3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2019-10-05 16:57:51 -07:00
parent 016732aa59
commit 39edf73e78
16 changed files with 222 additions and 162 deletions

View file

@ -43,7 +43,7 @@ namespace nlsat {
svector<section> m_sections;
unsigned_vector m_sorted_sections; // refs to m_sections
unsigned_vector m_poly_sections; // refs to m_sections
svector<int> m_poly_signs;
svector<polynomial::sign> m_poly_signs;
struct poly_info {
unsigned m_num_roots;
unsigned m_first_section; // idx in m_poly_sections;
@ -149,18 +149,18 @@ namespace nlsat {
\brief Add polynomial with the given roots and signs.
*/
unsigned_vector p_section_ids;
void add(anum_vector & roots, svector<int> & signs) {
void add(anum_vector & roots, svector<polynomial::sign> & signs) {
p_section_ids.reset();
if (!roots.empty())
merge(roots, p_section_ids);
unsigned first_sign = m_poly_signs.size();
unsigned first_section = m_poly_sections.size();
unsigned num_signs = signs.size();
unsigned num_poly_signs = signs.size();
// Must normalize signs since we use arithmetic operations such as *
// during evaluation.
// Without normalization, overflows may happen, and wrong results may be produced.
for (unsigned i = 0; i < num_signs; i++)
m_poly_signs.push_back(normalize_sign(signs[i]));
for (unsigned i = 0; i < num_poly_signs; i++)
m_poly_signs.push_back(signs[i]);
m_poly_sections.append(p_section_ids);
m_info.push_back(poly_info(roots.size(), first_section, first_sign));
SASSERT(check_invariant());
@ -169,10 +169,10 @@ namespace nlsat {
/**
\brief Add constant polynomial
*/
void add_const(int sign) {
void add_const(polynomial::sign sign) {
unsigned first_sign = m_poly_signs.size();
unsigned first_section = m_poly_sections.size();
m_poly_signs.push_back(normalize_sign(sign));
m_poly_signs.push_back(sign);
m_info.push_back(poly_info(0, first_section, first_sign));
}
@ -226,12 +226,12 @@ namespace nlsat {
}
// Return the sign idx of pinfo
int sign(poly_info const & pinfo, unsigned i) const {
polynomial::sign sign(poly_info const & pinfo, unsigned i) const {
return m_poly_signs[pinfo.m_first_sign + i];
}
#define LINEAR_SEARCH_THRESHOLD 8
int sign_at(unsigned info_id, unsigned c) const {
polynomial::sign sign_at(unsigned info_id, unsigned c) const {
poly_info const & pinfo = m_info[info_id];
unsigned num_roots = pinfo.m_num_roots;
if (num_roots < LINEAR_SEARCH_THRESHOLD) {
@ -239,7 +239,7 @@ namespace nlsat {
for (; i < num_roots; i++) {
unsigned section_cell_id = cell_id(pinfo, i);
if (section_cell_id == c)
return 0;
return polynomial::sign_zero;
else if (section_cell_id > c)
break;
}
@ -253,7 +253,7 @@ namespace nlsat {
if (c < root_1_cell_id)
return sign(pinfo, 0);
else if (c == root_1_cell_id || c == root_n_cell_id)
return 0;
return polynomial::sign_zero;
else if (c > root_n_cell_id)
return sign(pinfo, num_roots);
int low = 0;
@ -272,7 +272,7 @@ namespace nlsat {
SASSERT(low < mid && mid < high);
unsigned mid_cell_id = cell_id(pinfo, mid);
if (mid_cell_id == c) {
return 0;
return polynomial::sign_zero;
}
if (c < mid_cell_id) {
high = mid;
@ -319,7 +319,7 @@ namespace nlsat {
for (unsigned j = 0; j < num_cells(); j++) {
if (j > 0)
out << " ";
int s = sign_at(i, j);
auto s = sign_at(i, j);
if (s < 0) out << "-";
else if (s == 0) out << "0";
else out << "+";
@ -381,11 +381,10 @@ namespace nlsat {
\pre All variables of p are assigned in the current interpretation.
*/
int eval_sign(poly * p) {
polynomial::sign eval_sign(poly * p) {
// TODO: check if it is useful to cache results
SASSERT(m_assignment.is_assigned(max_var(p)));
int r = m_am.eval_sign_at(polynomial_ref(p, m_pm), m_assignment);
return r > 0 ? +1 : (r < 0 ? -1 : 0);
return m_am.eval_sign_at(polynomial_ref(p, m_pm), m_assignment);
}
bool satisfied(int sign, atom::kind k) {
@ -450,7 +449,7 @@ namespace nlsat {
return a->is_ineq_atom() ? eval_ineq(to_ineq_atom(a), neg) : eval_root(to_root_atom(a), neg);
}
svector<int> m_add_signs_tmp;
svector<polynomial::sign> m_add_signs_tmp;
void add(poly * p, var x, sign_table & t) {
SASSERT(m_pm.max_var(p) <= x);
if (m_pm.max_var(p) < x) {
@ -459,7 +458,7 @@ namespace nlsat {
else {
// isolate roots of p
scoped_anum_vector & roots = m_add_roots_tmp;
svector<int> & signs = m_add_signs_tmp;
svector<polynomial::sign> & signs = m_add_signs_tmp;
roots.reset();
signs.reset();
TRACE("nlsat_evaluator", tout << "x: " << x << " max_var(p): " << m_pm.max_var(p) << "\n";);
@ -471,18 +470,18 @@ namespace nlsat {
}
// Evaluate the sign of p1^e1*...*pn^en (of atom a) in cell c of table t.
int sign_at(ineq_atom * a, sign_table const & t, unsigned c) const {
int sign = 1;
polynomial::sign sign_at(ineq_atom * a, sign_table const & t, unsigned c) const {
auto sign = polynomial::sign_pos;
unsigned num_ps = a->size();
for (unsigned i = 0; i < num_ps; i++) {
int curr_sign = t.sign_at(i, c);
polynomial::sign curr_sign = t.sign_at(i, c);
TRACE("nlsat_evaluator_bug", tout << "sign of i: " << i << " at cell " << c << "\n";
m_pm.display(tout, a->p(i));
tout << "\nsign: " << curr_sign << "\n";);
if (a->is_even(i) && curr_sign < 0)
curr_sign = 1;
curr_sign = polynomial::sign_pos;
sign = sign * curr_sign;
if (sign == 0)
if (sign == polynomial::sign_zero)
break;
}
return sign;

View file

@ -197,9 +197,10 @@ namespace nlsat {
\brief Reset m_already_added vector using m_result
*/
void reset_already_added() {
SASSERT(m_result != 0);
SASSERT(m_result != nullptr);
for (literal lit : *m_result)
m_already_added_literal[lit.index()] = false;
SASSERT(check_already_added());
}
@ -207,9 +208,9 @@ namespace nlsat {
\brief evaluate the given polynomial in the current interpretation.
max_var(p) must be assigned in the current interpretation.
*/
int sign(polynomial_ref const & p) {
polynomial::sign sign(polynomial_ref const & p) {
SASSERT(max_var(p) == null_var || m_assignment.is_assigned(max_var(p)));
int s = m_am.eval_sign_at(p, m_assignment);
auto s = m_am.eval_sign_at(p, m_assignment);
TRACE("nlsat_explain", tout << "p: " << p << " var: " << max_var(p) << " sign: " << s << "\n";);
return s;
}
@ -270,7 +271,7 @@ namespace nlsat {
polynomial_ref f(m_pm);
for (unsigned i = 0; i < num_factors; i++) {
f = m_factors.get(i);
if (sign(f) == 0) {
if (sign(f) == polynomial::sign_zero) {
m_zero_fs.push_back(m_factors.get(i));
m_is_even.push_back(false);
}
@ -323,7 +324,7 @@ namespace nlsat {
return; // lc is a nonzero constant
lc = m_pm.coeff(p, x, k, reduct);
if (!is_zero(lc)) {
if (sign(lc) != 0)
if (sign(lc) != polynomial::sign_zero)
return;
// lc is not the zero polynomial, but it vanished in the current interpretation.
// so we keep searching...
@ -959,8 +960,9 @@ namespace nlsat {
if (ps.empty())
return;
m_todo.reset();
for (unsigned i = 0; i < ps.size(); i++)
m_todo.insert(ps.get(i));
for (poly* p : ps) {
m_todo.insert(p);
}
var x = m_todo.remove_max_polys(ps);
// Remark: after vanishing coefficients are eliminated, ps may not contain max_x anymore
if (x < max_x)
@ -983,8 +985,8 @@ namespace nlsat {
}
bool check_already_added() const {
for (unsigned i = 0; i < m_already_added_literal.size(); i++) {
SASSERT(m_already_added_literal[i] == false);
for (bool b : m_already_added_literal) {
SASSERT(!b);
}
return true;
}
@ -1062,7 +1064,7 @@ namespace nlsat {
void simplify(literal l, eq_info & info, var max, scoped_literal & new_lit) {
bool_var b = l.var();
atom * a = m_atoms[b];
SASSERT(a != 0);
SASSERT(a);
if (a->is_root_atom()) {
new_lit = l;
return;
@ -1091,19 +1093,24 @@ namespace nlsat {
modified_lit = true;
unsigned d;
m_pm.pseudo_remainder(f, info.m_eq, info.m_x, d, new_factor);
polynomial_ref fact(f, m_pm), eq(const_cast<poly*>(info.m_eq), m_pm);
TRACE("nlsat_simplify_core", tout << "d: " << d << " factor " << fact << " eq " << eq << " new factor " << new_factor << "\n";);
// adjust sign based on sign of lc of eq
if (d % 2 == 1 && // d is odd
!is_even && // degree of the factor is odd
info.m_lc_sign < 0 // lc of the eq is negative
) {
if (d % 2 == 1 && // d is odd
!is_even && // degree of the factor is odd
info.m_lc_sign < 0) { // lc of the eq is negative
atom_sign = -atom_sign; // flipped the sign of the current literal
TRACE("nlsat_simplify_core", tout << "odd degree\n";);
}
if (is_const(new_factor)) {
int s = sign(new_factor);
if (s == 0) {
TRACE("nlsat_simplify_core", tout << "new factor is const\n";);
polynomial::sign s = sign(new_factor);
if (s == polynomial::sign_zero) {
bool atom_val = a->get_kind() == atom::EQ;
bool lit_val = l.sign() ? !atom_val : atom_val;
new_lit = lit_val ? true_literal : false_literal;
TRACE("nlsat_simplify_core", tout << "zero sign: " << info.m_lc_const << "\n";);
if (!info.m_lc_const) {
// We have essentially shown the current factor must be zero If the leading coefficient is not zero.
// Note that, if the current factor is zero, then the whole polynomial is zero.
@ -1115,6 +1122,7 @@ namespace nlsat {
return;
}
else {
TRACE("nlsat_simplify_core", tout << "non-zero sign: " << info.m_lc_const << "\n";);
// We have shown the current factor is a constant MODULO the sign of the leading coefficient (of the equation used to rewrite the factor).
if (!info.m_lc_const) {
// If the leading coefficient is not a constant, we must store this information as an extra assumption.
@ -1266,11 +1274,9 @@ namespace nlsat {
var_vector m_select_tmp;
ineq_atom * select_lower_stage_eq(scoped_literal_vector & C, var max) {
var_vector & xs = m_select_tmp;
unsigned sz = C.size();
for (unsigned i = 0; i < sz; i++) {
literal l = C[i];
for (literal l : C) {
bool_var b = l.var();
atom * a = m_atoms[b];
atom * a = m_atoms[b];
if (a->is_root_atom())
continue; // we don't rewrite root atoms
ineq_atom * _a = to_ineq_atom(a);
@ -1279,9 +1285,7 @@ namespace nlsat {
poly * p = _a->p(j);
xs.reset();
m_pm.vars(p, xs);
unsigned xs_sz = xs.size();
for (unsigned k = 0; k < xs_sz; k++) {
var y = xs[k];
for (var y : xs) {
if (y >= max)
continue;
atom * eq = m_x2eq[y];

View file

@ -766,7 +766,7 @@ namespace nlsat {
TRACE("nlsat", display(tout << "check lemma: ", n, cls) << "\n";
display(tout););
IF_VERBOSE(0, display(verbose_stream() << "check lemma: ", n, cls) << "\n");
for (clause* c : m_learned) IF_VERBOSE(0, display(verbose_stream() << "lemma: ", *c) << "\n");
for (clause* c : m_learned) IF_VERBOSE(1, display(verbose_stream() << "lemma: ", *c) << "\n");
solver solver2(m_ctx);
imp& checker = *(solver2.m_imp);