mirror of
https://github.com/Z3Prover/z3
synced 2025-08-18 09:12:16 +00:00
add bounded-int and pb2bv solvers to fd_solver, use sorting networks for pb2bv rewriter when applicable, hoist to pb2bv_rewriter module and remove it from the pb2bv_tactic
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
6d3430c689
commit
3778048eb4
26 changed files with 1424 additions and 700 deletions
296
src/tactic/portfolio/bounded_int2bv_solver.cpp
Normal file
296
src/tactic/portfolio/bounded_int2bv_solver.cpp
Normal file
|
@ -0,0 +1,296 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
bounded_int2bv_solver.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
This solver identifies bounded integers and rewrites them to bit-vectors.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "bounded_int2bv_solver.h"
|
||||
#include "solver_na2as.h"
|
||||
#include "tactic.h"
|
||||
#include "pb2bv_rewriter.h"
|
||||
#include "filter_model_converter.h"
|
||||
#include "extension_model_converter.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
#include "bound_manager.h"
|
||||
#include "bv2int_rewriter.h"
|
||||
#include "expr_safe_replace.h"
|
||||
#include "bv_decl_plugin.h"
|
||||
#include "arith_decl_plugin.h"
|
||||
|
||||
class bounded_int2bv_solver : public solver_na2as {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
bv_util m_bv;
|
||||
arith_util m_arith;
|
||||
expr_ref_vector m_assertions;
|
||||
ref<solver> m_solver;
|
||||
ptr_vector<bound_manager> m_bounds;
|
||||
func_decl_ref_vector m_bv_fns;
|
||||
func_decl_ref_vector m_int_fns;
|
||||
unsigned_vector m_bv_fns_lim;
|
||||
obj_map<func_decl, func_decl*> m_int2bv;
|
||||
obj_map<func_decl, func_decl*> m_bv2int;
|
||||
obj_map<func_decl, rational> m_bv2offset;
|
||||
bv2int_rewriter_ctx m_rewriter_ctx;
|
||||
bv2int_rewriter_star m_rewriter;
|
||||
|
||||
public:
|
||||
|
||||
bounded_int2bv_solver(ast_manager& m, params_ref const& p, solver* s):
|
||||
solver_na2as(m),
|
||||
m(m),
|
||||
m_params(p),
|
||||
m_bv(m),
|
||||
m_arith(m),
|
||||
m_assertions(m),
|
||||
m_solver(s),
|
||||
m_bv_fns(m),
|
||||
m_int_fns(m),
|
||||
m_rewriter_ctx(m, p),
|
||||
m_rewriter(m, m_rewriter_ctx)
|
||||
{
|
||||
m_bounds.push_back(alloc(bound_manager, m));
|
||||
}
|
||||
|
||||
virtual ~bounded_int2bv_solver() {
|
||||
while (!m_bounds.empty()) {
|
||||
dealloc(m_bounds.back());
|
||||
m_bounds.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
virtual solver* translate(ast_manager& m, params_ref const& p) {
|
||||
return alloc(bounded_int2bv_solver, m, p, m_solver->translate(m, p));
|
||||
}
|
||||
|
||||
virtual void assert_expr(expr * t) {
|
||||
m_assertions.push_back(t);
|
||||
}
|
||||
|
||||
virtual void push_core() {
|
||||
flush_assertions();
|
||||
m_solver->push();
|
||||
m_bv_fns_lim.push_back(m_bv_fns.size());
|
||||
m_bounds.push_back(alloc(bound_manager, m));
|
||||
}
|
||||
|
||||
virtual void pop_core(unsigned n) {
|
||||
m_assertions.reset();
|
||||
m_solver->pop(n);
|
||||
|
||||
if (n > 0) {
|
||||
SASSERT(n <= m_bv_fns_lim.size());
|
||||
unsigned new_sz = m_bv_fns_lim.size() - n;
|
||||
unsigned lim = m_bv_fns_lim[new_sz];
|
||||
for (unsigned i = m_int_fns.size(); i > lim; ) {
|
||||
--i;
|
||||
m_int2bv.erase(m_int_fns[i].get());
|
||||
m_bv2int.erase(m_bv_fns[i].get());
|
||||
m_bv2offset.erase(m_bv_fns[i].get());
|
||||
}
|
||||
m_bv_fns_lim.resize(new_sz);
|
||||
m_bv_fns.resize(lim);
|
||||
m_int_fns.resize(lim);
|
||||
}
|
||||
|
||||
while (n > 0) {
|
||||
dealloc(m_bounds.back());
|
||||
m_bounds.pop_back();
|
||||
--n;
|
||||
}
|
||||
}
|
||||
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
flush_assertions();
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
virtual void updt_params(params_ref const & p) { m_solver->updt_params(p); }
|
||||
virtual void collect_param_descrs(param_descrs & r) { m_solver->collect_param_descrs(r); }
|
||||
virtual void set_produce_models(bool f) { m_solver->set_produce_models(f); }
|
||||
virtual void set_progress_callback(progress_callback * callback) { m_solver->set_progress_callback(callback); }
|
||||
virtual void collect_statistics(statistics & st) const { m_solver->collect_statistics(st); }
|
||||
virtual void get_unsat_core(ptr_vector<expr> & r) { m_solver->get_unsat_core(r); }
|
||||
virtual void get_model(model_ref & mdl) {
|
||||
m_solver->get_model(mdl);
|
||||
if (mdl) {
|
||||
extend_model(mdl);
|
||||
filter_model(mdl);
|
||||
}
|
||||
}
|
||||
virtual proof * get_proof() { return m_solver->get_proof(); }
|
||||
virtual std::string reason_unknown() const { return m_solver->reason_unknown(); }
|
||||
virtual void set_reason_unknown(char const* msg) { m_solver->set_reason_unknown(msg); }
|
||||
virtual void get_labels(svector<symbol> & r) { m_solver->get_labels(r); }
|
||||
virtual ast_manager& get_manager() const { return m; }
|
||||
virtual lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) { return m_solver->find_mutexes(vars, mutexes); }
|
||||
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) {
|
||||
flush_assertions();
|
||||
expr_ref_vector bvars(m);
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
expr* v = vars[i];
|
||||
func_decl* f;
|
||||
rational offset;
|
||||
if (is_app(v) && is_uninterp_const(v) && m_int2bv.find(to_app(v)->get_decl(), f)) {
|
||||
bvars.push_back(m.mk_const(f));
|
||||
}
|
||||
else {
|
||||
bvars.push_back(v);
|
||||
}
|
||||
}
|
||||
lbool r = m_solver->get_consequences(asms, bvars, consequences);
|
||||
|
||||
// translate bit-vector consequences back to integer values
|
||||
for (unsigned i = 0; i < consequences.size(); ++i) {
|
||||
expr* a, *b, *u, *v;
|
||||
func_decl* f;
|
||||
rational num;
|
||||
unsigned bvsize;
|
||||
rational offset;
|
||||
VERIFY(m.is_implies(consequences[i].get(), a, b));
|
||||
if (m.is_eq(b, u, v) && is_uninterp_const(u) && m_bv2int.find(to_app(u)->get_decl(), f) && m_bv.is_numeral(v, num, bvsize)) {
|
||||
SASSERT(num.is_unsigned());
|
||||
expr_ref head(m);
|
||||
VERIFY (m_bv2offset.find(to_app(u)->get_decl(), offset));
|
||||
// f + offset == num
|
||||
// f == num - offset
|
||||
head = m.mk_eq(m.mk_const(f), m_arith.mk_numeral(num + offset, true));
|
||||
consequences[i] = m.mk_implies(a, head);
|
||||
}
|
||||
}
|
||||
return r;
|
||||
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
void filter_model(model_ref& mdl) const {
|
||||
if (m_bv_fns.empty()) {
|
||||
return;
|
||||
}
|
||||
filter_model_converter filter(m);
|
||||
func_decl_ref_vector const& fns = m_bv_fns;
|
||||
for (unsigned i = 0; i < m_bv_fns.size(); ++i) {
|
||||
filter.insert(m_bv_fns[i]);
|
||||
}
|
||||
filter(mdl, 0);
|
||||
}
|
||||
|
||||
void extend_model(model_ref& mdl) {
|
||||
extension_model_converter ext(m);
|
||||
obj_map<func_decl, func_decl*>::iterator it = m_int2bv.begin(), end = m_int2bv.end();
|
||||
for (; it != end; ++it) {
|
||||
rational offset;
|
||||
VERIFY (m_bv2offset.find(it->m_value, offset));
|
||||
expr_ref value(m_bv.mk_bv2int(m.mk_const(it->m_value)), m);
|
||||
if (!offset.is_zero()) {
|
||||
value = m_arith.mk_add(value, m_arith.mk_numeral(offset, true));
|
||||
}
|
||||
TRACE("int2bv", tout << mk_pp(it->m_key, m) << " " << value << "\n";);
|
||||
ext.insert(it->m_key, value);
|
||||
}
|
||||
ext(mdl, 0);
|
||||
}
|
||||
|
||||
void accumulate_sub(expr_safe_replace& sub) {
|
||||
for (unsigned i = 0; i < m_bounds.size(); ++i) {
|
||||
accumulate_sub(sub, *m_bounds[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void accumulate_sub(expr_safe_replace& sub, bound_manager& bm) {
|
||||
bound_manager::iterator it = bm.begin(), end = bm.end();
|
||||
for (; it != end; ++it) {
|
||||
expr* e = *it;
|
||||
rational lo, hi;
|
||||
bool s1, s2;
|
||||
SASSERT(is_uninterp_const(e));
|
||||
func_decl* f = to_app(e)->get_decl();
|
||||
|
||||
if (bm.has_lower(e, lo, s1) && bm.has_upper(e, hi, s2) && lo <= hi && !s1 && !s2) {
|
||||
func_decl* fbv;
|
||||
rational offset;
|
||||
if (!m_int2bv.find(f, fbv)) {
|
||||
rational n = hi - lo + rational::one();
|
||||
unsigned num_bits = get_num_bits(n);
|
||||
expr_ref b(m);
|
||||
b = m.mk_fresh_const("b", m_bv.mk_sort(num_bits));
|
||||
fbv = to_app(b)->get_decl();
|
||||
offset = lo;
|
||||
m_int2bv.insert(f, fbv);
|
||||
m_bv2int.insert(fbv, f);
|
||||
m_bv2offset.insert(fbv, offset);
|
||||
m_bv_fns.push_back(fbv);
|
||||
m_int_fns.push_back(f);
|
||||
unsigned shift;
|
||||
if (!offset.is_zero() && !n.is_power_of_two(shift)) {
|
||||
m_assertions.push_back(m_bv.mk_ule(b, m_bv.mk_numeral(n-rational::one(), num_bits)));
|
||||
}
|
||||
}
|
||||
else {
|
||||
VERIFY(m_bv2offset.find(fbv, offset));
|
||||
}
|
||||
expr_ref t(m.mk_const(fbv), m);
|
||||
t = m_bv.mk_bv2int(t);
|
||||
if (!offset.is_zero()) {
|
||||
t = m_arith.mk_add(t, m_arith.mk_numeral(lo, true));
|
||||
}
|
||||
sub.insert(e, t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsigned get_num_bits(rational const& k) {
|
||||
SASSERT(!k.is_neg());
|
||||
SASSERT(k.is_int());
|
||||
rational two(2);
|
||||
rational bound(1);
|
||||
unsigned num_bits = 1;
|
||||
while (bound <= k) {
|
||||
++num_bits;
|
||||
bound *= two;
|
||||
}
|
||||
return num_bits;
|
||||
}
|
||||
|
||||
void flush_assertions() {
|
||||
bound_manager& bm = *m_bounds.back();
|
||||
for (unsigned i = 0; i < m_assertions.size(); ++i) {
|
||||
bm(m_assertions[i].get());
|
||||
}
|
||||
expr_safe_replace sub(m);
|
||||
accumulate_sub(sub);
|
||||
proof_ref proof(m);
|
||||
expr_ref fml1(m), fml2(m);
|
||||
if (sub.empty()) {
|
||||
m_solver->assert_expr(m_assertions);
|
||||
}
|
||||
else {
|
||||
for (unsigned i = 0; i < m_assertions.size(); ++i) {
|
||||
sub(m_assertions[i].get(), fml1);
|
||||
m_rewriter(fml1, fml2, proof);
|
||||
m_solver->assert_expr(fml2);
|
||||
TRACE("int2bv", tout << fml2 << "\n";);
|
||||
}
|
||||
}
|
||||
m_assertions.reset();
|
||||
}
|
||||
};
|
||||
|
||||
solver * mk_bounded_int2bv_solver(ast_manager & m, params_ref const & p, solver* s) {
|
||||
return alloc(bounded_int2bv_solver, m, p, s);
|
||||
}
|
29
src/tactic/portfolio/bounded_int2bv_solver.h
Normal file
29
src/tactic/portfolio/bounded_int2bv_solver.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
bounded_int2bv_solver.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Finite domain solver.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef BOUNDED_INT2BV_SOLVER_H_
|
||||
#define BOUNDED_INT2BV_SOLVER_H_
|
||||
|
||||
#include"ast.h"
|
||||
#include"params.h"
|
||||
|
||||
class solver;
|
||||
|
||||
solver * mk_bounded_int2bv_solver(ast_manager & m, params_ref const & p, solver* s);
|
||||
|
||||
#endif
|
162
src/tactic/portfolio/enum2bv_solver.cpp
Normal file
162
src/tactic/portfolio/enum2bv_solver.cpp
Normal file
|
@ -0,0 +1,162 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
enum2bv_solver.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Finite domain solver.
|
||||
|
||||
Enumeration data-types are translated into bit-vectors, and then
|
||||
the incremental sat-solver is applied to the resulting assertions.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "solver_na2as.h"
|
||||
#include "tactic.h"
|
||||
#include "bv_decl_plugin.h"
|
||||
#include "datatype_decl_plugin.h"
|
||||
#include "enum2bv_rewriter.h"
|
||||
#include "extension_model_converter.h"
|
||||
#include "filter_model_converter.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
#include "enum2bv_solver.h"
|
||||
|
||||
class enum2bv_solver : public solver_na2as {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
ref<solver> m_solver;
|
||||
enum2bv_rewriter m_rewriter;
|
||||
|
||||
public:
|
||||
|
||||
enum2bv_solver(ast_manager& m, params_ref const& p, solver* s):
|
||||
solver_na2as(m),
|
||||
m(m),
|
||||
m_params(p),
|
||||
m_solver(s),
|
||||
m_rewriter(m, p)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~enum2bv_solver() {}
|
||||
|
||||
virtual solver* translate(ast_manager& m, params_ref const& p) {
|
||||
return alloc(enum2bv_solver, m, p, m_solver->translate(m, p));
|
||||
}
|
||||
|
||||
virtual void assert_expr(expr * t) {
|
||||
expr_ref tmp(t, m);
|
||||
expr_ref_vector bounds(m);
|
||||
proof_ref tmp_proof(m);
|
||||
m_rewriter(t, tmp, tmp_proof);
|
||||
m_solver->assert_expr(tmp);
|
||||
m_rewriter.flush_side_constraints(bounds);
|
||||
m_solver->assert_expr(bounds);
|
||||
}
|
||||
|
||||
virtual void push_core() {
|
||||
m_rewriter.push();
|
||||
m_solver->push();
|
||||
}
|
||||
|
||||
virtual void pop_core(unsigned n) {
|
||||
m_solver->pop(n);
|
||||
m_rewriter.pop(n);
|
||||
}
|
||||
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
virtual void updt_params(params_ref const & p) { m_solver->updt_params(p); }
|
||||
virtual void collect_param_descrs(param_descrs & r) { m_solver->collect_param_descrs(r); }
|
||||
virtual void set_produce_models(bool f) { m_solver->set_produce_models(f); }
|
||||
virtual void set_progress_callback(progress_callback * callback) { m_solver->set_progress_callback(callback); }
|
||||
virtual void collect_statistics(statistics & st) const { m_solver->collect_statistics(st); }
|
||||
virtual void get_unsat_core(ptr_vector<expr> & r) { m_solver->get_unsat_core(r); }
|
||||
virtual void get_model(model_ref & mdl) {
|
||||
m_solver->get_model(mdl);
|
||||
if (mdl) {
|
||||
extend_model(mdl);
|
||||
filter_model(mdl);
|
||||
}
|
||||
}
|
||||
virtual proof * get_proof() { return m_solver->get_proof(); }
|
||||
virtual std::string reason_unknown() const { return m_solver->reason_unknown(); }
|
||||
virtual void set_reason_unknown(char const* msg) { m_solver->set_reason_unknown(msg); }
|
||||
virtual void get_labels(svector<symbol> & r) { m_solver->get_labels(r); }
|
||||
virtual ast_manager& get_manager() const { return m; }
|
||||
virtual lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) { return m_solver->find_mutexes(vars, mutexes); }
|
||||
|
||||
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) {
|
||||
|
||||
datatype_util dt(m);
|
||||
bv_util bv(m);
|
||||
|
||||
// translate enumeration constants to bit-vectors.
|
||||
expr_ref_vector bvars(m), conseq(m);
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
func_decl* f;
|
||||
if (is_app(vars[i]) && is_uninterp_const(vars[i]) && m_rewriter.enum2bv().find(to_app(vars[i])->get_decl(), f)) {
|
||||
bvars.push_back(m.mk_const(f));
|
||||
}
|
||||
else {
|
||||
bvars.push_back(vars[i]);
|
||||
}
|
||||
}
|
||||
lbool r = m_solver->get_consequences(asms, bvars, consequences);
|
||||
std::cout << consequences.size() << "\n";
|
||||
|
||||
|
||||
// translate bit-vector consequences back to enumeration types
|
||||
for (unsigned i = 0; i < consequences.size(); ++i) {
|
||||
expr* a, *b, *u, *v;
|
||||
func_decl* f;
|
||||
rational num;
|
||||
unsigned bvsize;
|
||||
VERIFY(m.is_implies(consequences[i].get(), a, b));
|
||||
if (m.is_eq(b, u, v) && is_uninterp_const(u) && m_rewriter.bv2enum().find(to_app(u)->get_decl(), f) && bv.is_numeral(v, num, bvsize)) {
|
||||
SASSERT(num.is_unsigned());
|
||||
expr_ref head(m);
|
||||
ptr_vector<func_decl> const& enums = *dt.get_datatype_constructors(f->get_range());
|
||||
head = m.mk_eq(m.mk_const(f), m.mk_const(enums[num.get_unsigned()]));
|
||||
consequences[i] = m.mk_implies(a, head);
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void filter_model(model_ref& mdl) {
|
||||
filter_model_converter filter(m);
|
||||
obj_map<func_decl, func_decl*>::iterator it = m_rewriter.enum2bv().begin(), end = m_rewriter.enum2bv().end();
|
||||
for (; it != end; ++it) {
|
||||
filter.insert(it->m_value);
|
||||
}
|
||||
filter(mdl, 0);
|
||||
}
|
||||
|
||||
void extend_model(model_ref& mdl) {
|
||||
extension_model_converter ext(m);
|
||||
obj_map<func_decl, expr*>::iterator it = m_rewriter.enum2def().begin(), end = m_rewriter.enum2def().end();
|
||||
for (; it != end; ++it) {
|
||||
ext.insert(it->m_key, it->m_value);
|
||||
|
||||
}
|
||||
ext(mdl, 0);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
solver * mk_enum2bv_solver(ast_manager & m, params_ref const & p, solver* s) {
|
||||
return alloc(enum2bv_solver, m, p, s);
|
||||
}
|
29
src/tactic/portfolio/enum2bv_solver.h
Normal file
29
src/tactic/portfolio/enum2bv_solver.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
enum2bv_solver.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Finite domain solver.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef ENUM2BV_SOLVER_H_
|
||||
#define ENUM2BV_SOLVER_H_
|
||||
|
||||
#include"ast.h"
|
||||
#include"params.h"
|
||||
|
||||
class solver;
|
||||
|
||||
solver * mk_enum2bv_solver(ast_manager & m, params_ref const & p, solver* s);
|
||||
|
||||
#endif
|
|
@ -9,9 +9,6 @@ Abstract:
|
|||
|
||||
Finite domain solver.
|
||||
|
||||
Enumeration data-types are translated into bit-vectors, and then
|
||||
the incremental sat-solver is applied to the resulting assertions.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-17
|
||||
|
@ -21,141 +18,16 @@ Notes:
|
|||
--*/
|
||||
|
||||
#include "fd_solver.h"
|
||||
#include "solver_na2as.h"
|
||||
#include "tactic.h"
|
||||
#include "inc_sat_solver.h"
|
||||
#include "bv_decl_plugin.h"
|
||||
#include "datatype_decl_plugin.h"
|
||||
#include "fd_rewriter.h"
|
||||
#include "extension_model_converter.h"
|
||||
#include "filter_model_converter.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
|
||||
class fd_solver : public solver_na2as {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
ref<solver> m_solver;
|
||||
fd_rewriter m_rewriter;
|
||||
|
||||
public:
|
||||
|
||||
fd_solver(ast_manager& m, params_ref const& p):
|
||||
solver_na2as(m),
|
||||
m(m),
|
||||
m_params(p),
|
||||
m_solver(mk_inc_sat_solver(m, p)),
|
||||
m_rewriter(m, p)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~fd_solver() {}
|
||||
|
||||
virtual solver* translate(ast_manager& m, params_ref const& p) {
|
||||
return alloc(fd_solver, m, p);
|
||||
}
|
||||
|
||||
virtual void assert_expr(expr * t) {
|
||||
expr_ref tmp(t, m);
|
||||
expr_ref_vector bounds(m);
|
||||
proof_ref tmp_proof(m);
|
||||
m_rewriter(t, tmp, tmp_proof);
|
||||
m_solver->assert_expr(tmp);
|
||||
m_rewriter.flush_side_constraints(bounds);
|
||||
m_solver->assert_expr(bounds);
|
||||
}
|
||||
|
||||
virtual void push_core() {
|
||||
m_rewriter.push();
|
||||
m_solver->push();
|
||||
}
|
||||
|
||||
virtual void pop_core(unsigned n) {
|
||||
m_solver->pop(n);
|
||||
m_rewriter.pop(n);
|
||||
}
|
||||
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
virtual void updt_params(params_ref const & p) { m_solver->updt_params(p); }
|
||||
virtual void collect_param_descrs(param_descrs & r) { m_solver->collect_param_descrs(r); }
|
||||
virtual void set_produce_models(bool f) { m_solver->set_produce_models(f); }
|
||||
virtual void set_progress_callback(progress_callback * callback) { m_solver->set_progress_callback(callback); }
|
||||
virtual void collect_statistics(statistics & st) const { m_solver->collect_statistics(st); }
|
||||
virtual void get_unsat_core(ptr_vector<expr> & r) { m_solver->get_unsat_core(r); }
|
||||
virtual void get_model(model_ref & mdl) {
|
||||
m_solver->get_model(mdl);
|
||||
if (mdl) {
|
||||
extend_model(mdl);
|
||||
filter_model(mdl);
|
||||
}
|
||||
}
|
||||
virtual proof * get_proof() { return m_solver->get_proof(); }
|
||||
virtual std::string reason_unknown() const { return m_solver->reason_unknown(); }
|
||||
virtual void set_reason_unknown(char const* msg) { m_solver->set_reason_unknown(msg); }
|
||||
virtual void get_labels(svector<symbol> & r) { m_solver->get_labels(r); }
|
||||
virtual ast_manager& get_manager() const { return m; }
|
||||
virtual lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) { return m_solver->find_mutexes(vars, mutexes); }
|
||||
|
||||
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) {
|
||||
|
||||
datatype_util dt(m);
|
||||
bv_util bv(m);
|
||||
|
||||
// translate enumeration constants to bit-vectors.
|
||||
expr_ref_vector bvars(m), conseq(m);
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
func_decl* f;
|
||||
if (is_app(vars[i]) && is_uninterp_const(vars[i]) && m_rewriter.enum2bv().find(to_app(vars[i])->get_decl(), f)) {
|
||||
bvars.push_back(m.mk_const(f));
|
||||
}
|
||||
else {
|
||||
bvars.push_back(vars[i]);
|
||||
}
|
||||
}
|
||||
lbool r = m_solver->get_consequences(asms, bvars, consequences);
|
||||
|
||||
// translate bit-vector consequences back to enumeration types
|
||||
for (unsigned i = 0; i < consequences.size(); ++i) {
|
||||
expr* a, *b, *u, *v;
|
||||
func_decl* f;
|
||||
rational num;
|
||||
unsigned bvsize;
|
||||
VERIFY(m.is_implies(consequences[i].get(), a, b));
|
||||
if (m.is_eq(b, u, v) && is_uninterp_const(u) && m_rewriter.bv2enum().find(to_app(u)->get_decl(), f) && bv.is_numeral(v, num, bvsize)) {
|
||||
SASSERT(num.is_unsigned());
|
||||
expr_ref head(m);
|
||||
ptr_vector<func_decl> const& enums = *dt.get_datatype_constructors(f->get_range());
|
||||
head = m.mk_eq(m.mk_const(f), m.mk_const(enums[num.get_unsigned()]));
|
||||
consequences[i] = m.mk_implies(a, head);
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void filter_model(model_ref& mdl) {
|
||||
filter_model_converter filter(m);
|
||||
obj_map<func_decl, func_decl*>::iterator it = m_rewriter.enum2bv().begin(), end = m_rewriter.enum2bv().end();
|
||||
for (; it != end; ++it) {
|
||||
filter.insert(it->m_value);
|
||||
}
|
||||
filter(mdl, 0);
|
||||
}
|
||||
|
||||
void extend_model(model_ref& mdl) {
|
||||
extension_model_converter ext(m);
|
||||
obj_map<func_decl, expr*>::iterator it = m_rewriter.enum2def().begin(), end = m_rewriter.enum2def().end();
|
||||
for (; it != end; ++it) {
|
||||
ext.insert(it->m_key, it->m_value);
|
||||
|
||||
}
|
||||
ext(mdl, 0);
|
||||
}
|
||||
|
||||
};
|
||||
#include "enum2bv_solver.h"
|
||||
#include "pb2bv_solver.h"
|
||||
#include "bounded_int2bv_solver.h"
|
||||
|
||||
solver * mk_fd_solver(ast_manager & m, params_ref const & p) {
|
||||
return alloc(fd_solver, m, p);
|
||||
solver* s = mk_inc_sat_solver(m, p);
|
||||
s = mk_enum2bv_solver(m, p, s);
|
||||
s = mk_pb2bv_solver(m, p, s);
|
||||
s = mk_bounded_int2bv_solver(m, p, s);
|
||||
return s;
|
||||
}
|
||||
|
|
127
src/tactic/portfolio/pb2bv_solver.cpp
Normal file
127
src/tactic/portfolio/pb2bv_solver.cpp
Normal file
|
@ -0,0 +1,127 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
pb2bv_solver.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "pb2bv_solver.h"
|
||||
#include "solver_na2as.h"
|
||||
#include "tactic.h"
|
||||
#include "pb2bv_rewriter.h"
|
||||
#include "filter_model_converter.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
|
||||
class pb2bv_solver : public solver_na2as {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
expr_ref_vector m_assertions;
|
||||
ref<solver> m_solver;
|
||||
pb2bv_rewriter m_rewriter;
|
||||
|
||||
public:
|
||||
|
||||
pb2bv_solver(ast_manager& m, params_ref const& p, solver* s):
|
||||
solver_na2as(m),
|
||||
m(m),
|
||||
m_params(p),
|
||||
m_assertions(m),
|
||||
m_solver(s),
|
||||
m_rewriter(m, p)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~pb2bv_solver() {}
|
||||
|
||||
virtual solver* translate(ast_manager& m, params_ref const& p) {
|
||||
return alloc(pb2bv_solver, m, p, m_solver->translate(m, p));
|
||||
}
|
||||
|
||||
virtual void assert_expr(expr * t) {
|
||||
m_assertions.push_back(t);
|
||||
}
|
||||
|
||||
virtual void push_core() {
|
||||
flush_assertions();
|
||||
m_rewriter.push();
|
||||
m_solver->push();
|
||||
}
|
||||
|
||||
virtual void pop_core(unsigned n) {
|
||||
m_assertions.reset();
|
||||
m_solver->pop(n);
|
||||
m_rewriter.pop(n);
|
||||
}
|
||||
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
flush_assertions();
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
virtual void updt_params(params_ref const & p) { m_solver->updt_params(p); }
|
||||
virtual void collect_param_descrs(param_descrs & r) { m_solver->collect_param_descrs(r); }
|
||||
virtual void set_produce_models(bool f) { m_solver->set_produce_models(f); }
|
||||
virtual void set_progress_callback(progress_callback * callback) { m_solver->set_progress_callback(callback); }
|
||||
virtual void collect_statistics(statistics & st) const {
|
||||
m_rewriter.collect_statistics(st);
|
||||
m_solver->collect_statistics(st);
|
||||
}
|
||||
virtual void get_unsat_core(ptr_vector<expr> & r) { m_solver->get_unsat_core(r); }
|
||||
virtual void get_model(model_ref & mdl) {
|
||||
m_solver->get_model(mdl);
|
||||
if (mdl) {
|
||||
filter_model(mdl);
|
||||
}
|
||||
}
|
||||
virtual proof * get_proof() { return m_solver->get_proof(); }
|
||||
virtual std::string reason_unknown() const { return m_solver->reason_unknown(); }
|
||||
virtual void set_reason_unknown(char const* msg) { m_solver->set_reason_unknown(msg); }
|
||||
virtual void get_labels(svector<symbol> & r) { m_solver->get_labels(r); }
|
||||
virtual ast_manager& get_manager() const { return m; }
|
||||
virtual lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) { return m_solver->find_mutexes(vars, mutexes); }
|
||||
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) {
|
||||
flush_assertions();
|
||||
return m_solver->get_consequences(asms, vars, consequences); }
|
||||
|
||||
void filter_model(model_ref& mdl) {
|
||||
if (m_rewriter.fresh_constants().empty()) {
|
||||
return;
|
||||
}
|
||||
filter_model_converter filter(m);
|
||||
func_decl_ref_vector const& fns = m_rewriter.fresh_constants();
|
||||
for (unsigned i = 0; i < fns.size(); ++i) {
|
||||
filter.insert(fns[i]);
|
||||
}
|
||||
filter(mdl, 0);
|
||||
}
|
||||
|
||||
private:
|
||||
void flush_assertions() {
|
||||
proof_ref proof(m);
|
||||
expr_ref fml(m);
|
||||
expr_ref_vector fmls(m);
|
||||
for (unsigned i = 0; i < m_assertions.size(); ++i) {
|
||||
m_rewriter(m_assertions[i].get(), fml, proof);
|
||||
m_solver->assert_expr(fml);
|
||||
}
|
||||
m_rewriter.flush_side_constraints(fmls);
|
||||
m_solver->assert_expr(fmls);
|
||||
m_assertions.reset();
|
||||
}
|
||||
};
|
||||
|
||||
solver * mk_pb2bv_solver(ast_manager & m, params_ref const & p, solver* s) {
|
||||
return alloc(pb2bv_solver, m, p, s);
|
||||
}
|
29
src/tactic/portfolio/pb2bv_solver.h
Normal file
29
src/tactic/portfolio/pb2bv_solver.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
pb2bv_solver.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Pseudo-Boolean to bit-vector solver.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef PB2BV_SOLVER_H_
|
||||
#define PB2BV_SOLVER_H_
|
||||
|
||||
#include"ast.h"
|
||||
#include"params.h"
|
||||
|
||||
class solver;
|
||||
|
||||
solver * mk_pb2bv_solver(ast_manager & m, params_ref const & p, solver* s);
|
||||
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue