3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 19:35:50 +00:00

add bounded-int and pb2bv solvers to fd_solver, use sorting networks for pb2bv rewriter when applicable, hoist to pb2bv_rewriter module and remove it from the pb2bv_tactic

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2016-10-23 20:31:59 -07:00
parent 6d3430c689
commit 3778048eb4
26 changed files with 1424 additions and 700 deletions

View file

@ -18,500 +18,22 @@ Notes:
--*/
#include"tactical.h"
#include"cooperate.h"
#include"rewriter_def.h"
#include"ast_smt2_pp.h"
#include"expr_substitution.h"
#include"card2bv_tactic.h"
#include"pb_rewriter.h"
#include"pb2bv_rewriter.h"
#include"ast_util.h"
#include"ast_pp.h"
namespace pb {
unsigned card2bv_rewriter::get_num_bits(func_decl* f) {
rational r(0);
unsigned sz = f->get_arity();
for (unsigned i = 0; i < sz; ++i) {
r += pb.get_coeff(f, i);
}
r = r > pb.get_k(f)? r : pb.get_k(f);
return r.get_num_bits();
}
card2bv_rewriter::card2bv_rewriter(ast_manager& m):
m(m),
au(m),
pb(m),
bv(m),
m_sort(*this),
m_lemmas(m),
m_trail(m)
{}
void card2bv_rewriter::mk_assert(func_decl * f, unsigned sz, expr * const* args, expr_ref & result, expr_ref_vector& lemmas) {
m_lemmas.reset();
SASSERT(f->get_family_id() == pb.get_family_id());
if (is_or(f)) {
result = m.mk_or(sz, args);
}
else if (is_and(f)) {
result = m.mk_and(sz, args);
}
else if (pb.is_eq(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
result = m_sort.eq(pb.get_k(f).get_unsigned(), sz, args);
}
else if (pb.is_le(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
result = m_sort.le(false, pb.get_k(f).get_unsigned(), sz, args);
}
else if (pb.is_ge(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
result = m_sort.ge(false, pb.get_k(f).get_unsigned(), sz, args);
}
else {
br_status st = mk_shannon(f, sz, args, result);
if (st == BR_FAILED) {
mk_bv(f, sz, args, result);
}
}
lemmas.append(m_lemmas);
}
std::ostream& card2bv_rewriter::pp(std::ostream& out, literal lit) {
return out << mk_ismt2_pp(lit, m);
}
card2bv_rewriter::literal card2bv_rewriter::trail(literal l) {
m_trail.push_back(l);
return l;
}
card2bv_rewriter::literal card2bv_rewriter::fresh() {
return trail(m.mk_fresh_const("sn", m.mk_bool_sort()));
}
void card2bv_rewriter::mk_clause(unsigned n, literal const* lits) {
m_lemmas.push_back(mk_or(m, n, lits));
}
br_status card2bv_rewriter::mk_app_core(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
if (f->get_family_id() == null_family_id) {
if (sz == 1) {
// Expecting minimize/maximize.
func_decl_ref fd(m);
fd = m.mk_func_decl(f->get_name(), m.get_sort(args[0]), f->get_range());
result = m.mk_app(fd.get(), args[0]);
return BR_DONE;
}
else
return BR_FAILED;
}
else if (f->get_family_id() == m.get_basic_family_id()) {
result = m.mk_app(f, sz, args);
return BR_DONE;
}
else if (f->get_family_id() == pb.get_family_id()) {
if (is_or(f)) {
result = m.mk_or(sz, args);
return BR_DONE;
}
if (is_and(f)) {
result = m.mk_and(sz, args);
return BR_DONE;
}
if (is_atmost1(f, sz, args, result)) {
return BR_DONE;
}
br_status st = mk_shannon(f, sz, args, result);
if (st == BR_FAILED) {
mk_bv(f, sz, args, result);
return BR_DONE;
}
else {
return st;
}
}
// NSB: review
// we should remove this code and rely on a layer above to deal with
// whatever it accomplishes. It seems to break types.
//
else if (f->get_family_id() == au.get_family_id()) {
if (f->get_decl_kind() == OP_ADD) {
unsigned bits = 0;
for (unsigned i = 0; i < sz; i++) {
rational val1, val2;
if (au.is_int(args[i]) && au.is_numeral(args[i], val1)) {
bits += val1.get_num_bits();
}
else if (m.is_ite(args[i]) &&
au.is_numeral(to_app(args[i])->get_arg(1), val1) && val1.is_one() &&
au.is_numeral(to_app(args[i])->get_arg(2), val2) && val2.is_zero()) {
bits++;
}
else
return BR_FAILED;
}
result = 0;
for (unsigned i = 0; i < sz; i++) {
rational val1, val2;
expr * q;
if (au.is_int(args[i]) && au.is_numeral(args[i], val1))
q = bv.mk_numeral(val1, bits);
else
q = mk_ite(to_app(args[i])->get_arg(0), bv.mk_numeral(1, bits), bv.mk_numeral(0, bits));
result = (i == 0) ? q : bv.mk_bv_add(result.get(), q);
}
return BR_DONE;
}
else
return BR_FAILED;
}
else
return BR_FAILED;
}
expr_ref card2bv_rewriter::mk_atmost1(unsigned n, expr * const* xs) {
expr_ref_vector result(m), in(m);
in.append(n, xs);
unsigned inc_size = 4;
while (!in.empty()) {
expr_ref_vector ors(m);
unsigned i = 0;
unsigned n = in.size();
bool last = n <= inc_size;
for (; i + inc_size < n; i += inc_size) {
mk_at_most_1_small(last, inc_size, in.c_ptr() + i, result, ors);
}
if (i < n) {
mk_at_most_1_small(last, n - i, in.c_ptr() + i, result, ors);
}
if (last) {
break;
}
in.reset();
in.append(ors);
}
return mk_and(result);
}
void card2bv_rewriter::mk_at_most_1_small(bool last, unsigned n, literal const* xs, expr_ref_vector& result, expr_ref_vector& ors) {
if (!last) {
ors.push_back(m.mk_or(n, xs));
}
for (unsigned i = 0; i < n; ++i) {
for (unsigned j = i + 1; j < n; ++j) {
result.push_back(m.mk_not(m.mk_and(xs[i], xs[j])));
}
}
}
bool card2bv_rewriter::is_atmost1(func_decl* f, unsigned sz, expr * const* args, expr_ref& result) {
switch (f->get_decl_kind()) {
case OP_AT_MOST_K:
case OP_PB_LE:
if (pb.get_k(f).is_one() && pb.has_unit_coefficients(f)) {
result = mk_atmost1(sz, args);
return true;
}
return false;
case OP_AT_LEAST_K:
case OP_PB_GE:
if (pb.get_k(f) == rational(sz-1) && pb.has_unit_coefficients(f)) {
expr_ref_vector nargs(m);
for (unsigned i = 0; i < sz; ++i) {
nargs.push_back(mk_not(args[i]));
}
result = mk_atmost1(nargs.size(), nargs.c_ptr());
return true;
}
return false;
case OP_PB_EQ:
return false;
default:
UNREACHABLE();
return false;
}
}
bool card2bv_rewriter::is_or(func_decl* f) {
switch (f->get_decl_kind()) {
case OP_AT_MOST_K:
case OP_PB_LE:
return false;
case OP_AT_LEAST_K:
case OP_PB_GE:
return pb.get_k(f).is_one();
case OP_PB_EQ:
return false;
default:
UNREACHABLE();
return false;
}
}
bool card2bv_rewriter::is_and(func_decl* f) {
return false;
}
void card2bv_rewriter::mk_bv(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
expr_ref zero(m), a(m), b(m);
expr_ref_vector es(m);
unsigned bw = get_num_bits(f);
zero = bv.mk_numeral(rational(0), bw);
for (unsigned i = 0; i < sz; ++i) {
es.push_back(mk_ite(args[i], bv.mk_numeral(pb.get_coeff(f, i), bw), zero));
}
switch (es.size()) {
case 0: a = zero; break;
case 1: a = es[0].get(); break;
default:
a = es[0].get();
for (unsigned i = 1; i < es.size(); ++i) {
a = bv.mk_bv_add(a, es[i].get());
}
break;
}
b = bv.mk_numeral(pb.get_k(f), bw);
switch (f->get_decl_kind()) {
case OP_AT_MOST_K:
case OP_PB_LE:
UNREACHABLE();
result = bv.mk_ule(a, b);
break;
case OP_AT_LEAST_K:
UNREACHABLE();
case OP_PB_GE:
result = bv.mk_ule(b, a);
break;
case OP_PB_EQ:
result = m.mk_eq(a, b);
break;
default:
UNREACHABLE();
}
TRACE("card2bv", tout << result << "\n";);
}
struct argc_t {
expr* m_arg;
rational m_coeff;
argc_t():m_arg(0), m_coeff(0) {}
argc_t(expr* arg, rational const& r): m_arg(arg), m_coeff(r) {}
};
struct argc_gt {
bool operator()(argc_t const& a, argc_t const& b) const {
return a.m_coeff > b.m_coeff;
}
};
struct argc_entry {
unsigned m_index;
rational m_k;
expr* m_value;
argc_entry(unsigned i, rational const& k): m_index(i), m_k(k), m_value(0) {}
argc_entry():m_index(0), m_k(0), m_value(0) {}
struct eq {
bool operator()(argc_entry const& a, argc_entry const& b) const {
return a.m_index == b.m_index && a.m_k == b.m_k;
}
};
struct hash {
unsigned operator()(argc_entry const& a) const {
return a.m_index ^ a.m_k.hash();
}
};
};
typedef hashtable<argc_entry, argc_entry::hash, argc_entry::eq> argc_cache;
br_status card2bv_rewriter::mk_shannon(
func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
unsigned max_clauses = sz*10;
vector<argc_t> argcs;
for (unsigned i = 0; i < sz; ++i) {
argcs.push_back(argc_t(args[i], pb.get_coeff(f, i)));
}
std::sort(argcs.begin(), argcs.end(), argc_gt());
DEBUG_CODE(
for (unsigned i = 0; i + 1 < sz; ++i) {
SASSERT(argcs[i].m_coeff >= argcs[i+1].m_coeff);
}
);
result = m.mk_app(f, sz, args);
TRACE("card2bv", tout << result << "\n";);
argc_cache cache;
expr_ref_vector trail(m);
vector<rational> todo_k;
unsigned_vector todo_i;
todo_k.push_back(pb.get_k(f));
todo_i.push_back(0);
decl_kind kind = f->get_decl_kind();
argc_entry entry1;
while (!todo_i.empty()) {
SASSERT(todo_i.size() == todo_k.size());
if (cache.size() > max_clauses) {
return BR_FAILED;
}
unsigned i = todo_i.back();
rational k = todo_k.back();
argc_entry entry(i, k);
if (cache.contains(entry)) {
todo_i.pop_back();
todo_k.pop_back();
continue;
}
SASSERT(i < sz);
SASSERT(!k.is_neg());
rational const& coeff = argcs[i].m_coeff;
expr* arg = argcs[i].m_arg;
if (i + 1 == sz) {
switch(kind) {
case OP_AT_MOST_K:
case OP_PB_LE:
if (coeff <= k) {
entry.m_value = m.mk_true();
}
else {
entry.m_value = negate(arg);
trail.push_back(entry.m_value);
}
break;
case OP_AT_LEAST_K:
case OP_PB_GE:
if (k.is_zero()) {
entry.m_value = m.mk_true();
}
else if (coeff < k) {
entry.m_value = m.mk_false();
}
else if (coeff.is_zero()) {
entry.m_value = m.mk_true();
}
else {
SASSERT(coeff >= k && k.is_pos());
entry.m_value = arg;
}
break;
case OP_PB_EQ:
if (coeff == k) {
entry.m_value = arg;
}
else if (k.is_zero()) {
entry.m_value = negate(arg);
trail.push_back(entry.m_value);
}
else {
entry.m_value = m.mk_false();
}
break;
}
todo_i.pop_back();
todo_k.pop_back();
cache.insert(entry);
continue;
}
entry.m_index++;
expr* lo = 0, *hi = 0;
if (cache.find(entry, entry1)) {
lo = entry1.m_value;
}
else {
todo_i.push_back(i+1);
todo_k.push_back(k);
}
entry.m_k -= coeff;
if (kind != OP_PB_EQ && !entry.m_k.is_pos()) {
switch (kind) {
case OP_AT_MOST_K:
case OP_PB_LE:
hi = m.mk_false();
break;
case OP_AT_LEAST_K:
case OP_PB_GE:
hi = m.mk_true();
break;
default:
UNREACHABLE();
}
}
else if (cache.find(entry, entry1)) {
hi = entry1.m_value;
}
else {
todo_i.push_back(i+1);
todo_k.push_back(entry.m_k);
}
if (hi && lo) {
todo_i.pop_back();
todo_k.pop_back();
entry.m_index = i;
entry.m_k = k;
entry.m_value = mk_ite(arg, hi, lo);
trail.push_back(entry.m_value);
cache.insert(entry);
}
}
argc_entry entry(0, pb.get_k(f));
VERIFY(cache.find(entry, entry));
result = entry.m_value;
TRACE("card2bv", tout << result << "\n";);
return BR_DONE;
}
expr* card2bv_rewriter::negate(expr* e) {
if (m.is_not(e, e)) return e;
return m.mk_not(e);
}
expr* card2bv_rewriter::mk_ite(expr* c, expr* hi, expr* lo) {
while (m.is_not(c, c)) {
std::swap(hi, lo);
}
if (hi == lo) return hi;
if (m.is_true(hi) && m.is_false(lo)) return c;
if (m.is_false(hi) && m.is_true(lo)) return negate(c);
if (m.is_true(hi)) return m.mk_or(c, lo);
if (m.is_false(lo)) return m.mk_and(c, hi);
if (m.is_false(hi)) return m.mk_and(negate(c), lo);
if (m.is_true(lo)) return m.mk_implies(c, hi);
return m.mk_ite(c, hi, lo);
}
void card_pb_rewriter::rewrite(expr* e, expr_ref& result) {
if (pb.is_eq(e)) {
app* a = to_app(e);
ast_manager& m = m_lemmas.get_manager();
unsigned sz = a->get_num_args();
expr_ref_vector args(m);
expr_ref tmp(m);
for (unsigned i = 0; i < sz; ++i) {
(*this)(a->get_arg(i), tmp);
args.push_back(tmp);
}
m_cfg.m_r.mk_assert(a->get_decl(), sz, args.c_ptr(), result, m_lemmas);
}
else {
(*this)(e, result);
}
}
};
template class rewriter_tpl<pb::card2bv_rewriter_cfg>;
#include"filter_model_converter.h"
class card2bv_tactic : public tactic {
ast_manager & m;
params_ref m_params;
th_rewriter m_rw1;
pb::card_pb_rewriter m_rw2;
public:
card2bv_tactic(ast_manager & m, params_ref const & p):
m(m),
m_params(p),
m_rw1(m),
m_rw2(m) {
m_params(p) {
}
virtual tactic * translate(ast_manager & m) {
@ -538,9 +60,8 @@ public:
SASSERT(g->is_well_sorted());
mc = 0; pc = 0; core = 0; result.reset();
tactic_report report("card2bv", *g);
m_rw1.reset();
m_rw2.reset();
m_rw2.lemmas().reset();
th_rewriter rw1(m, m_params);
pb2bv_rewriter rw2(m, m_params);
if (g->inconsistent()) {
result.push_back(g.get());
@ -550,18 +71,28 @@ public:
expr_ref new_f1(m), new_f2(m);
proof_ref new_pr1(m), new_pr2(m);
for (unsigned idx = 0; !g->inconsistent() && idx < g->size(); idx++) {
m_rw1(g->form(idx), new_f1, new_pr1);
rw1(g->form(idx), new_f1, new_pr1);
TRACE("card2bv", tout << "Rewriting " << mk_ismt2_pp(new_f1.get(), m) << std::endl;);
m_rw2.rewrite(new_f1, new_f2);
rw2(new_f1, new_f2, new_pr2);
if (m.proofs_enabled()) {
new_pr1 = m.mk_modus_ponens(g->pr(idx), new_pr1);
new_pr2 = m.mk_rewrite(new_f1, new_f2);
new_pr1 = m.mk_modus_ponens(new_pr1, new_pr2);
}
g->update(idx, new_f2, new_pr1, g->dep(idx));
}
for (unsigned i = 0; i < m_rw2.lemmas().size(); ++i) {
g->assert_expr(m_rw2.lemmas()[i].get());
expr_ref_vector fmls(m);
rw2.flush_side_constraints(fmls);
for (unsigned i = 0; !g->inconsistent() && i < fmls.size(); ++i) {
g->assert_expr(fmls[i].get());
}
func_decl_ref_vector const& fns = rw2.fresh_constants();
if (!fns.empty()) {
filter_model_converter* filter = alloc(filter_model_converter, m);
for (unsigned i = 0; i < fns.size(); ++i) {
filter->insert(fns[i]);
}
mc = filter;
}
g->inc_depth();