mirror of
https://github.com/Z3Prover/z3
synced 2026-02-22 08:17:37 +00:00
remove lattice component
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
5bd7d93b55
commit
38ce0882db
5 changed files with 1 additions and 409 deletions
|
|
@ -58,7 +58,6 @@ z3_add_component(smt
|
|||
theory_dense_diff_logic.cpp
|
||||
theory_finite_set.cpp
|
||||
theory_finite_set_size.cpp
|
||||
theory_finite_set_lattice_refutation.cpp
|
||||
theory_diff_logic.cpp
|
||||
theory_dl.cpp
|
||||
theory_dummy.cpp
|
||||
|
|
|
|||
|
|
@ -28,8 +28,7 @@ namespace smt {
|
|||
theory(ctx, ctx.get_manager().mk_family_id("finite_set")),
|
||||
u(m),
|
||||
m_axioms(m), m_rw(m), m_find(*this),
|
||||
m_cardinality_solver(*this),
|
||||
m_lattice_refutation(*this)
|
||||
m_cardinality_solver(*this)
|
||||
{
|
||||
// Setup the add_clause callback for axioms
|
||||
std::function<void(theory_axiom *)> add_clause_fn =
|
||||
|
|
@ -260,8 +259,6 @@ namespace smt {
|
|||
ctx.push_trail(push_back_vector(m_eqs));
|
||||
m_find.merge(v1, v2); // triggers merge_eh, which triggers incremental generation of theory axioms
|
||||
}
|
||||
if (ctx.get_fparams().m_finite_set_lattice_refutation)
|
||||
m_lattice_refutation.add_equality(v1, v2);
|
||||
|
||||
// Check if Z3 has a boolean variable for it
|
||||
TRACE(finite_set, tout << "new_eq_eh_r1: " << n1->get_root() << "r2: "<< n2->get_root() <<"\n";);
|
||||
|
|
@ -288,8 +285,6 @@ namespace smt {
|
|||
ctx.push_trail(push_back_vector(m_diseqs));
|
||||
m_axioms.extensionality_axiom(e1, e2);
|
||||
}
|
||||
if (ctx.get_fparams().m_finite_set_lattice_refutation)
|
||||
m_lattice_refutation.add_disequality(v1,v2);
|
||||
}
|
||||
|
||||
//
|
||||
|
|
|
|||
|
|
@ -72,8 +72,6 @@ For ranges we can adapt a different model construction approach.
|
|||
|
||||
When introducing select and map, decidability can be lost.
|
||||
|
||||
For Boolean lattice constraints given by equality, subset, strict subset and union, intersections,
|
||||
the theory solver uses a stand-alone satisfiability checker for Boolean algebras to close branches.
|
||||
|
||||
--*/
|
||||
|
||||
|
|
@ -87,7 +85,6 @@ the theory solver uses a stand-alone satisfiability checker for Boolean algebras
|
|||
#include "util/union_find.h"
|
||||
#include "smt/smt_theory.h"
|
||||
#include "smt/theory_finite_set_size.h"
|
||||
#include "smt/theory_finite_set_lattice_refutation.h"
|
||||
#include "model/finite_set_factory.h"
|
||||
|
||||
namespace smt {
|
||||
|
|
@ -97,7 +94,6 @@ namespace smt {
|
|||
using th_union_find = union_find<theory_finite_set>;
|
||||
friend class theory_finite_set_test;
|
||||
friend class theory_finite_set_size;
|
||||
friend class theory_finite_set_lattice_refutation;
|
||||
friend struct finite_set_value_proc;
|
||||
|
||||
struct var_data {
|
||||
|
|
@ -141,7 +137,6 @@ namespace smt {
|
|||
th_union_find m_find;
|
||||
theory_clauses m_clauses;
|
||||
theory_finite_set_size m_cardinality_solver;
|
||||
theory_finite_set_lattice_refutation m_lattice_refutation;
|
||||
finite_set_factory *m_factory = nullptr;
|
||||
obj_map<enode, obj_map<enode, bool> *> m_set_members;
|
||||
ptr_vector<func_decl> m_set_in_decls;
|
||||
|
|
|
|||
|
|
@ -1,318 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2025 Lorenz Winkler
|
||||
|
||||
Module Name:
|
||||
|
||||
theory_finite_set_lattice_refutation.cpp
|
||||
|
||||
--*/
|
||||
|
||||
#include "smt/theory_finite_set_lattice_refutation.h"
|
||||
#include "smt/smt_theory.h"
|
||||
#include "smt/theory_finite_set.h"
|
||||
#include "smt/smt_context.h"
|
||||
#include <iostream>
|
||||
|
||||
const int NUM_WORDS = 5;
|
||||
// some example have shown, the introduction of large conflict clauses can severely slow down refutation
|
||||
const int MAX_DECISION_LITERALS = 10;
|
||||
|
||||
namespace smt {
|
||||
reachability_matrix::reachability_matrix(context &ctx, theory_finite_set_lattice_refutation &t_lattice)
|
||||
: reachable(NUM_WORDS * NUM_WORDS * 64, (uint64_t)0),
|
||||
links(NUM_WORDS * NUM_WORDS * 64 * 64, {nullptr, nullptr}),
|
||||
link_dls(NUM_WORDS * NUM_WORDS * 64 * 64, (uint64_t)0),
|
||||
non_links(NUM_WORDS * NUM_WORDS * 64, (uint64_t)0),
|
||||
non_link_justifications(NUM_WORDS * NUM_WORDS * 64 * 64, {nullptr, nullptr}),
|
||||
largest_var(0),
|
||||
max_size(NUM_WORDS * 64),
|
||||
ctx(ctx),
|
||||
t_lattice_refutation(t_lattice) {}
|
||||
|
||||
int reachability_matrix::get_max_var() {
|
||||
return largest_var;
|
||||
}
|
||||
|
||||
inline int reachability_matrix::get_word_index(int row, int col) const {
|
||||
return (row * NUM_WORDS) + (col / 64);
|
||||
};
|
||||
|
||||
inline uint64_t reachability_matrix::get_bitmask(int col) const {
|
||||
return 1ull << (col % 64);
|
||||
};
|
||||
|
||||
bool reachability_matrix::is_reachability_forbidden(theory_var source, theory_var dest) {
|
||||
return non_links[get_word_index(source, dest)] & get_bitmask(dest);
|
||||
}
|
||||
|
||||
bool reachability_matrix::in_bounds(theory_var source, theory_var dest) {
|
||||
return source >= 0 && dest >= 0 && source < max_size && dest < max_size;
|
||||
}
|
||||
|
||||
bool reachability_matrix::is_reachable(theory_var source, theory_var dest) const {
|
||||
return reachable[get_word_index(source, dest)] & get_bitmask(dest);
|
||||
}
|
||||
|
||||
bool reachability_matrix::is_linked(theory_var source, theory_var dest) {
|
||||
return links[source * max_size + dest].first != nullptr;
|
||||
}
|
||||
|
||||
bool reachability_matrix::bitwise_or_rows(int source_dest, int source) {
|
||||
bool changes = false;
|
||||
for (int i = 0; i < NUM_WORDS; i++) {
|
||||
uint64_t old_value = reachable[source_dest * NUM_WORDS + i];
|
||||
uint64_t new_value = reachable[source_dest * NUM_WORDS + i] | reachable[source * NUM_WORDS + i];
|
||||
if (old_value == new_value) {
|
||||
continue;
|
||||
}
|
||||
ctx.push_trail(value_trail(reachable[source_dest * NUM_WORDS + i]));
|
||||
reachable[source_dest * NUM_WORDS + i] = new_value;
|
||||
changes = true;
|
||||
check_reachability_conflict_word(source_dest, i);
|
||||
}
|
||||
return changes;
|
||||
}
|
||||
|
||||
bool reachability_matrix::set_reachability(theory_var source, theory_var dest, enode_pair reachability_witness) {
|
||||
if (!in_bounds(source, dest) || is_reachable(source, dest)) {
|
||||
return false;
|
||||
}
|
||||
ctx.push_trail(value_trail(largest_var));
|
||||
largest_var = std::max({largest_var, source, dest});
|
||||
|
||||
int word_idx = get_word_index(source, dest);
|
||||
ctx.push_trail(value_trail(reachable[word_idx]));
|
||||
reachable[word_idx] |= get_bitmask(dest);
|
||||
ctx.push_trail(value_trail(links[source * max_size + dest]));
|
||||
links[source * max_size + dest] = reachability_witness;
|
||||
ctx.push_trail(value_trail(link_dls[source * max_size + dest]));
|
||||
TRACE(finite_set, tout << "set_reachability(" << source << "," << dest << "), dl: " << ctx.get_scope_level());
|
||||
link_dls[source * max_size + dest] = ctx.get_scope_level();
|
||||
|
||||
check_reachability_conflict(source, dest);
|
||||
// update reachability of source
|
||||
bitwise_or_rows(source, dest);
|
||||
|
||||
for (int i = 0; i <= largest_var; i++) { // update reachability of i to the nodes reachable from dest
|
||||
if (!is_reachable(i, source) || i == source) {
|
||||
continue;
|
||||
}
|
||||
bitwise_or_rows(i, source);
|
||||
}
|
||||
if (conflict_word >= 0 && conflict_row >= 0) {
|
||||
for (int i = conflict_word * 64; i < conflict_word * 64 + 64; i++) {
|
||||
check_reachability_conflict(conflict_row, i);
|
||||
}
|
||||
conflict_word = -1;
|
||||
conflict_row = -1;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool reachability_matrix::set_non_reachability(theory_var source, theory_var dest,
|
||||
enode_pair non_reachability_witness) {
|
||||
if (is_reachability_forbidden(source, dest)) {
|
||||
return false;
|
||||
}
|
||||
ctx.push_trail(value_trail(largest_var));
|
||||
largest_var = std::max({largest_var, source, dest});
|
||||
ctx.push_trail(value_trail(non_links[get_word_index(source, dest)]));
|
||||
non_links[get_word_index(source, dest)] |= get_bitmask(dest);
|
||||
ctx.push_trail(value_trail(non_link_justifications[source * max_size + dest]));
|
||||
non_link_justifications[source * max_size + dest] = non_reachability_witness;
|
||||
check_reachability_conflict(source, dest);
|
||||
return true;
|
||||
}
|
||||
|
||||
theory_finite_set_lattice_refutation::theory_finite_set_lattice_refutation(theory_finite_set &th)
|
||||
: m(th.m), ctx(th.ctx), th(th), u(m), bs(m), m_assumption(m), reachability(th.ctx, *this) {}
|
||||
|
||||
// determines if the two enodes capture a subset relation:
|
||||
// checks, whether intersect_expr = intersect(subset, return_value) for some return value
|
||||
// otherwise return null
|
||||
enode *theory_finite_set_lattice_refutation::get_superset(enode *subset, enode *intersect_expr) {
|
||||
expr *arg1 = nullptr, *arg2 = nullptr;
|
||||
if (u.is_intersect(intersect_expr->get_expr(), arg1, arg2)) {
|
||||
if (arg1 == subset->get_expr()) {
|
||||
return ctx.get_enode(arg2);
|
||||
}
|
||||
if (arg2 == subset->get_expr()) {
|
||||
return ctx.get_enode(arg1);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_equality(theory_var v1, theory_var v2) {
|
||||
auto n1 = th.get_enode(v1);
|
||||
auto n2 = th.get_enode(v2);
|
||||
|
||||
enode *subset = n1;
|
||||
enode *superset = get_superset(n1, n2);
|
||||
if (superset == nullptr) {
|
||||
subset = n2;
|
||||
superset = get_superset(n2, n1);
|
||||
}
|
||||
if (superset == nullptr) {
|
||||
add_set_equality(n1, n2);
|
||||
return;
|
||||
}
|
||||
TRACE(finite_set, tout << "new_eq_intersection: " << enode_pp(subset, ctx) << "(" << th.get_th_var(subset)
|
||||
<< ")" << "\\subseteq " << enode_pp(superset, ctx) << "(" << th.get_th_var(superset)
|
||||
<< ")");
|
||||
add_subset(subset->get_th_var(th.get_id()), superset->get_th_var(th.get_id()), {n1, n2});
|
||||
};
|
||||
|
||||
std::pair<vector<enode_pair>, int> reachability_matrix::get_path(theory_var source, theory_var dest) {
|
||||
SASSERT(is_reachable(source, dest));
|
||||
vector<enode_pair> path;
|
||||
vector<bool> visited(max_size, false);
|
||||
if (source != dest) {
|
||||
visited[source] = true;
|
||||
}
|
||||
int num_decisions = 0;
|
||||
do {
|
||||
bool success = false;
|
||||
// TRACE(finite_set, tout << "get_path:source: "<<source);
|
||||
for (int i = 0; i <= largest_var; i++) {
|
||||
if (!visited[i] && is_linked(source, i) && ((is_reachable(i, dest)) || i == dest)) {
|
||||
path.push_back(links[source * max_size + i]);
|
||||
if (link_dls[source * max_size + i] != 0) {
|
||||
num_decisions += 1;
|
||||
}
|
||||
|
||||
source = i;
|
||||
visited[source] = true;
|
||||
success = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
SASSERT(success);
|
||||
} while (source != dest);
|
||||
TRACE(finite_set, tout << "get_path_num_decisions: " << num_decisions);
|
||||
return {std::move(path), num_decisions};
|
||||
}
|
||||
|
||||
bool reachability_matrix::check_reachability_conflict(theory_var source, theory_var dest) {
|
||||
if (is_reachable(source, dest) && is_reachability_forbidden(source, dest)) {
|
||||
TRACE(finite_set, tout << "found_conflict1: " << source << " -> " << dest);
|
||||
auto [path, num_decisions] = get_path(source, dest);
|
||||
// TRACE(finite_set, tout << "found path: "<<source<<" -> "<<dest<<" length: "<<path.size());
|
||||
if (num_decisions <= MAX_DECISION_LITERALS) {
|
||||
TRACE(finite_set, tout << "num_decisions: " << num_decisions << " path_length: " << path.size());
|
||||
|
||||
enode_pair diseq = non_link_justifications[source * max_size + dest];
|
||||
t_lattice_refutation.trigger_conflict(path, diseq);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool reachability_matrix::check_reachability_conflict_word(int row, int word) {
|
||||
if (reachable[row * NUM_WORDS + word] & non_links[row * NUM_WORDS + word]) {
|
||||
// somewhere in this word there is a conflict
|
||||
conflict_row = row;
|
||||
conflict_word = word;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void reachability_matrix::display_relations(std::ostream& out) const {
|
||||
out << "largest_var: " << largest_var << "\n";
|
||||
for (int i = 0; i < max_size; i++) {
|
||||
for (int j = 0; j < max_size; j++) {
|
||||
if ((reachable[get_word_index(i, j)] & get_bitmask(j)) || is_reachable(i, j)) {
|
||||
out << "reachable: " << i << "->" << j << " :" << is_reachable(i, j) << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void theory_finite_set_lattice_refutation::trigger_conflict(vector<enode_pair> equalities,
|
||||
enode_pair clashing_disequality) {
|
||||
auto eq_expr =
|
||||
m.mk_not(m.mk_eq(clashing_disequality.first->get_expr(), clashing_disequality.second->get_expr()));
|
||||
auto disequality_literal = ctx.get_literal(eq_expr);
|
||||
auto j1 = ext_theory_conflict_justification(th.get_id(), ctx, 1, &disequality_literal, equalities.size(),
|
||||
equalities.data());
|
||||
auto justification = ctx.mk_justification(j1);
|
||||
TRACE(finite_set, tout << "conflict_literal: " << disequality_literal);
|
||||
|
||||
TRACE(finite_set, tout << "setting_partial_order_conflict");
|
||||
ctx.set_conflict(justification);
|
||||
}
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_disequality(theory_var v1, theory_var v2) {
|
||||
auto n1 = th.get_enode(v1);
|
||||
auto n2 = th.get_enode(v2);
|
||||
|
||||
enode *subset = n1;
|
||||
enode *superset = get_superset(n1, n2);
|
||||
if (!superset) {
|
||||
subset = n2;
|
||||
superset = get_superset(n2, n1);
|
||||
}
|
||||
if (!superset)
|
||||
return;
|
||||
|
||||
TRACE(finite_set, tout << "new_diseq_intersection: " << enode_pp(subset, ctx) << "(" << th.get_th_var(subset)
|
||||
<< ")" << "\\not\\subseteq " << enode_pp(superset, ctx) << "(" << th.get_th_var(superset)
|
||||
<< ")");
|
||||
add_not_subset(subset->get_th_var(th.get_id()), superset->get_th_var(th.get_id()), {n1, n2});
|
||||
};
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_subset(theory_var subset_th, theory_var superset_th,
|
||||
enode_pair justifying_equality) {
|
||||
if (!reachability.in_bounds(subset_th, superset_th)) {
|
||||
return;
|
||||
}
|
||||
if (subset_th == null_theory_var || superset_th == null_theory_var) {
|
||||
return;
|
||||
}
|
||||
reachability.set_reachability(subset_th, superset_th, justifying_equality);
|
||||
SASSERT(reachability.is_reachable(subset_th, superset_th));
|
||||
if (reachability.is_reachable(superset_th, subset_th)) {
|
||||
TRACE(finite_set, tout << "cycle_detected: " << subset_th << " <--> " << superset_th);
|
||||
auto [path, num_decisions] = reachability.get_path(subset_th, subset_th);
|
||||
// we propagate the equality
|
||||
// build justification to be used by all propagated equalities
|
||||
auto j1 = ctx.mk_justification(
|
||||
ext_theory_conflict_justification(th.get_id(), ctx, 0, nullptr, path.size(), path.data()));
|
||||
|
||||
for (unsigned i = 0; i < path.size() - 1; i++) {
|
||||
auto set1 = path[i].first;
|
||||
auto set2 = path[i + 1].first;
|
||||
ctx.add_eq(set1, set2, eq_justification(j1));
|
||||
TRACE(finite_set, tout << "added_equality: " << set1 << " == " << set2);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_not_subset(theory_var subset_th, theory_var superset_th,
|
||||
enode_pair justifying_disequality) {
|
||||
if (!reachability.in_bounds(subset_th, superset_th)) {
|
||||
return;
|
||||
}
|
||||
if (subset_th == null_theory_var || superset_th == null_theory_var) {
|
||||
return;
|
||||
}
|
||||
reachability.set_non_reachability(subset_th, superset_th, justifying_disequality);
|
||||
SASSERT(reachability.is_reachability_forbidden(subset_th, superset_th));
|
||||
}
|
||||
|
||||
void theory_finite_set_lattice_refutation::add_set_equality(enode *set1, enode *set2) {
|
||||
theory_var set1_th = set1->get_th_var(th.get_id());
|
||||
theory_var set2_th = set2->get_th_var(th.get_id());
|
||||
if (!reachability.in_bounds(set1_th, set2_th)) {
|
||||
return;
|
||||
}
|
||||
reachability.set_reachability(set1_th, set2_th, {set1, set2});
|
||||
SASSERT(reachability.is_reachable(set1_th, set2_th));
|
||||
|
||||
reachability.set_reachability(set2_th, set1_th, {set2, set1});
|
||||
SASSERT(reachability.is_reachable(set2_th, set1_th));
|
||||
}
|
||||
} // namespace smt
|
||||
|
|
@ -1,79 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2025 Lorenz Winkler
|
||||
|
||||
Module Name:
|
||||
|
||||
theory_finite_lattice_refutation.h
|
||||
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ast/finite_set_decl_plugin.h"
|
||||
#include "smt/smt_theory.h"
|
||||
|
||||
namespace smt {
|
||||
class context;
|
||||
class theory_finite_set;
|
||||
|
||||
class theory_finite_set_lattice_refutation;
|
||||
class reachability_matrix {
|
||||
svector<uint64_t> reachable; // V x V -> bitset of reachable nodes
|
||||
enode_pair_vector links; // V x V -> enode_pair justifying the link
|
||||
svector<uint64_t> link_dls; // V x V -> decision level when the link was added
|
||||
svector<uint64_t> non_links; // V x V -> bitset of non-reachable nodes
|
||||
enode_pair_vector non_link_justifications; // V x V -> enode_pair justifying the non-link
|
||||
|
||||
int largest_var;
|
||||
|
||||
int max_size;
|
||||
|
||||
context &ctx;
|
||||
theory_finite_set_lattice_refutation &t_lattice_refutation;
|
||||
int conflict_row = -1;
|
||||
int conflict_word = -1;
|
||||
|
||||
// sets source_dest |= dest, and pushing the changed words to the trail
|
||||
bool bitwise_or_rows(int source_dest, int source);
|
||||
inline int get_word_index(int row, int col) const;
|
||||
inline uint64_t get_bitmask(int col) const;
|
||||
|
||||
public:
|
||||
std::pair<vector<enode_pair>, int> get_path(theory_var source, theory_var dest);
|
||||
reachability_matrix(context &ctx, theory_finite_set_lattice_refutation &t_lattice);
|
||||
bool in_bounds(theory_var source, theory_var dest);
|
||||
bool is_reachable(theory_var source, theory_var dest) const;
|
||||
bool is_reachability_forbidden(theory_var source, theory_var dest);
|
||||
bool is_linked(theory_var source, theory_var dest);
|
||||
|
||||
bool check_reachability_conflict(theory_var source, theory_var dest);
|
||||
bool check_reachability_conflict_word(int row, int word);
|
||||
|
||||
bool set_reachability(theory_var source, theory_var dest, enode_pair reachability_witness);
|
||||
bool set_non_reachability(theory_var source, theory_var dest, enode_pair non_reachability_witness);
|
||||
int get_max_var();
|
||||
void display_relations(std::ostream& out) const;
|
||||
};
|
||||
|
||||
class theory_finite_set_lattice_refutation {
|
||||
ast_manager &m;
|
||||
context &ctx;
|
||||
theory_finite_set &th;
|
||||
finite_set_util u;
|
||||
expr_ref_vector bs;
|
||||
expr_ref m_assumption;
|
||||
reachability_matrix reachability;
|
||||
|
||||
enode *get_superset(enode *, enode *);
|
||||
void add_subset(theory_var subset, theory_var superset, enode_pair justifying_equality);
|
||||
void add_not_subset(theory_var subset, theory_var superset, enode_pair justifying_disequality);
|
||||
void propagate_new_subset(theory_var v1, theory_var v2);
|
||||
void add_set_equality(enode *set1, enode *set2);
|
||||
|
||||
public:
|
||||
void trigger_conflict(vector<enode_pair> equalities, enode_pair clashing_disequality);
|
||||
theory_finite_set_lattice_refutation(theory_finite_set &th);
|
||||
void add_equality(theory_var v1, theory_var v2);
|
||||
void add_disequality(theory_var v1, theory_var v2);
|
||||
};
|
||||
} // namespace smt
|
||||
Loading…
Add table
Add a link
Reference in a new issue