3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-09 09:21:56 +00:00
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2025-09-05 16:04:42 -10:00
parent 5f6de08b5d
commit 3a06d501c8
2 changed files with 46 additions and 66 deletions

View file

@ -51,9 +51,9 @@ namespace nlsat {
pmanager& m_pm; pmanager& m_pm;
anum_manager& m_am; anum_manager& m_am;
std::vector<property> m_Q; // the set of properties to prove std::vector<property> m_Q; // the set of properties to prove
std::vector<property> m_to_refine;
std::vector<symbolic_interval> m_I; // intervals per level (indexed by variable/level) std::vector<symbolic_interval> m_I; // intervals per level (indexed by variable/level)
bool m_fail = false; bool m_fail = false;
bool m_Q_changed = false; // tracks mutations to m_Q for fixed-point iteration
// Property precedence relation stored as pairs (lesser, greater) // Property precedence relation stored as pairs (lesser, greater)
std::vector<std::pair<prop_enum, prop_enum>> m_p_relation; std::vector<std::pair<prop_enum, prop_enum>> m_p_relation;
// Transitive closure matrix: dom[a][b] == true iff a ▹ b (a strictly dominates b). // Transitive closure matrix: dom[a][b] == true iff a ▹ b (a strictly dominates b).
@ -321,20 +321,17 @@ namespace nlsat {
// directly on a sorted vector<root_item_t>. // directly on a sorted vector<root_item_t>.
// Part A of construct_interval: apply pre-conditions (line 8-11 scaffolding) // Part A of construct_interval: apply pre-conditions (line 8-11 scaffolding)
bool apply_property_rules(unsigned i, prop_enum prop_to_avoid, bool has_repr) { bool apply_property_rules(unsigned i, prop_enum prop_to_avoid, bool has_repr) {
// Iterate until no mutation to m_Q occurs (fixed-point). We avoid copying m_Q SASSERT (!m_fail);
// by using a change flag that is set by mutating helpers (add_to_Q_if_new / erase_from_Q). greatest_to_refine(i, prop_to_avoid);
if (m_fail) return false; TRACE(levelwise, display(tout << "to_refine properties:", m_to_refine););
do { while(m_to_refine.size()) {
m_Q_changed = false; property p = m_to_refine.back();
std::vector<property> to_refine = greatest_to_refine(i, prop_to_avoid); m_to_refine.pop_back();
TRACE(levelwise, display(tout << "to_refine properties:", to_refine);); apply_pre(p, has_repr);
for (const auto& p : to_refine) { if (m_fail) return false;
apply_pre(p, has_repr); }
if (m_fail) return false; return !m_fail;
} }
} while (m_Q_changed && !m_fail);
return !m_fail;
}
// Part B of construct_interval: build (I, E, ≼) representation for level i // Part B of construct_interval: build (I, E, ≼) representation for level i
void build_representation(unsigned i) { void build_representation(unsigned i) {
@ -355,45 +352,22 @@ namespace nlsat {
compute_interval_from_sorted_roots(i, roots, m_I[i]); compute_interval_from_sorted_roots(i, roots, m_I[i]);
} }
std::vector<property> greatest_to_refine(unsigned level, prop_enum prop_to_avoid) { bool is_dominated_by_Q(const property& p) {
// Collect candidates on current level, excluding sgn_inv_irreducible // Return true if any q in m_Q (q != p by value) dominates p
std::vector<property> cand; return std::any_of(m_Q.begin(), m_Q.end(), [&](const property& q) {
cand.reserve(m_Q.size()); bool is_same = (q.prop_tag == p.prop_tag) && (q.level == p.level) && (q.s_idx == p.s_idx) && (q.poly == p.poly);
for (const auto& q : m_Q) return !is_same && dominates(q, p);
if (q.level == level && q.prop_tag != prop_to_avoid) });
cand.push_back(q); }
if (cand.empty()) return {};
void greatest_to_refine(unsigned level, prop_enum prop_to_avoid) {
// Determine maxima w.r.t. ▹ using the transitive closure matrix // Collect candidates on current level, excluding prop_to_avoid
// Dominance requires the same polynomial in both compared properties
std::vector<bool> dominated(cand.size(), false); m_to_refine.clear();
for (size_t i = 0; i < cand.size(); ++i) { for (const auto& q : m_Q)
for (size_t j = 0; j < cand.size(); ++j) { if (q.level == level && q.prop_tag != prop_to_avoid && !is_dominated_by_Q(q))
if (i != j && dominates(cand[j], cand[i])) { m_to_refine.push_back(q);
dominated[i] = true; }
break;
}
}
}
auto poly_id = [cand](unsigned i) { return cand[i].poly == nullptr? UINT_MAX: polynomial::manager::id(cand[i].poly);};
// Extract non-dominated (greatest) candidates; keep deterministic order by (poly id, prop enum)
struct Key { unsigned pid; unsigned pprop; size_t idx; };
std::vector<Key> keys;
keys.reserve(cand.size());
for (size_t i = 0; i < cand.size(); ++i) {
if (!dominated[i]) {
keys.push_back(Key{ poly_id(i), static_cast<unsigned>(cand[i].prop_tag), i });
}
}
std::sort(keys.begin(), keys.end(), [](Key const& a, Key const& b){
if (a.pid != b.pid) return a.pid < b.pid;
return a.pprop < b.pprop;
});
std::vector<property> ret;
ret.reserve(keys.size());
for (auto const& k : keys) ret.push_back(cand[k.idx]);
return ret;
}
// Step 1a: collect E and root values // Step 1a: collect E and root values
void collect_E_and_roots(std::vector<const poly*> const& P_non_null, void collect_E_and_roots(std::vector<const poly*> const& P_non_null,
@ -423,21 +397,18 @@ namespace nlsat {
} }
} }
// Helper: add a property to m_Q if an equivalent one is not already present. // add a property to m_Q if an equivalent one is not already present.
// Equivalence: same prop_tag and same level; if pr.poly is non-null, require the same poly as well. // Equivalence: same prop_tag and same level; require the same poly as well.
void add_to_Q_if_new(const property & pr) { void add_to_Q_if_new(const property & pr) {
for (auto const & q : m_Q) { for (auto const & q : m_Q) {
if (q.prop_tag != pr.prop_tag) continue; if (q.prop_tag != pr.prop_tag) continue;
if (q.level != pr.level) continue; if (q.level != pr.level) continue;
if (pr.poly) { if (q.poly != pr.poly) continue;
if (q.poly == pr.poly) return; if (q.s_idx != pr.s_idx) continue;
else continue; TRACE(levelwise, display(tout << "matched q:", q) << std::endl;);
}
// pr.poly is null -> match by prop_tag + level only
return; return;
} }
m_Q.push_back(pr); m_Q.push_back(pr);
m_Q_changed = true;
} }
void remove_level_i_from_Q(std::vector<property> & Q, unsigned i) { void remove_level_i_from_Q(std::vector<property> & Q, unsigned i) {
@ -452,7 +423,6 @@ namespace nlsat {
}); });
SASSERT(it != m_Q.end()); SASSERT(it != m_Q.end());
m_Q.erase(it); m_Q.erase(it);
m_Q_changed = true;
} }
// construct_interval: compute representation for level i and apply post rules. // construct_interval: compute representation for level i and apply post rules.
@ -699,7 +669,17 @@ or
void apply_pre_repr(const property& p) { void apply_pre_repr(const property& p) {
const auto& I = m_I[p.level]; const auto& I = m_I[p.level];
TRACE(levelwise, display(tout << "interval m_I[" << p.level << "]\n", I) << "\n";); TRACE(levelwise, display(tout << "interval m_I[" << p.level << "]\n", I) << "\n";);
NOT_IMPLEMENTED_YET(); add_to_Q_if_new(property(prop_enum::holds, m_pm, p.level -1));
add_to_Q_if_new(property(prop_enum::sample, m_pm, p.level -1));
if (I.is_section()) {
NOT_IMPLEMENTED_YET();
} else {
SASSERT(I.is_sector());
if (!I.l_inf() || !I.u_inf()) {
NOT_IMPLEMENTED_YET();
}
}
erase_from_Q(p);
} }
void apply_pre(const property& p, bool has_repr) { void apply_pre(const property& p, bool has_repr) {

View file

@ -19,8 +19,8 @@ namespace nlsat {
unsigned u_index; // the root index unsigned u_index; // the root index
bool l_inf() const { return l == nullptr; } bool l_inf() const { return l == nullptr; }
bool u_inf() const { return u == nullptr; } bool u_inf() const { return u == nullptr; }
bool is_section() { return section; } bool is_section() const { return section; }
bool is_sector() { return !section; } bool is_sector() const { return !section; }
poly* section_poly() { poly* section_poly() {
SASSERT(is_section()); SASSERT(is_section());
return l; return l;