mirror of
https://github.com/Z3Prover/z3
synced 2025-08-11 21:50:52 +00:00
move to separate axiom management
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
9bde93f812
commit
377d060036
16 changed files with 302 additions and 565 deletions
|
@ -37,7 +37,11 @@ seq_axioms::seq_axioms(theory& th, th_rewriter& r):
|
|||
m_digits_initialized(false)
|
||||
{
|
||||
std::function<void(expr_ref_vector const&)> _add_clause = [&](expr_ref_vector const& c) { add_clause(c); };
|
||||
std::function<void(expr*)> _set_phase = [&](expr* e) { set_phase(e); };
|
||||
std::function<void(void)> _ensure_digits = [&]() { ensure_digit_axiom(); };
|
||||
m_ax.set_add_clause(_add_clause);
|
||||
m_ax.set_phase(_set_phase);
|
||||
m_ax.set_ensure_digits(_ensure_digits);
|
||||
}
|
||||
|
||||
literal seq_axioms::mk_eq(expr* a, expr* b) {
|
||||
|
@ -68,6 +72,12 @@ literal seq_axioms::mk_literal(expr* _e) {
|
|||
return ctx().get_literal(e);
|
||||
}
|
||||
|
||||
void seq_axioms::set_phase(expr* e) {
|
||||
literal lit = mk_literal(e);
|
||||
ctx().force_phase(lit);
|
||||
}
|
||||
|
||||
|
||||
void seq_axioms::add_clause(expr_ref_vector const& clause) {
|
||||
expr* a = nullptr, *b = nullptr;
|
||||
if (false && clause.size() == 1 && m.is_eq(clause[0], a, b)) {
|
||||
|
@ -83,480 +93,17 @@ void seq_axioms::add_clause(expr_ref_vector const& clause) {
|
|||
literal lits[5] = { null_literal, null_literal, null_literal, null_literal, null_literal };
|
||||
unsigned idx = 0;
|
||||
for (expr* e : clause) {
|
||||
lits[idx++] = mk_literal(e);
|
||||
literal lit = mk_literal(e);
|
||||
if (lit == true_literal)
|
||||
return;
|
||||
if (lit != false_literal)
|
||||
lits[idx++] = mk_literal(e);
|
||||
SASSERT(idx <= 5);
|
||||
}
|
||||
add_axiom(lits[0], lits[1], lits[2], lits[3], lits[4]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
encode that s is not contained in of xs1
|
||||
where s1 is all of s, except the last element.
|
||||
|
||||
s = "" or s = s1*(unit c)
|
||||
s = "" or !contains(x*s1, s)
|
||||
*/
|
||||
void seq_axioms::tightest_prefix(expr* s, expr* x) {
|
||||
literal s_eq_emp = mk_eq_empty(s);
|
||||
if (seq.str.max_length(s) <= 1) {
|
||||
add_axiom(s_eq_emp, ~mk_literal(seq.str.mk_contains(x, s)));
|
||||
return;
|
||||
}
|
||||
expr_ref s1 = m_sk.mk_first(s);
|
||||
expr_ref c = m_sk.mk_last(s);
|
||||
expr_ref s1c = mk_concat(s1, seq.str.mk_unit(c));
|
||||
add_axiom(s_eq_emp, mk_seq_eq(s, s1c));
|
||||
add_axiom(s_eq_emp, ~mk_literal(seq.str.mk_contains(mk_concat(x, s1), s)));
|
||||
}
|
||||
|
||||
/*
|
||||
[[str.indexof]](w, w2, i) is the smallest n such that for some some w1, w3
|
||||
- w = w1w2w3
|
||||
- i <= n = |w1|
|
||||
|
||||
if [[str.contains]](w, w2) = true, |w2| > 0 and i >= 0.
|
||||
|
||||
[[str.indexof]](w,w2,i) = -1 otherwise.
|
||||
|
||||
|
||||
let i = Index(t, s, offset):
|
||||
// index of s in t starting at offset.
|
||||
|
||||
|
||||
|t| = 0 => |s| = 0 or indexof(t,s,offset) = -1
|
||||
|t| = 0 & |s| = 0 => indexof(t,s,offset) = 0
|
||||
|
||||
offset >= len(t) => |s| = 0 or i = -1
|
||||
|
||||
len(t) != 0 & !contains(t, s) => i = -1
|
||||
|
||||
|
||||
offset = 0 & len(t) != 0 & contains(t, s) => t = xsy & i = len(x)
|
||||
tightest_prefix(x, s)
|
||||
|
||||
|
||||
0 <= offset < len(t) => xy = t &
|
||||
len(x) = offset &
|
||||
(-1 = indexof(y, s, 0) => -1 = i) &
|
||||
(indexof(y, s, 0) >= 0 => indexof(t, s, 0) + offset = i)
|
||||
|
||||
offset < 0 => i = -1
|
||||
|
||||
optional lemmas:
|
||||
(len(s) > len(t) -> i = -1)
|
||||
(len(s) <= len(t) -> i <= len(t)-len(s))
|
||||
*/
|
||||
void seq_axioms::add_indexof_axiom(expr* i) {
|
||||
expr* _s = nullptr, *_t = nullptr, *_offset = nullptr;
|
||||
rational r;
|
||||
VERIFY(seq.str.is_index(i, _t, _s) ||
|
||||
seq.str.is_index(i, _t, _s, _offset));
|
||||
expr_ref minus_one(a.mk_int(-1), m);
|
||||
expr_ref zero(a.mk_int(0), m);
|
||||
expr_ref xsy(m), t(_t, m), s(_s, m), offset(_offset, m);
|
||||
m_rewrite(t);
|
||||
m_rewrite(s);
|
||||
if (offset) m_rewrite(offset);
|
||||
literal cnt = mk_literal(seq.str.mk_contains(t, s));
|
||||
literal i_eq_m1 = mk_eq(i, minus_one);
|
||||
literal i_eq_0 = mk_eq(i, zero);
|
||||
literal s_eq_empty = mk_eq_empty(s);
|
||||
literal t_eq_empty = mk_eq_empty(t);
|
||||
|
||||
// |t| = 0 => |s| = 0 or indexof(t,s,offset) = -1
|
||||
// ~contains(t,s) <=> indexof(t,s,offset) = -1
|
||||
|
||||
add_axiom(cnt, i_eq_m1);
|
||||
add_axiom(~t_eq_empty, s_eq_empty, i_eq_m1);
|
||||
|
||||
if (!offset || (a.is_numeral(offset, r) && r.is_zero())) {
|
||||
// |s| = 0 => indexof(t,s,0) = 0
|
||||
add_axiom(~s_eq_empty, i_eq_0);
|
||||
#if 1
|
||||
expr_ref x = m_sk.mk_indexof_left(t, s);
|
||||
expr_ref y = m_sk.mk_indexof_right(t, s);
|
||||
xsy = mk_concat(x, s, y);
|
||||
expr_ref lenx = mk_len(x);
|
||||
// contains(t,s) & |s| != 0 => t = xsy & indexof(t,s,0) = |x|
|
||||
add_axiom(~cnt, s_eq_empty, mk_seq_eq(t, xsy));
|
||||
add_axiom(~cnt, s_eq_empty, mk_eq(i, lenx));
|
||||
add_axiom(~cnt, mk_ge(i, 0));
|
||||
tightest_prefix(s, x);
|
||||
#else
|
||||
// let i := indexof(t,s,0)
|
||||
// contains(t, s) & |s| != 0 => ~contains(substr(t,0,i+len(s)-1), s)
|
||||
// => substr(t,0,i+len(s)) = substr(t,0,i) ++ s
|
||||
//
|
||||
expr_ref len_s = mk_len(s);
|
||||
expr_ref mone(a.mk_int(-1), m);
|
||||
add_axiom(~cnt, s_eq_empty, ~mk_literal(seq.str.mk_contains(seq.str.mk_substr(t,zero,a.mk_add(i,len_s,mone)),s)));
|
||||
add_axiom(~cnt, s_eq_empty, mk_seq_eq(seq.str.mk_substr(t,zero,a.mk_add(i,len_s)),
|
||||
seq.str.mk_concat(seq.str.mk_substr(t,zero,i), s)));
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
// offset >= len(t) => |s| = 0 or indexof(t, s, offset) = -1
|
||||
// offset > len(t) => indexof(t, s, offset) = -1
|
||||
// offset = len(t) & |s| = 0 => indexof(t, s, offset) = offset
|
||||
expr_ref len_t = mk_len(t);
|
||||
literal offset_ge_len = mk_ge(mk_sub(offset, len_t), 0);
|
||||
literal offset_le_len = mk_le(mk_sub(offset, len_t), 0);
|
||||
literal i_eq_offset = mk_eq(i, offset);
|
||||
add_axiom(~offset_ge_len, s_eq_empty, i_eq_m1);
|
||||
add_axiom(offset_le_len, i_eq_m1);
|
||||
add_axiom(~offset_ge_len, ~offset_le_len, ~s_eq_empty, i_eq_offset);
|
||||
|
||||
expr_ref x = m_sk.mk_indexof_left(t, s, offset);
|
||||
expr_ref y = m_sk.mk_indexof_right(t, s, offset);
|
||||
expr_ref indexof0(seq.str.mk_index(y, s, zero), m);
|
||||
expr_ref offset_p_indexof0(a.mk_add(offset, indexof0), m);
|
||||
literal offset_ge_0 = mk_ge(offset, 0);
|
||||
|
||||
// 0 <= offset & offset < len(t) => t = xy
|
||||
// 0 <= offset & offset < len(t) => len(x) = offset
|
||||
// 0 <= offset & offset < len(t) & indexof(y,s,0) = -1 => -1 = i
|
||||
// 0 <= offset & offset < len(t) & indexof(y,s,0) >= 0 =>
|
||||
// -1 = indexof(y,s,0) + offset = indexof(t, s, offset)
|
||||
|
||||
add_axiom(~offset_ge_0, offset_ge_len, mk_seq_eq(t, mk_concat(x, y)));
|
||||
add_axiom(~offset_ge_0, offset_ge_len, mk_eq(mk_len(x), offset));
|
||||
add_axiom(~offset_ge_0, offset_ge_len,
|
||||
~mk_eq(indexof0, minus_one), i_eq_m1);
|
||||
add_axiom(~offset_ge_0, offset_ge_len,
|
||||
~mk_ge(indexof0, 0),
|
||||
mk_eq(offset_p_indexof0, i));
|
||||
|
||||
// offset < 0 => -1 = i
|
||||
add_axiom(offset_ge_0, i_eq_m1);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
!contains(t, s) => i = -1
|
||||
|t| = 0 => |s| = 0 or i = -1
|
||||
|t| = 0 & |s| = 0 => i = 0
|
||||
|t| != 0 & contains(t, s) => t = xsy & i = len(x)
|
||||
|s| = 0 or s = s_head*s_tail
|
||||
|s| = 0 or !contains(s_tail*y, s)
|
||||
|
||||
*/
|
||||
void seq_axioms::add_last_indexof_axiom(expr* i) {
|
||||
expr* _s = nullptr, *_t = nullptr;
|
||||
VERIFY(seq.str.is_last_index(i, _t, _s));
|
||||
expr_ref s(_s, m), t(_t, m);
|
||||
m_rewrite(s);
|
||||
m_rewrite(t);
|
||||
expr_ref minus_one(a.mk_int(-1), m);
|
||||
expr_ref zero(a.mk_int(0), m);
|
||||
expr_ref s_head(m), s_tail(m);
|
||||
expr_ref x = m_sk.mk_last_indexof_left(t, s);
|
||||
expr_ref y = m_sk.mk_last_indexof_right(t, s);
|
||||
m_sk.decompose(s, s_head, s_tail);
|
||||
literal cnt = mk_literal(seq.str.mk_contains(t, s));
|
||||
literal cnt2 = mk_literal(seq.str.mk_contains(mk_concat(s_tail, y), s));
|
||||
literal i_eq_m1 = mk_eq(i, minus_one);
|
||||
literal i_eq_0 = mk_eq(i, zero);
|
||||
literal s_eq_empty = mk_eq_empty(s);
|
||||
literal t_eq_empty = mk_eq_empty(t);
|
||||
expr_ref xsy = mk_concat(x, s, y);
|
||||
|
||||
add_axiom(cnt, i_eq_m1);
|
||||
add_axiom(~t_eq_empty, s_eq_empty, i_eq_m1);
|
||||
add_axiom(~t_eq_empty, ~s_eq_empty, i_eq_0);
|
||||
add_axiom(t_eq_empty, ~cnt, mk_seq_eq(t, xsy));
|
||||
add_axiom(t_eq_empty, ~cnt, mk_eq(i, mk_len(x)));
|
||||
add_axiom(s_eq_empty, mk_eq(s, mk_concat(s_head, s_tail)));
|
||||
add_axiom(s_eq_empty, ~cnt2);
|
||||
}
|
||||
|
||||
/*
|
||||
let r = replace(u, s, t)
|
||||
|
||||
|
||||
- if s is empty, the result is to prepend t to u;
|
||||
- if s does not occur in u then the result is u.
|
||||
|
||||
s = "" => r = t+u
|
||||
u = "" => s = "" or r = u
|
||||
~contains(u,s) => r = u
|
||||
|
||||
tightest_prefix(s, x)
|
||||
contains(u, s) => r = xty & u = xsy
|
||||
~contains(u, s) => r = u
|
||||
|
||||
*/
|
||||
void seq_axioms::add_replace_axiom(expr* r) {
|
||||
expr* _u = nullptr, *_s = nullptr, *_t = nullptr;
|
||||
VERIFY(seq.str.is_replace(r, _u, _s, _t));
|
||||
expr_ref u(_u, m), s(_s, m), t(_t, m);
|
||||
m_rewrite(u);
|
||||
m_rewrite(s);
|
||||
m_rewrite(t);
|
||||
expr_ref x = m_sk.mk_indexof_left(u, s);
|
||||
expr_ref y = m_sk.mk_indexof_right(u, s);
|
||||
expr_ref xty = mk_concat(x, t, y);
|
||||
expr_ref xsy = mk_concat(x, s, y);
|
||||
literal u_emp = mk_eq_empty(u, true);
|
||||
literal s_emp = mk_eq_empty(s, true);
|
||||
literal cnt = mk_literal(seq.str.mk_contains(u, s));
|
||||
add_axiom(~s_emp, mk_seq_eq(r, mk_concat(t, u)));
|
||||
add_axiom(~u_emp, s_emp, mk_seq_eq(r, u));
|
||||
add_axiom(cnt, mk_seq_eq(r, u));
|
||||
add_axiom(~cnt, u_emp, s_emp, mk_seq_eq(u, xsy));
|
||||
add_axiom(~cnt, u_emp, s_emp, mk_seq_eq(r, xty));
|
||||
ctx().force_phase(cnt);
|
||||
tightest_prefix(s, x);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
let e = at(s, i)
|
||||
|
||||
0 <= i < len(s) -> s = xey & len(x) = i & len(e) = 1
|
||||
i < 0 \/ i >= len(s) -> e = empty
|
||||
|
||||
*/
|
||||
void seq_axioms::add_at_axiom(expr* e) {
|
||||
TRACE("seq", tout << "at-axiom: " << ctx().get_scope_level() << " " << mk_bounded_pp(e, m) << "\n";);
|
||||
expr* _s = nullptr, *_i = nullptr;
|
||||
VERIFY(seq.str.is_at(e, _s, _i));
|
||||
expr_ref s(_s, m), i(_i, m);
|
||||
m_rewrite(s);
|
||||
m_rewrite(i);
|
||||
expr_ref zero(a.mk_int(0), m);
|
||||
expr_ref one(a.mk_int(1), m);
|
||||
expr_ref emp(seq.str.mk_empty(e->get_sort()), m);
|
||||
expr_ref len_s = mk_len(s);
|
||||
literal i_ge_0 = mk_ge(i, 0);
|
||||
literal i_ge_len_s = mk_ge(mk_sub(i, mk_len(s)), 0);
|
||||
expr_ref len_e = mk_len(e);
|
||||
|
||||
rational iv;
|
||||
if (a.is_numeral(i, iv) && iv.is_unsigned()) {
|
||||
expr_ref_vector es(m);
|
||||
expr_ref nth(m);
|
||||
unsigned k = iv.get_unsigned();
|
||||
for (unsigned j = 0; j <= k; ++j) {
|
||||
es.push_back(seq.str.mk_unit(mk_nth(s, j)));
|
||||
}
|
||||
nth = es.back();
|
||||
es.push_back(m_sk.mk_tail(s, i));
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_seq_eq(s, seq.str.mk_concat(es, e->get_sort())));
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_seq_eq(nth, e));
|
||||
}
|
||||
else {
|
||||
expr_ref x = m_sk.mk_pre(s, i);
|
||||
expr_ref y = m_sk.mk_tail(s, i);
|
||||
expr_ref xey = mk_concat(x, e, y);
|
||||
expr_ref len_x = mk_len(x);
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_seq_eq(s, xey));
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(i, len_x));
|
||||
}
|
||||
|
||||
add_axiom(i_ge_0, mk_eq(e, emp));
|
||||
add_axiom(~i_ge_len_s, mk_eq(e, emp));
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(one, len_e));
|
||||
add_axiom(mk_le(len_e, 1));
|
||||
}
|
||||
|
||||
/**
|
||||
i >= 0 i < len(s) => unit(nth_i(s, i)) = at(s, i)
|
||||
nth_i(unit(nth_i(s, i)), 0) = nth_i(s, i)
|
||||
*/
|
||||
|
||||
void seq_axioms::add_nth_axiom(expr* e) {
|
||||
expr* s = nullptr, *i = nullptr;
|
||||
rational n;
|
||||
zstring str;
|
||||
VERIFY(seq.str.is_nth_i(e, s, i));
|
||||
if (seq.str.is_string(s, str) && a.is_numeral(i, n) &&
|
||||
n.is_unsigned() && n.get_unsigned() < str.length()) {
|
||||
app_ref ch(seq.str.mk_char(str[n.get_unsigned()]), m);
|
||||
add_axiom(mk_eq(ch, e));
|
||||
}
|
||||
else {
|
||||
expr_ref zero(a.mk_int(0), m);
|
||||
literal i_ge_0 = mk_ge(i, 0);
|
||||
literal i_ge_len_s = mk_ge(mk_sub(i, mk_len(s)), 0);
|
||||
// at(s,i) = [nth(s,i)]
|
||||
expr_ref rhs(s, m);
|
||||
expr_ref lhs(seq.str.mk_unit(e), m);
|
||||
if (!seq.str.is_at(s) || zero != i) rhs = seq.str.mk_at(s, i);
|
||||
m_rewrite(rhs);
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(lhs, rhs));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void seq_axioms::add_itos_axiom(expr* e) {
|
||||
expr* _n = nullptr;
|
||||
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
||||
VERIFY(seq.str.is_itos(e, _n));
|
||||
expr_ref n(_n, m);
|
||||
m_rewrite(n);
|
||||
|
||||
// itos(n) = "" <=> n < 0
|
||||
expr_ref zero(a.mk_int(0), m);
|
||||
literal eq1 = mk_literal(seq.str.mk_is_empty(e));
|
||||
literal ge0 = mk_ge(n, 0);
|
||||
// n >= 0 => itos(n) != ""
|
||||
// itos(n) = "" or n >= 0
|
||||
add_axiom(~eq1, ~ge0);
|
||||
add_axiom(eq1, ge0);
|
||||
add_axiom(mk_ge(mk_len(e), 0));
|
||||
|
||||
// n >= 0 => stoi(itos(n)) = n
|
||||
app_ref stoi(seq.str.mk_stoi(e), m);
|
||||
add_axiom(~ge0, th.mk_preferred_eq(stoi, n));
|
||||
|
||||
// itos(n) does not start with "0" when n > 0
|
||||
// n = 0 or at(itos(n),0) != "0"
|
||||
// alternative: n >= 0 => itos(stoi(itos(n))) = itos(n)
|
||||
expr_ref zs(seq.str.mk_string(symbol("0")), m);
|
||||
m_rewrite(zs);
|
||||
literal eq0 = mk_eq(n, zero);
|
||||
literal at0 = mk_eq(seq.str.mk_at(e, zero), zs);
|
||||
add_axiom(eq0, ~at0);
|
||||
add_axiom(~eq0, mk_eq(e, zs));
|
||||
}
|
||||
|
||||
/**
|
||||
stoi(s) >= -1
|
||||
stoi("") = -1
|
||||
stoi(s) >= 0 => is_digit(nth(s,0))
|
||||
*/
|
||||
void seq_axioms::add_stoi_axiom(expr* e) {
|
||||
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
||||
literal ge0 = mk_ge(e, 0);
|
||||
expr* s = nullptr;
|
||||
VERIFY (seq.str.is_stoi(e, s));
|
||||
add_axiom(mk_ge(e, -1)); // stoi(s) >= -1
|
||||
add_axiom(~mk_eq_empty(s), mk_eq(e, a.mk_int(-1))); // s = "" => stoi(s) = -1
|
||||
add_axiom(~ge0, is_digit(mk_nth(s, 0))); // stoi(s) >= 0 => is_digit(nth(s,0))
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
len(s) <= k => stoi(s) = stoi(s, k)
|
||||
len(s) > 0, is_digit(nth(s,0)) => stoi(s, 0) = digit(nth_i(s, 0))
|
||||
len(s) > 0, ~is_digit(nth(s,0)) => stoi(s, 0) = -1
|
||||
|
||||
0 < i, len(s) <= i => stoi(s, i) = stoi(s, i - 1)
|
||||
0 < i, len(s) > i, stoi(s, i - 1) >= 0, is_digit(nth(s, i - 1)) => stoi(s, i) = 10*stoi(s, i - 1) + digit(nth_i(s, i - 1))
|
||||
0 < i, len(s) > i, stoi(s, i - 1) < 0 => stoi(s, i) = -1
|
||||
0 < i, len(s) > i, ~is_digit(nth(s, i - 1)) => stoi(s, i) = -1
|
||||
|
||||
|
||||
|
||||
Define auxiliary function with the property:
|
||||
for 0 <= i < k
|
||||
stoi(s, i) := stoi(extract(s, 0, i+1))
|
||||
|
||||
for 0 < i < k:
|
||||
len(s) > i => stoi(s, i) := stoi(extract(s, 0, i))*10 + stoi(extract(s, i, 1))
|
||||
len(s) <= i => stoi(s, i) := stoi(extract(s, 0, i-1), i-1)
|
||||
|
||||
for i <= i < k:
|
||||
stoi(s) > = 0, len(s) > i => is_digit(nth(s, i))
|
||||
|
||||
*/
|
||||
void seq_axioms::add_stoi_axiom(expr* e, unsigned k) {
|
||||
SASSERT(k > 0);
|
||||
expr* _s = nullptr;
|
||||
VERIFY (seq.str.is_stoi(e, _s));
|
||||
expr_ref s(_s, m);
|
||||
m_rewrite(s);
|
||||
auto stoi2 = [&](unsigned j) { return m_sk.mk("seq.stoi", s, a.mk_int(j), a.mk_int()); };
|
||||
auto digit = [&](unsigned j) { return m_sk.mk_digit2int(mk_nth(s, j)); };
|
||||
auto is_digit_ = [&](unsigned j) { return is_digit(mk_nth(s, j)); };
|
||||
expr_ref len = mk_len(s);
|
||||
literal ge0 = mk_ge(e, 0);
|
||||
literal lek = mk_le(len, k);
|
||||
add_axiom(~lek, mk_eq(e, stoi2(k-1))); // len(s) <= k => stoi(s) = stoi(s, k-1)
|
||||
add_axiom(mk_le(len, 0), ~is_digit_(0), mk_eq(stoi2(0), digit(0))); // len(s) > 0, is_digit(nth(s, 0)) => stoi(s,0) = digit(s,0)
|
||||
add_axiom(mk_le(len, 0), is_digit_(0), mk_eq(stoi2(0), a.mk_int(-1))); // len(s) > 0, ~is_digit(nth(s, 0)) => stoi(s,0) = -1
|
||||
for (unsigned i = 1; i < k; ++i) {
|
||||
|
||||
// len(s) <= i => stoi(s, i) = stoi(s, i - 1)
|
||||
|
||||
add_axiom(~mk_le(len, i), mk_eq(stoi2(i), stoi2(i-1)));
|
||||
|
||||
// len(s) > i, stoi(s, i - 1) >= 0, is_digit(nth(s, i)) => stoi(s, i) = 10*stoi(s, i - 1) + digit(i)
|
||||
// len(s) > i, stoi(s, i - 1) < 0 => stoi(s, i) = -1
|
||||
// len(s) > i, ~is_digit(nth(s, i)) => stoi(s, i) = -1
|
||||
|
||||
add_axiom(mk_le(len, i), ~mk_ge(stoi2(i-1), 0), ~is_digit_(i), mk_eq(stoi2(i), a.mk_add(a.mk_mul(a.mk_int(10), stoi2(i-1)), digit(i))));
|
||||
add_axiom(mk_le(len, i), is_digit_(i), mk_eq(stoi2(i), a.mk_int(-1)));
|
||||
add_axiom(mk_le(len, i), mk_ge(stoi2(i-1), 0), mk_eq(stoi2(i), a.mk_int(-1)));
|
||||
|
||||
// stoi(s) >= 0, i < len(s) => is_digit(nth(s, i))
|
||||
|
||||
add_axiom(~ge0, mk_le(len, i), is_digit_(i));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Let s := itos(e)
|
||||
|
||||
Relate values of e with len(s) where len(s) is bounded by k.
|
||||
|
||||
|s| = 0 => e < 0
|
||||
|
||||
|s| <= 1 => e < 10
|
||||
|s| <= 2 => e < 100
|
||||
|s| <= 3 => e < 1000
|
||||
|
||||
|s| >= 1 => e >= 0
|
||||
|s| >= 2 => e >= 10
|
||||
|s| >= 3 => e >= 100
|
||||
|
||||
There are no constraints to ensure that the string itos(e)
|
||||
contains the valid digits corresponding to e >= 0.
|
||||
The validity of itos(e) is ensured by the following property:
|
||||
e is either of the form stoi(s) for some s, or there is a term
|
||||
stoi(itos(e)) and axiom e >= 0 => stoi(itos(e)) = e.
|
||||
Then the axioms for stoi(itos(e)) ensure that the characters of
|
||||
itos(e) are valid digits and the axiom stoi(itos(e)) = e ensures
|
||||
these digits encode e.
|
||||
The option of constraining itos(e) digits directly does not
|
||||
seem appealing becaues it requires an order of quadratic number
|
||||
of constraints for all possible lengths of itos(e) (e.g, log_10(e)).
|
||||
|
||||
*/
|
||||
|
||||
void seq_axioms::add_itos_axiom(expr* s, unsigned k) {
|
||||
expr* e = nullptr;
|
||||
VERIFY(seq.str.is_itos(s, e));
|
||||
expr_ref len = mk_len(s);
|
||||
add_axiom(mk_ge(e, 10), mk_le(len, 1));
|
||||
add_axiom(mk_le(e, -1), mk_ge(len, 1));
|
||||
rational lo(1);
|
||||
for (unsigned i = 1; i <= k; ++i) {
|
||||
lo *= rational(10);
|
||||
add_axiom(mk_ge(e, lo), mk_le(len, i));
|
||||
add_axiom(mk_le(e, lo - 1), mk_ge(len, i + 1));
|
||||
}
|
||||
}
|
||||
|
||||
literal seq_axioms::is_digit(expr* ch) {
|
||||
ensure_digit_axiom();
|
||||
literal isd = mk_literal(m_sk.mk_is_digit(ch));
|
||||
expr_ref d2i = m_sk.mk_digit2int(ch);
|
||||
expr_ref _lo(seq.mk_le(seq.mk_char('0'), ch), m);
|
||||
expr_ref _hi(seq.mk_le(ch, seq.mk_char('9')), m);
|
||||
literal lo = mk_literal(_lo);
|
||||
literal hi = mk_literal(_hi);
|
||||
add_axiom(~lo, ~hi, isd);
|
||||
add_axiom(~isd, lo);
|
||||
add_axiom(~isd, hi);
|
||||
return isd;
|
||||
}
|
||||
|
||||
/**
|
||||
Bridge character digits to integers.
|
||||
*/
|
||||
|
@ -573,28 +120,3 @@ void seq_axioms::ensure_digit_axiom() {
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
is_digit(e) <=> to_code('0') <= to_code(e) <= to_code('9')
|
||||
*/
|
||||
void seq_axioms::add_is_digit_axiom(expr* n) {
|
||||
expr* e = nullptr;
|
||||
VERIFY(seq.str.is_is_digit(n, e));
|
||||
literal is_digit = mk_literal(n);
|
||||
expr_ref to_code(seq.str.mk_to_code(e), m);
|
||||
literal ge0 = mk_ge(to_code, (unsigned)'0');
|
||||
literal le9 = mk_le(to_code, (unsigned)'9');
|
||||
add_axiom(~is_digit, ge0);
|
||||
add_axiom(~is_digit, le9);
|
||||
add_axiom(is_digit, ~ge0, ~le9);
|
||||
}
|
||||
|
||||
|
||||
expr_ref seq_axioms::add_length_limit(expr* s, unsigned k) {
|
||||
expr_ref bound_tracker = m_sk.mk_length_limit(s, k);
|
||||
expr* s0 = nullptr;
|
||||
if (seq.str.is_stoi(s, s0))
|
||||
s = s0;
|
||||
literal bound_predicate = mk_le(mk_len(s), k);
|
||||
add_axiom(~mk_literal(bound_tracker), bound_predicate);
|
||||
return bound_tracker;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue