mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
updated script, add comment to mk_eq_empty
This commit is contained in:
parent
7edc99f807
commit
3c26a965e1
|
@ -1,175 +1,335 @@
|
||||||
#
|
#
|
||||||
# Unweighted hitting set maxsat solver.
|
# Unweighted hitting set maxsat solver.
|
||||||
# interleaved with local hill-climbing improvements
|
# interleaved with local hill-climbing improvements
|
||||||
|
# and also maxres relaxation steps to reduce number
|
||||||
|
# of soft constraints.
|
||||||
#
|
#
|
||||||
|
|
||||||
from z3 import *
|
from z3 import *
|
||||||
import random
|
import random
|
||||||
|
|
||||||
|
|
||||||
|
def add_def(s, fml):
|
||||||
|
name = Bool(f"f{fml}")
|
||||||
|
s.add(name == fml)
|
||||||
|
return name
|
||||||
|
|
||||||
|
def relax_core(s, core, Fs):
|
||||||
|
core = list(core)
|
||||||
|
if len(core) == 0:
|
||||||
|
return
|
||||||
|
prefix = BoolVal(True)
|
||||||
|
Fs -= { f for f in core }
|
||||||
|
for i in range(len(core)-1):
|
||||||
|
prefix = add_def(s, And(core[i], prefix))
|
||||||
|
Fs |= { add_def(s, Or(prefix, core[i+1])) }
|
||||||
|
|
||||||
|
def restrict_cs(s, cs, Fs):
|
||||||
|
cs = list(cs)
|
||||||
|
if len(cs) == 0:
|
||||||
|
return
|
||||||
|
prefix = BoolVal(False)
|
||||||
|
Fs -= { f for f in cs }
|
||||||
|
for i in range(len(cs)-1):
|
||||||
|
prefix = add_def(s, Or(cs[i], prefix))
|
||||||
|
Fs |= { add_def(s, And(prefix, cs[i+1])) }
|
||||||
|
|
||||||
|
def count_sets_by_size(sets):
|
||||||
|
sizes = {}
|
||||||
|
for core in sets:
|
||||||
|
sz = len(core)
|
||||||
|
if sz not in sizes:
|
||||||
|
sizes[sz] = 0
|
||||||
|
sizes[sz] += 1
|
||||||
|
sizes = list(sizes.items())
|
||||||
|
sizes = sorted(sizes, key = lambda p : p[0])
|
||||||
|
print(sizes)
|
||||||
|
|
||||||
|
|
||||||
|
#set_param("sat.euf", True)
|
||||||
|
#set_param("tactic.default_tactic","sat")
|
||||||
|
#set_param(verbose=1)
|
||||||
|
|
||||||
class Soft:
|
class Soft:
|
||||||
def __init__(self, soft):
|
def __init__(self, soft):
|
||||||
self.formulas = soft
|
self.formulas = soft
|
||||||
self.name2formula = { Bool(f"s{s}") : s for s in soft }
|
self.offset = 0
|
||||||
|
self.init_names()
|
||||||
|
|
||||||
|
def init_names(self):
|
||||||
|
self.name2formula = { Bool(f"s{s}") : s for s in self.formulas }
|
||||||
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
|
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
|
||||||
|
|
||||||
|
class HsPicker:
|
||||||
|
def __init__(self, soft):
|
||||||
|
self.soft = soft
|
||||||
|
self.opt_backoff_limit = 0
|
||||||
|
self.opt_backoff_count = 0
|
||||||
|
self.timeout_value = 6000
|
||||||
|
|
||||||
def improve(hi, mdl, new_model, soft):
|
def pick_hs_(self, Ks, lo):
|
||||||
cost = len([f for f in soft.formulas if not is_true(new_model.eval(f))])
|
hs = set()
|
||||||
if mdl is None:
|
for ks in Ks:
|
||||||
mdl = new_model
|
if not any(k in ks for k in hs):
|
||||||
if cost <= hi:
|
h = random.choice([h for h in ks])
|
||||||
print("improve", hi, cost)
|
|
||||||
mdl = new_model
|
|
||||||
if cost < hi:
|
|
||||||
hi = cost
|
|
||||||
assert mdl
|
|
||||||
return hi, mdl
|
|
||||||
|
|
||||||
#
|
|
||||||
# This can improve lower bound, but is expensive.
|
|
||||||
# Note that Z3 does not work well for hitting set optimization.
|
|
||||||
# MIP solvers contain better
|
|
||||||
# tuned approaches thanks to LP lower bounds and likely other properties.
|
|
||||||
# Would be nice to have a good hitting set
|
|
||||||
# heuristic built into Z3....
|
|
||||||
#
|
|
||||||
def pick_hs_(K, lo, soft):
|
|
||||||
hs = set()
|
|
||||||
for ks in K:
|
|
||||||
if not any(k in ks for k in hs):
|
|
||||||
h = random.choice([h for h in ks])
|
|
||||||
hs = hs | { h }
|
|
||||||
print("approximate hitting set", len(hs), "smallest possible size", lo)
|
|
||||||
return hs, lo
|
|
||||||
|
|
||||||
opt_backoff_limit = 0
|
|
||||||
opt_backoff_count = 0
|
|
||||||
timeout_value = 6000
|
|
||||||
def pick_hs(K, lo, soft):
|
|
||||||
global timeout_value
|
|
||||||
global opt_backoff_limit
|
|
||||||
global opt_backoff_count
|
|
||||||
if opt_backoff_count < opt_backoff_limit:
|
|
||||||
opt_backoff_count += 1
|
|
||||||
return pick_hs_(K, lo, soft)
|
|
||||||
opt = Optimize()
|
|
||||||
for k in K:
|
|
||||||
opt.add(Or([soft.formula2name[f] for f in k]))
|
|
||||||
for n in soft.formula2name.values():
|
|
||||||
obj = opt.add_soft(Not(n))
|
|
||||||
opt.set("timeout", timeout_value)
|
|
||||||
is_sat = opt.check()
|
|
||||||
lo = max(lo, opt.lower(obj).as_long())
|
|
||||||
if is_sat == sat:
|
|
||||||
mdl = opt.model()
|
|
||||||
hs = [soft.name2formula[n] for n in soft.formula2name.values() if is_true(mdl.eval(n))]
|
|
||||||
return hs, lo
|
|
||||||
else:
|
|
||||||
print("Timeout", timeout_value, "lo", lo, "limit", opt_backoff_limit)
|
|
||||||
opt_backoff_limit += 1
|
|
||||||
opt_backoff_count = 0
|
|
||||||
timeout_value += 500
|
|
||||||
return pick_hs_(K, lo, soft)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def local_mss(hi, mdl, new_model, s, soft):
|
|
||||||
mss = { f for f in soft.formulas if is_true(new_model.eval(f)) }
|
|
||||||
ps = set(soft.formulas) - mss
|
|
||||||
backbones = set()
|
|
||||||
qs = set()
|
|
||||||
while len(ps) > 0:
|
|
||||||
p = random.choice([p for p in ps])
|
|
||||||
ps = ps - { p }
|
|
||||||
is_sat = s.check(mss | backbones | { p })
|
|
||||||
print(p, len(ps), is_sat)
|
|
||||||
sys.stdout.flush()
|
|
||||||
if is_sat == sat:
|
|
||||||
mdl = s.model()
|
|
||||||
rs = { p }
|
|
||||||
|
|
||||||
# by commenting this out, we use a more stubborn exploration
|
|
||||||
# by using the random seed as opposed to current model as a guide
|
|
||||||
# to what gets satisfied.
|
|
||||||
#
|
|
||||||
# Not sure if it really has an effect.
|
|
||||||
# rs = rs | { q for q in ps if is_true(mdl.eval(q)) }
|
|
||||||
rs = rs | { q for q in qs if is_true(mdl.eval(q)) }
|
|
||||||
mss = mss | rs
|
|
||||||
ps = ps - rs
|
|
||||||
qs = qs - rs
|
|
||||||
hi, mdl = improve(hi, mdl, s.model(), soft)
|
|
||||||
elif is_sat == unsat:
|
|
||||||
backbones = backbones | { Not(p) }
|
|
||||||
else:
|
|
||||||
qs = qs | { p }
|
|
||||||
return hi, mdl
|
|
||||||
|
|
||||||
def get_cores(hi, hs, mdl, s, soft):
|
|
||||||
core = s.unsat_core()
|
|
||||||
remaining = set(soft.formulas) - set(core) - set(hs)
|
|
||||||
num_cores = 0
|
|
||||||
cores = [core]
|
|
||||||
print("new core of size", len(core))
|
|
||||||
while True:
|
|
||||||
is_sat = s.check(remaining)
|
|
||||||
if unsat == is_sat:
|
|
||||||
core = s.unsat_core()
|
|
||||||
print("new core of size", len(core))
|
|
||||||
cores += [core]
|
|
||||||
remaining = remaining - set(core)
|
|
||||||
elif sat == is_sat and num_cores == len(cores):
|
|
||||||
hi, mdl = local_mss(hi, mdl, s.model(), s, soft)
|
|
||||||
break
|
|
||||||
elif sat == is_sat:
|
|
||||||
hi, mdl = improve(hi, mdl, s.model(), soft)
|
|
||||||
|
|
||||||
#
|
|
||||||
# Extend the size of the hitting set using the new cores
|
|
||||||
# and update remaining using these cores.
|
|
||||||
# The new hitting set contains at least one new element
|
|
||||||
# from the original core
|
|
||||||
#
|
|
||||||
hs = set(hs)
|
|
||||||
for i in range(num_cores, len(cores)):
|
|
||||||
h = random.choice([c for c in cores[i]])
|
|
||||||
hs = hs | { h }
|
hs = hs | { h }
|
||||||
remaining = set(soft.formulas) - set(core) - set(hs)
|
print("approximate hitting set", len(hs), "smallest possible size", lo)
|
||||||
num_cores = len(cores)
|
return hs, lo
|
||||||
else:
|
|
||||||
print(is_sat)
|
|
||||||
break
|
|
||||||
return hi, mdl, cores
|
|
||||||
|
|
||||||
def hs(lo, hi, mdl, K, s, soft):
|
#
|
||||||
hs, lo = pick_hs(K, lo, soft)
|
# This can improve lower bound, but is expensive.
|
||||||
is_sat = s.check(set(soft.formulas) - set(hs))
|
# Note that Z3 does not work well for hitting set optimization.
|
||||||
if is_sat == sat:
|
# MIP solvers contain better
|
||||||
hi, mdl = improve(hi, mdl, s.model(), soft)
|
# tuned approaches thanks to LP lower bounds and likely other properties.
|
||||||
elif is_sat == unsat:
|
# Would be nice to have a good hitting set
|
||||||
hi, mdl, cores = get_cores(hi, hs, mdl, s, soft)
|
# heuristic built into Z3....
|
||||||
K += [set(core) for core in cores]
|
#
|
||||||
print("total number of cores", len(K))
|
|
||||||
else:
|
def pick_hs(self, Ks, lo):
|
||||||
print("unknown")
|
if self.opt_backoff_count < self.opt_backoff_limit:
|
||||||
print("maxsat [", lo, ", ", hi, "]")
|
self.opt_backoff_count += 1
|
||||||
return lo, hi, mdl, K
|
return self.pick_hs_(Ks, lo)
|
||||||
|
opt = Optimize()
|
||||||
|
for k in Ks:
|
||||||
|
opt.add(Or([self.soft.formula2name[f] for f in k]))
|
||||||
|
for n in self.soft.formula2name.values():
|
||||||
|
obj = opt.add_soft(Not(n))
|
||||||
|
opt.set("timeout", self.timeout_value)
|
||||||
|
is_sat = opt.check()
|
||||||
|
lo = max(lo, opt.lower(obj).as_long())
|
||||||
|
if is_sat == sat:
|
||||||
|
mdl = opt.model()
|
||||||
|
hs = [self.soft.name2formula[n] for n in self.soft.formula2name.values() if is_true(mdl.eval(n))]
|
||||||
|
return hs, lo
|
||||||
|
else:
|
||||||
|
print("Timeout", self.timeout_value, "lo", lo, "limit", self.opt_backoff_limit)
|
||||||
|
self.opt_backoff_limit += 1
|
||||||
|
self.opt_backoff_count = 0
|
||||||
|
self.timeout_value += 500
|
||||||
|
return self.pick_hs_(Ks, lo)
|
||||||
|
|
||||||
|
|
||||||
|
class HsMaxSAT:
|
||||||
|
|
||||||
|
def __init__(self, soft, s):
|
||||||
|
self.s = s # solver object
|
||||||
|
self.original_soft = soft
|
||||||
|
self.soft = Soft(soft) # Soft constraints
|
||||||
|
self.hs = HsPicker(self.soft) # Pick a hitting set
|
||||||
|
self.mdl = None # Current best model
|
||||||
|
self.lo = 0 # Current lower bound
|
||||||
|
self.hi = len(soft) # Current upper bound
|
||||||
|
self.Ks = [] # Set of Cores
|
||||||
|
self.Cs = [] # Set of correction sets
|
||||||
|
self.small_set_size = 6
|
||||||
|
self.small_set_threshold = 2
|
||||||
|
self.num_max_res_failures = 0
|
||||||
|
|
||||||
|
def has_many_small_sets(self, sets):
|
||||||
|
small_count = len([c for c in sets if len(c) <= self.small_set_size])
|
||||||
|
return self.small_set_threshold <= small_count
|
||||||
|
|
||||||
|
def get_small_disjoint_sets(self, sets):
|
||||||
|
hs = set()
|
||||||
|
result = []
|
||||||
|
min_size = min(len(s) for s in sets)
|
||||||
|
def insert(bound, sets, hs, result):
|
||||||
|
for s in sets:
|
||||||
|
if len(s) <= bound and not any(c in hs for c in s):
|
||||||
|
result += [s]
|
||||||
|
hs = hs | set(s)
|
||||||
|
return hs, result
|
||||||
|
for sz in range(min_size, self.small_set_size + 1):
|
||||||
|
hs, result = insert(sz, sets, hs, result)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def reinit_soft(self, num_cores_relaxed):
|
||||||
|
self.soft.init_names()
|
||||||
|
self.soft.offset += num_cores_relaxed
|
||||||
|
self.Ks = []
|
||||||
|
self.Cs = []
|
||||||
|
self.lo -= num_cores_relaxed
|
||||||
|
self.hi -= num_cores_relaxed
|
||||||
|
print("New offset", self.soft.offset)
|
||||||
|
|
||||||
|
def maxres(self):
|
||||||
|
#
|
||||||
|
# If there are sufficiently many small cores, then
|
||||||
|
# we reduce the soft constraints by maxres.
|
||||||
|
#
|
||||||
|
if self.has_many_small_sets(self.Ks):
|
||||||
|
self.num_max_res_failures = 0
|
||||||
|
cores = self.get_small_disjoint_sets(self.Ks)
|
||||||
|
self.soft.formulas = set(self.soft.formulas)
|
||||||
|
for core in cores:
|
||||||
|
self.small_set_size = min(self.small_set_size, len(core) - 2)
|
||||||
|
relax_core(self.s, core, self.soft.formulas)
|
||||||
|
self.reinit_soft(len(cores))
|
||||||
|
return
|
||||||
|
#
|
||||||
|
# If there are sufficiently many small correction sets, then
|
||||||
|
# we reduce the soft constraints by dual maxres (IJCAI 2014)
|
||||||
|
#
|
||||||
|
if self.has_many_small_sets(self.Cs):
|
||||||
|
self.num_max_res_failures = 0
|
||||||
|
cs = self.get_small_disjoint_sets(self.Cs)
|
||||||
|
self.soft.formulas = set(self.soft.formulas)
|
||||||
|
for corr_set in cs:
|
||||||
|
print("restrict cs", len(corr_set))
|
||||||
|
self.small_set_size = min(self.small_set_size, len(corr_set) - 2)
|
||||||
|
restrict_cs(self.s, corr_set, self.soft.formulas)
|
||||||
|
s.add(Or(corr_set))
|
||||||
|
self.reinit_soft(0)
|
||||||
|
return
|
||||||
|
#
|
||||||
|
# Increment the failure count. If the failure count reaches a threshold
|
||||||
|
# then increment the lower bounds for performing maxres or dual maxres
|
||||||
|
#
|
||||||
|
self.num_max_res_failures += 1
|
||||||
|
if self.num_max_res_failures > 6:
|
||||||
|
self.num_max_res_failures = 0
|
||||||
|
self.small_set_size += 2
|
||||||
|
|
||||||
|
def pick_hs(self):
|
||||||
|
hs, self.lo = self.hs.pick_hs(self.Ks, self.lo)
|
||||||
|
return hs
|
||||||
|
|
||||||
|
def save_model(self):
|
||||||
|
#
|
||||||
|
# You can save a model here.
|
||||||
|
# For example, add the string: self.mdl.sexpr()
|
||||||
|
# to a file, or print bounds in custom format.
|
||||||
|
#
|
||||||
|
# print(f"Bound: {self.lo}")
|
||||||
|
# for f in self.original_soft:
|
||||||
|
# print(f"{f} := {self.mdl.eval(f)}")
|
||||||
|
pass
|
||||||
|
|
||||||
|
def improve(self, new_model):
|
||||||
|
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
|
||||||
|
cs = set(self.soft.formulas) - mss
|
||||||
|
self.Cs += [cs]
|
||||||
|
cost = len(cs)
|
||||||
|
if self.mdl is None:
|
||||||
|
self.mdl = new_model
|
||||||
|
if cost <= self.hi:
|
||||||
|
print("improve", self.hi, cost)
|
||||||
|
self.mdl = new_model
|
||||||
|
self.save_model()
|
||||||
|
if cost < self.hi:
|
||||||
|
self.hi = cost
|
||||||
|
assert self.mdl
|
||||||
|
|
||||||
|
def local_mss(self, hi, new_model):
|
||||||
|
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
|
||||||
|
ps = set(self.soft.formulas) - mss
|
||||||
|
backbones = set()
|
||||||
|
qs = set()
|
||||||
|
while len(ps) > 0:
|
||||||
|
p = random.choice([p for p in ps])
|
||||||
|
ps = ps - { p }
|
||||||
|
is_sat = self.s.check(mss | backbones | { p })
|
||||||
|
print(len(ps), is_sat)
|
||||||
|
sys.stdout.flush()
|
||||||
|
if is_sat == sat:
|
||||||
|
mdl = self.s.model()
|
||||||
|
rs = { p }
|
||||||
|
|
||||||
|
#
|
||||||
|
# by commenting this out, we use a more stubborn exploration
|
||||||
|
# by using the random seed as opposed to current model as a guide
|
||||||
|
# to what gets satisfied.
|
||||||
|
#
|
||||||
|
# Not sure if it really has an effect.
|
||||||
|
# rs = rs | { q for q in ps if is_true(mdl.eval(q)) }
|
||||||
|
#
|
||||||
|
rs = rs | { q for q in qs if is_true(mdl.eval(q)) }
|
||||||
|
mss = mss | rs
|
||||||
|
ps = ps - rs
|
||||||
|
qs = qs - rs
|
||||||
|
self.improve(mdl)
|
||||||
|
elif is_sat == unsat:
|
||||||
|
backbones = backbones | { Not(p) }
|
||||||
|
else:
|
||||||
|
qs = qs | { p }
|
||||||
|
if len(qs) > 0:
|
||||||
|
print("Number undetermined", len(qs))
|
||||||
|
|
||||||
|
def get_cores(self, hs):
|
||||||
|
core = self.s.unsat_core()
|
||||||
|
remaining = set(self.soft.formulas) - set(core) - set(hs)
|
||||||
|
num_cores = 0
|
||||||
|
cores = [core]
|
||||||
|
if len(core) == 0:
|
||||||
|
self.lo = self.hi
|
||||||
|
return []
|
||||||
|
print("new core of size", len(core))
|
||||||
|
while True:
|
||||||
|
is_sat = self.s.check(remaining)
|
||||||
|
if unsat == is_sat:
|
||||||
|
core = self.s.unsat_core()
|
||||||
|
print("new core of size", len(core))
|
||||||
|
cores += [core]
|
||||||
|
remaining = remaining - set(core)
|
||||||
|
elif sat == is_sat and num_cores == len(cores):
|
||||||
|
self.local_mss(self.hi, self.s.model())
|
||||||
|
break
|
||||||
|
elif sat == is_sat:
|
||||||
|
self.improve(self.s.model())
|
||||||
|
|
||||||
|
#
|
||||||
|
# Extend the size of the hitting set using the new cores
|
||||||
|
# and update remaining using these cores.
|
||||||
|
# The new hitting set contains at least one new element
|
||||||
|
# from the original cores
|
||||||
|
#
|
||||||
|
hs = set(hs)
|
||||||
|
for i in range(num_cores, len(cores)):
|
||||||
|
h = random.choice([c for c in cores[i]])
|
||||||
|
hs = hs | { h }
|
||||||
|
remaining = set(self.soft.formulas) - set(core) - set(hs)
|
||||||
|
num_cores = len(cores)
|
||||||
|
else:
|
||||||
|
print(is_sat)
|
||||||
|
break
|
||||||
|
return cores
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
soft = self.soft
|
||||||
|
hs = self.pick_hs()
|
||||||
|
is_sat = self.s.check(set(soft.formulas) - set(hs))
|
||||||
|
if is_sat == sat:
|
||||||
|
self.improve(self.s.model())
|
||||||
|
elif is_sat == unsat:
|
||||||
|
cores = self.get_cores(hs)
|
||||||
|
self.Ks += [set(core) for core in cores]
|
||||||
|
print("total number of cores", len(self.Ks))
|
||||||
|
print("total number of correction sets", len(self.Cs))
|
||||||
|
else:
|
||||||
|
print("unknown")
|
||||||
|
print("maxsat [", self.lo + soft.offset, ", ", self.hi + soft.offset, "]","offset", soft.offset)
|
||||||
|
count_sets_by_size(self.Ks)
|
||||||
|
count_sets_by_size(self.Cs)
|
||||||
|
self.maxres()
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
while self.lo < self.hi:
|
||||||
|
self.step()
|
||||||
|
|
||||||
|
|
||||||
#set_option(verbose=1)
|
#set_option(verbose=1)
|
||||||
def main(file):
|
def main(file):
|
||||||
s = Solver()
|
s = Solver()
|
||||||
opt = Optimize()
|
opt = Optimize()
|
||||||
opt.from_file(file)
|
opt.from_file(file)
|
||||||
s.add(opt.assertions())
|
s.add(opt.assertions())
|
||||||
|
#
|
||||||
|
# We just assume this is an unweighted MaxSAT optimization problem.
|
||||||
|
# Weights are ignored.
|
||||||
|
#
|
||||||
soft = [f.arg(0) for f in opt.objectives()[0].children()]
|
soft = [f.arg(0) for f in opt.objectives()[0].children()]
|
||||||
K = []
|
hs = HsMaxSAT(soft, s)
|
||||||
lo = 0
|
hs.run()
|
||||||
hi = len(soft)
|
|
||||||
soft = Soft(soft)
|
|
||||||
while lo < hi:
|
|
||||||
lo, hi, mdl, K = hs(lo, hi, None, K, s, soft)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -60,7 +60,20 @@ namespace seq {
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a special equality predicate for sequences.
|
||||||
|
* The sequence solver ignores the predicate when it
|
||||||
|
* is assigned to false. If the predicate is assigned
|
||||||
|
* to true it enforces the equality.
|
||||||
|
*
|
||||||
|
* This is intended to save the solver from satisfying disequality
|
||||||
|
* constraints that are not relevant. The use of this predicate
|
||||||
|
* needs some care because it can lead to incompleteness.
|
||||||
|
* The clauses where this predicate are used have to ensure
|
||||||
|
* that whenever it is assigned false, the clause
|
||||||
|
* is satisfied by a solution where the equality is either false
|
||||||
|
* or irrelevant.
|
||||||
|
*/
|
||||||
expr_ref axioms::mk_eq_empty(expr* e) {
|
expr_ref axioms::mk_eq_empty(expr* e) {
|
||||||
return mk_seq_eq(seq.str.mk_empty(e->get_sort()), e);
|
return mk_seq_eq(seq.str.mk_empty(e->get_sort()), e);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue