3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

updated script, add comment to mk_eq_empty

This commit is contained in:
Nikolaj Bjorner 2021-03-07 06:59:58 -08:00
parent 7edc99f807
commit 3c26a965e1
2 changed files with 320 additions and 147 deletions

View file

@ -1,161 +1,321 @@
#
# Unweighted hitting set maxsat solver.
# interleaved with local hill-climbing improvements
# and also maxres relaxation steps to reduce number
# of soft constraints.
#
from z3 import *
import random
def add_def(s, fml):
name = Bool(f"f{fml}")
s.add(name == fml)
return name
def relax_core(s, core, Fs):
core = list(core)
if len(core) == 0:
return
prefix = BoolVal(True)
Fs -= { f for f in core }
for i in range(len(core)-1):
prefix = add_def(s, And(core[i], prefix))
Fs |= { add_def(s, Or(prefix, core[i+1])) }
def restrict_cs(s, cs, Fs):
cs = list(cs)
if len(cs) == 0:
return
prefix = BoolVal(False)
Fs -= { f for f in cs }
for i in range(len(cs)-1):
prefix = add_def(s, Or(cs[i], prefix))
Fs |= { add_def(s, And(prefix, cs[i+1])) }
def count_sets_by_size(sets):
sizes = {}
for core in sets:
sz = len(core)
if sz not in sizes:
sizes[sz] = 0
sizes[sz] += 1
sizes = list(sizes.items())
sizes = sorted(sizes, key = lambda p : p[0])
print(sizes)
#set_param("sat.euf", True)
#set_param("tactic.default_tactic","sat")
#set_param(verbose=1)
class Soft:
def __init__(self, soft):
self.formulas = soft
self.name2formula = { Bool(f"s{s}") : s for s in soft }
self.offset = 0
self.init_names()
def init_names(self):
self.name2formula = { Bool(f"s{s}") : s for s in self.formulas }
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
class HsPicker:
def __init__(self, soft):
self.soft = soft
self.opt_backoff_limit = 0
self.opt_backoff_count = 0
self.timeout_value = 6000
def improve(hi, mdl, new_model, soft):
cost = len([f for f in soft.formulas if not is_true(new_model.eval(f))])
if mdl is None:
mdl = new_model
if cost <= hi:
print("improve", hi, cost)
mdl = new_model
if cost < hi:
hi = cost
assert mdl
return hi, mdl
#
# This can improve lower bound, but is expensive.
# Note that Z3 does not work well for hitting set optimization.
# MIP solvers contain better
# tuned approaches thanks to LP lower bounds and likely other properties.
# Would be nice to have a good hitting set
# heuristic built into Z3....
#
def pick_hs_(K, lo, soft):
def pick_hs_(self, Ks, lo):
hs = set()
for ks in K:
for ks in Ks:
if not any(k in ks for k in hs):
h = random.choice([h for h in ks])
hs = hs | { h }
print("approximate hitting set", len(hs), "smallest possible size", lo)
return hs, lo
opt_backoff_limit = 0
opt_backoff_count = 0
timeout_value = 6000
def pick_hs(K, lo, soft):
global timeout_value
global opt_backoff_limit
global opt_backoff_count
if opt_backoff_count < opt_backoff_limit:
opt_backoff_count += 1
return pick_hs_(K, lo, soft)
#
# This can improve lower bound, but is expensive.
# Note that Z3 does not work well for hitting set optimization.
# MIP solvers contain better
# tuned approaches thanks to LP lower bounds and likely other properties.
# Would be nice to have a good hitting set
# heuristic built into Z3....
#
def pick_hs(self, Ks, lo):
if self.opt_backoff_count < self.opt_backoff_limit:
self.opt_backoff_count += 1
return self.pick_hs_(Ks, lo)
opt = Optimize()
for k in K:
opt.add(Or([soft.formula2name[f] for f in k]))
for n in soft.formula2name.values():
for k in Ks:
opt.add(Or([self.soft.formula2name[f] for f in k]))
for n in self.soft.formula2name.values():
obj = opt.add_soft(Not(n))
opt.set("timeout", timeout_value)
opt.set("timeout", self.timeout_value)
is_sat = opt.check()
lo = max(lo, opt.lower(obj).as_long())
if is_sat == sat:
mdl = opt.model()
hs = [soft.name2formula[n] for n in soft.formula2name.values() if is_true(mdl.eval(n))]
hs = [self.soft.name2formula[n] for n in self.soft.formula2name.values() if is_true(mdl.eval(n))]
return hs, lo
else:
print("Timeout", timeout_value, "lo", lo, "limit", opt_backoff_limit)
opt_backoff_limit += 1
opt_backoff_count = 0
timeout_value += 500
return pick_hs_(K, lo, soft)
print("Timeout", self.timeout_value, "lo", lo, "limit", self.opt_backoff_limit)
self.opt_backoff_limit += 1
self.opt_backoff_count = 0
self.timeout_value += 500
return self.pick_hs_(Ks, lo)
class HsMaxSAT:
def local_mss(hi, mdl, new_model, s, soft):
mss = { f for f in soft.formulas if is_true(new_model.eval(f)) }
ps = set(soft.formulas) - mss
def __init__(self, soft, s):
self.s = s # solver object
self.original_soft = soft
self.soft = Soft(soft) # Soft constraints
self.hs = HsPicker(self.soft) # Pick a hitting set
self.mdl = None # Current best model
self.lo = 0 # Current lower bound
self.hi = len(soft) # Current upper bound
self.Ks = [] # Set of Cores
self.Cs = [] # Set of correction sets
self.small_set_size = 6
self.small_set_threshold = 2
self.num_max_res_failures = 0
def has_many_small_sets(self, sets):
small_count = len([c for c in sets if len(c) <= self.small_set_size])
return self.small_set_threshold <= small_count
def get_small_disjoint_sets(self, sets):
hs = set()
result = []
min_size = min(len(s) for s in sets)
def insert(bound, sets, hs, result):
for s in sets:
if len(s) <= bound and not any(c in hs for c in s):
result += [s]
hs = hs | set(s)
return hs, result
for sz in range(min_size, self.small_set_size + 1):
hs, result = insert(sz, sets, hs, result)
return result
def reinit_soft(self, num_cores_relaxed):
self.soft.init_names()
self.soft.offset += num_cores_relaxed
self.Ks = []
self.Cs = []
self.lo -= num_cores_relaxed
self.hi -= num_cores_relaxed
print("New offset", self.soft.offset)
def maxres(self):
#
# If there are sufficiently many small cores, then
# we reduce the soft constraints by maxres.
#
if self.has_many_small_sets(self.Ks):
self.num_max_res_failures = 0
cores = self.get_small_disjoint_sets(self.Ks)
self.soft.formulas = set(self.soft.formulas)
for core in cores:
self.small_set_size = min(self.small_set_size, len(core) - 2)
relax_core(self.s, core, self.soft.formulas)
self.reinit_soft(len(cores))
return
#
# If there are sufficiently many small correction sets, then
# we reduce the soft constraints by dual maxres (IJCAI 2014)
#
if self.has_many_small_sets(self.Cs):
self.num_max_res_failures = 0
cs = self.get_small_disjoint_sets(self.Cs)
self.soft.formulas = set(self.soft.formulas)
for corr_set in cs:
print("restrict cs", len(corr_set))
self.small_set_size = min(self.small_set_size, len(corr_set) - 2)
restrict_cs(self.s, corr_set, self.soft.formulas)
s.add(Or(corr_set))
self.reinit_soft(0)
return
#
# Increment the failure count. If the failure count reaches a threshold
# then increment the lower bounds for performing maxres or dual maxres
#
self.num_max_res_failures += 1
if self.num_max_res_failures > 6:
self.num_max_res_failures = 0
self.small_set_size += 2
def pick_hs(self):
hs, self.lo = self.hs.pick_hs(self.Ks, self.lo)
return hs
def save_model(self):
#
# You can save a model here.
# For example, add the string: self.mdl.sexpr()
# to a file, or print bounds in custom format.
#
# print(f"Bound: {self.lo}")
# for f in self.original_soft:
# print(f"{f} := {self.mdl.eval(f)}")
pass
def improve(self, new_model):
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
cs = set(self.soft.formulas) - mss
self.Cs += [cs]
cost = len(cs)
if self.mdl is None:
self.mdl = new_model
if cost <= self.hi:
print("improve", self.hi, cost)
self.mdl = new_model
self.save_model()
if cost < self.hi:
self.hi = cost
assert self.mdl
def local_mss(self, hi, new_model):
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
ps = set(self.soft.formulas) - mss
backbones = set()
qs = set()
while len(ps) > 0:
p = random.choice([p for p in ps])
ps = ps - { p }
is_sat = s.check(mss | backbones | { p })
print(p, len(ps), is_sat)
is_sat = self.s.check(mss | backbones | { p })
print(len(ps), is_sat)
sys.stdout.flush()
if is_sat == sat:
mdl = s.model()
mdl = self.s.model()
rs = { p }
# by commenting this out, we use a more stubborn exploration
# by using the random seed as opposed to current model as a guide
# to what gets satisfied.
#
# Not sure if it really has an effect.
# rs = rs | { q for q in ps if is_true(mdl.eval(q)) }
#
# by commenting this out, we use a more stubborn exploration
# by using the random seed as opposed to current model as a guide
# to what gets satisfied.
#
# Not sure if it really has an effect.
# rs = rs | { q for q in ps if is_true(mdl.eval(q)) }
#
rs = rs | { q for q in qs if is_true(mdl.eval(q)) }
mss = mss | rs
ps = ps - rs
qs = qs - rs
hi, mdl = improve(hi, mdl, s.model(), soft)
self.improve(mdl)
elif is_sat == unsat:
backbones = backbones | { Not(p) }
else:
qs = qs | { p }
return hi, mdl
if len(qs) > 0:
print("Number undetermined", len(qs))
def get_cores(hi, hs, mdl, s, soft):
core = s.unsat_core()
remaining = set(soft.formulas) - set(core) - set(hs)
def get_cores(self, hs):
core = self.s.unsat_core()
remaining = set(self.soft.formulas) - set(core) - set(hs)
num_cores = 0
cores = [core]
if len(core) == 0:
self.lo = self.hi
return []
print("new core of size", len(core))
while True:
is_sat = s.check(remaining)
is_sat = self.s.check(remaining)
if unsat == is_sat:
core = s.unsat_core()
core = self.s.unsat_core()
print("new core of size", len(core))
cores += [core]
remaining = remaining - set(core)
elif sat == is_sat and num_cores == len(cores):
hi, mdl = local_mss(hi, mdl, s.model(), s, soft)
self.local_mss(self.hi, self.s.model())
break
elif sat == is_sat:
hi, mdl = improve(hi, mdl, s.model(), soft)
self.improve(self.s.model())
#
# Extend the size of the hitting set using the new cores
# and update remaining using these cores.
# The new hitting set contains at least one new element
# from the original core
# from the original cores
#
hs = set(hs)
for i in range(num_cores, len(cores)):
h = random.choice([c for c in cores[i]])
hs = hs | { h }
remaining = set(soft.formulas) - set(core) - set(hs)
remaining = set(self.soft.formulas) - set(core) - set(hs)
num_cores = len(cores)
else:
print(is_sat)
break
return hi, mdl, cores
return cores
def hs(lo, hi, mdl, K, s, soft):
hs, lo = pick_hs(K, lo, soft)
is_sat = s.check(set(soft.formulas) - set(hs))
def step(self):
soft = self.soft
hs = self.pick_hs()
is_sat = self.s.check(set(soft.formulas) - set(hs))
if is_sat == sat:
hi, mdl = improve(hi, mdl, s.model(), soft)
self.improve(self.s.model())
elif is_sat == unsat:
hi, mdl, cores = get_cores(hi, hs, mdl, s, soft)
K += [set(core) for core in cores]
print("total number of cores", len(K))
cores = self.get_cores(hs)
self.Ks += [set(core) for core in cores]
print("total number of cores", len(self.Ks))
print("total number of correction sets", len(self.Cs))
else:
print("unknown")
print("maxsat [", lo, ", ", hi, "]")
return lo, hi, mdl, K
print("maxsat [", self.lo + soft.offset, ", ", self.hi + soft.offset, "]","offset", soft.offset)
count_sets_by_size(self.Ks)
count_sets_by_size(self.Cs)
self.maxres()
def run(self):
while self.lo < self.hi:
self.step()
#set_option(verbose=1)
def main(file):
@ -163,13 +323,13 @@ def main(file):
opt = Optimize()
opt.from_file(file)
s.add(opt.assertions())
#
# We just assume this is an unweighted MaxSAT optimization problem.
# Weights are ignored.
#
soft = [f.arg(0) for f in opt.objectives()[0].children()]
K = []
lo = 0
hi = len(soft)
soft = Soft(soft)
while lo < hi:
lo, hi, mdl, K = hs(lo, hi, None, K, s, soft)
hs = HsMaxSAT(soft, s)
hs.run()
if __name__ == '__main__':

View file

@ -60,7 +60,20 @@ namespace seq {
return result;
}
/**
* Create a special equality predicate for sequences.
* The sequence solver ignores the predicate when it
* is assigned to false. If the predicate is assigned
* to true it enforces the equality.
*
* This is intended to save the solver from satisfying disequality
* constraints that are not relevant. The use of this predicate
* needs some care because it can lead to incompleteness.
* The clauses where this predicate are used have to ensure
* that whenever it is assigned false, the clause
* is satisfied by a solution where the equality is either false
* or irrelevant.
*/
expr_ref axioms::mk_eq_empty(expr* e) {
return mk_seq_eq(seq.str.mk_empty(e->get_sort()), e);
}