util.str.mk_concat(x, y), false));
}
/*
@ -839,39 +859,56 @@ void theory_seq::add_replace_axiom(expr* r) {
tightest_prefix(s, x, ~cnt);
}
void theory_seq::add_length_unit_axiom(expr* n) {
if (!m_has_length) return;
SASSERT(m_util.str.is_unit(n));
expr_ref one(m_autil.mk_int(1), m), len(m_util.str.mk_length(n), m);
add_axiom(mk_eq(len, one, false));
}
void theory_seq::add_length_empty_axiom(expr* n) {
if (!m_has_length) return;
SASSERT(m_util.str.is_empty(n));
expr_ref zero(m_autil.mk_int(0), m), len(m_util.str.mk_length(n), m);
add_axiom(mk_eq(len, zero, false));
}
void theory_seq::add_length_string_axiom(expr* n) {
if (!m_has_length) return;
zstring s;
VERIFY(m_util.str.is_string(n, s));
expr_ref len(m_util.str.mk_length(n), m);
expr_ref ls(m_autil.mk_numeral(rational(s.length(), rational::ui64()), true), m);
add_axiom(mk_eq(len, ls, false));
}
void theory_seq::add_length_concat_axiom(expr* n) {
if (!m_has_length) return;
expr* a, *b;
VERIFY(m_util.str.is_concat(n, a, b));
expr_ref len(m_util.str.mk_length(n), m);
expr_ref _a(m_util.str.mk_length(a), m);
expr_ref _b(m_util.str.mk_length(b), m);
expr_ref a_p_b(m_autil.mk_add(_a, _b), m);
add_axiom(mk_eq(len, a_p_b, false));
}
/*
let n = len(x)
len(x) >= 0
len(x) = 0 => x = ""
x = "" => len(x) = 0
len(x) = rewrite(len(x))
*/
void theory_seq::add_length_axiom(expr* n) {
expr* x, *a, *b;
expr* x;
VERIFY(m_util.str.is_length(n, x));
expr_ref zero(m), one(m), emp(m);
zero = m_autil.mk_int(0);
std::string s;
if (m_util.str.is_unit(n)) {
one = m_autil.mk_int(1);
add_axiom(mk_eq(n, one, false));
}
else if (m_util.str.is_empty(n)) {
add_axiom(mk_eq(n, zero, false));
}
else if (m_util.str.is_string(n, s)) {
expr_ref ls(m_autil.mk_numeral(rational(s.length(), rational::ui64()), true), m);
add_axiom(mk_eq(n, ls, false));
}
else if (m_util.str.is_concat(n, a, b)) {
expr_ref _a(m_util.str.mk_length(a), m);
expr_ref _b(m_util.str.mk_length(b), m);
expr_ref a_p_b(m_autil.mk_add(_a, _b), m);
add_axiom(mk_eq(n, a_p_b, false));
}
else {
emp = m_util.str.mk_empty(m.get_sort(x));
if (!m_util.str.is_unit(x) &&
!m_util.str.is_empty(x) &&
!m_util.str.is_string(x) &&
!m_util.str.is_concat(x)) {
expr_ref zero(m_autil.mk_int(0), m);
expr_ref emp(m_util.str.mk_empty(m.get_sort(x)), m);
literal eq1(mk_eq(zero, n, false));
literal eq2(mk_eq(x, emp, false));
add_axiom(mk_literal(m_autil.mk_ge(n, zero)));
@ -966,9 +1003,10 @@ void theory_seq::add_axiom(literal l1, literal l2, literal l3, literal l4) {
}
expr_ref theory_seq::mk_skolem(symbol const& name, expr* e1, expr* e2) {
expr* es[2] = { e1, e2 };
return expr_ref(m_util.mk_skolem(name, e2?2:1, es, m.get_sort(e1)), m);
expr_ref theory_seq::mk_skolem(symbol const& name, expr* e1, expr* e2, expr* e3) {
expr* es[3] = { e1, e2, e3 };
unsigned len = e3?3:(e2?2:1);
return expr_ref(m_util.mk_skolem(name, len, es, m.get_sort(e1)), m);
}
void theory_seq::propagate_eq(bool_var v, expr* e1, expr* e2) {
@ -1040,8 +1078,7 @@ void theory_seq::new_eq_eh(theory_var v1, theory_var v2) {
m.push_back(m_rhs.back(), o2);
m_dam.push_back(m_deps.back(), m_dm.mk_leaf(enode_pair(n1, n2)));
new_eq_len_concat(n1, n2);
new_eq_len_concat(n2, n1);
// add length-equal axiom?
}
}
@ -1087,6 +1124,7 @@ void theory_seq::pop_scope_eh(unsigned num_scopes) {
m_rhs.pop_back();
m_deps.pop_back();
}
m_cache.reset();
}
void theory_seq::restart_eh() {
@ -1108,7 +1146,11 @@ void theory_seq::relevant_eh(app* n) {
m_util.str.is_index(n) ||
m_util.str.is_replace(n) ||
m_util.str.is_extract(n) ||
m_util.str.is_at(n)) {
m_util.str.is_at(n) ||
m_util.str.is_concat(n) ||
m_util.str.is_empty(n) ||
m_util.str.is_unit(n) ||
m_util.str.is_string(n)) {
enque_axiom(n);
}
}