mirror of
https://github.com/Z3Prover/z3
synced 2025-08-26 21:16:02 +00:00
Merge branch 'parallel-solving' of github.com:ilanashapiro/z3 into parallel-solving
This commit is contained in:
commit
375d537471
23 changed files with 525 additions and 218 deletions
125
PARALLEL_PROJECT_NOTES.md
Normal file
125
PARALLEL_PROJECT_NOTES.md
Normal file
|
@ -0,0 +1,125 @@
|
|||
# Parallel project notes
|
||||
|
||||
|
||||
|
||||
We track notes for updates to
|
||||
[smt/parallel.cpp](https://github.com/Z3Prover/z3/blob/master/src/smt/smt_parallel.cpp)
|
||||
and possibly
|
||||
[solver/parallel_tactic.cpp](https://github.com/Z3Prover/z3/blob/master/src/solver/parallel_tactical.cpp).
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## Variable selection heuristics
|
||||
|
||||
|
||||
|
||||
* Lookahead solvers:
|
||||
* lookahead in the smt directory performs a simplistic lookahead search using unit propagation.
|
||||
* lookahead in the sat directory uses custom lookahead solver based on MARCH. March is described in Handbook of SAT and Knuth volumne 4.
|
||||
* They both proxy on a cost model where the most useful variable to branch on is the one that _minimizes_ the set of new clauses maximally
|
||||
through unit propagation. In other words, if a literal _p_ is set to true, and _p_ occurs in clause $\neg p \vee q \vee r$, then it results in
|
||||
reducing the clause from size 3 to 2 (because $\neg p$ will be false after propagating _p_).
|
||||
* Selected references: SAT handbook, Knuth Volumne 4, Marijn's March solver on github, [implementation of march in z3](https://github.com/Z3Prover/z3/blob/master/src/sat/sat_lookahead.cpp)
|
||||
* VSIDS:
|
||||
* As referenced in Matteo and Antti's solvers.
|
||||
* Variable activity is a proxy for how useful it is to case split on a variable during search. Variables with a higher VSIDS are split first.
|
||||
* VSIDS is updated dynamically during search. It was introduced in the paper with Moscovitz, Malik, et al in early 2000s. A good overview is in Armin's tutorial slides (also in my overview of SMT).
|
||||
* VSIDS does not keep track of variable phases (if the variable was set to true or false).
|
||||
* Selected refernces [DAC 2001](https://www.princeton.edu/~chaff/publication/DAC2001v56.pdf) and [Biere Tutorial, slide 64 on Variable Scoring Schemes](https://alexeyignatiev.github.io/ssa-school-2019/slides/ab-satsmtar19-slides.pdf)
|
||||
* Proof prefix:
|
||||
* Collect the literals that occur in learned clauses. Count their occurrences based on polarity. This gets tracked in a weighted score.
|
||||
* The weight function can be formulated to take into account clause sizes.
|
||||
* The score assignment may also decay similar to VSIDS.
|
||||
* We could also use a doubly linked list for literals used in conflicts and keep reinsert literals into the list when they are used. This would be a "Variable move to front" (VMTF) variant.
|
||||
* Selected references: [Battleman et al](https://www.cs.cmu.edu/~mheule/publications/proofix-SAT25.pdf)
|
||||
* From local search:
|
||||
* Note also that local search solvers can be used to assign variable branch priorities.
|
||||
* We are not going to directly run a local search solver in the mix up front, but let us consider this heuristic for completeness.
|
||||
* The heuristic is documented in Biere and Cai's journal paper on integrating local search for CDCL.
|
||||
* Roughly, it considers clauses that move from the UNSAT set to the SAT set of clauses. It then keeps track of the literals involved.
|
||||
* Selected references: [Cai et al](https://www.jair.org/index.php/jair/article/download/13666/26833/)
|
||||
* Assignment trails:
|
||||
* We could also consider the assignments to variables during search.
|
||||
* Variables that are always assigned to the same truth value could be considered to be safe to assign that truth value.
|
||||
* The cubes resulting from such variables might be a direction towards finding satisfying solutions.
|
||||
* Selected references: [Alex and Vadim](https://link.springer.com/chapter/10.1007/978-3-319-94144-8_7) and most recently [Robin et al](https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.9).
|
||||
|
||||
|
||||
## Algorithms
|
||||
|
||||
This section considers various possible algorithms.
|
||||
In the following, $F$ refers to the original goal, $T$ is the number of CPU cores or CPU threads.
|
||||
|
||||
### Base algorithm
|
||||
|
||||
The existing algorithm in <b>smt_parallel</b> is as follows:
|
||||
|
||||
1. Run a solver on $F$ with a bounded number of conflicts.
|
||||
2. If the result is SAT/UNSAT, or UNKNOWN with an interrupt or timeout, return. If the maximal number of conflicts were reached continue.
|
||||
3. Spawn $T$ solvers on $F$ with a bounded number of conflicts, wait until a thread returns UNSAT/SAT or all threads have reached a maximal number of conflicts.
|
||||
4. Perform a similar check as in 2.
|
||||
5. Share unit literals learned by each thread.
|
||||
6. Compute unit cubes for each thread $T$.
|
||||
7. Spawn $T$ solvers with $F \wedge \ell$, where $\ell$ is a unit literal determined by lookahead function in each thread.
|
||||
8. Perform a similar check as in 2. But note that a thread can be UNSAT because the unit cube $\ell$ contradicted $F$. In this case learn the unit literal $\neg \ell$.
|
||||
9. Shared unit literals learned by each thread, increase the maximal number of conflicts, go to 3.
|
||||
|
||||
### Algorithm Variants
|
||||
|
||||
* Instead of using lookahead solving to find unit cubes use the proof-prefix based scoring function.
|
||||
* Instead of using independent unit cubes, perform a systematic (where systematic can mean many things) cube and conquer strategy.
|
||||
* Spawn some threads to work in "SAT" mode, tuning to find models instead of short resolution proofs.
|
||||
* Change the synchronization barrier discipline.
|
||||
* [Future] Include in-processing
|
||||
|
||||
### Cube and Conquer strategy
|
||||
|
||||
We could maintain a global decomposition of the search space by maintaing a list of _cubes_.
|
||||
Initially, the list of cubes has just one element, the cube with no literals $[ [] ]$.
|
||||
By using a list of cubes instead of a _set_ of cubes we can refer to an ordering.
|
||||
For example, cubes can be ordered by a suffix traversal of the _cube tree_ (the tree formed by
|
||||
case splitting on the first literal, children of the _true_ branch are the cubes where the first
|
||||
literal is true, children of the _false_ branch are the cubes where the first literal is false).
|
||||
|
||||
The main question is going to be how the cube decomposition is created.
|
||||
|
||||
#### Static cubing
|
||||
We can aim for a static cube strategy that uses a few initial (concurrent) probes to find cube literals.
|
||||
This strategy would be a parallel implementaiton of proof-prefix approach. The computed cubes are inserted
|
||||
into the list of cubes and the list is consumed by a second round.
|
||||
|
||||
#### Growing cubes on demand
|
||||
Based on experiences with cubing so far, there is high variance in how easy cubes are to solve.
|
||||
Some cubes will be harder than others to solve. For hard cubes, it is tempting to develop a recursive
|
||||
cubing strategy. Ideally, a recursive cubing strategy is symmetric to top-level cubing.
|
||||
|
||||
* The solver would have to identify hard cubes vs. easy cubes.
|
||||
* It would have to know when to stop working on a hard cube and replace it in the list of cubes by
|
||||
a new list of sub-cubes.
|
||||
|
||||
* Ideally, we don't need any static cubing and cubing is grown on demand while all threads are utilized.
|
||||
* If we spawn $T$ threads to initially work with empty cubes, we could extract up to $T$ indepenent cubes
|
||||
by examining the proof-prefix of their traces. This can form the basis for the first, up to $2^T$ cubes.
|
||||
* After a round of solving with each thread churning on some cubes, we may obtain more proof-prefixes from
|
||||
_hard_ cubes. It is not obvious that we want to share cubes from different proof prefixes at this point.
|
||||
But a starting point is to split a hard cube into two by using the proof-prefix from attempting to solve it.
|
||||
* Suppose we take the proof-prefix sampling algorithm at heart: It says to start with some initial cube prefix
|
||||
and then sample for other cube literals. If we translate it to the case where multiple cubes are being processed
|
||||
in parallel, then an analogy is to share candidates for new cube literals among cubes that are close to each-other.
|
||||
For example, if thread $t_1$ processes cube $a, b, c$ and $t_2$ processes $a,b, \neg c$. They are close. They are only
|
||||
separated by Hamming distance 1. If $t_1$ finds cube literal $d$ and $t_2$ finds cube literal $e$, we could consider the cubes
|
||||
$a, b, c, d, e$, and $a, b, c, d, \neg e$, $\ldots$, $a, b, \neg c, \neg d, \neg e$.
|
||||
|
||||
#### Representing cubes implicitly
|
||||
|
||||
We can represent a list of cubes by using intervals and only represent start and end-points of the intervals.
|
||||
|
||||
#### Batching
|
||||
Threads can work on more than one cube in a batch.
|
||||
|
||||
### Synchronization
|
||||
|
||||
* The first thread to time out or finish could kill other threads instead of joining on all threads to finish.
|
||||
* Instead of synchronization barriers have threads continue concurrently without terminating. They synchronize on signals and new units. This is trickier to implement, but in some guises accomplished in [sat/sat_parallel.cpp](https://github.com/Z3Prover/z3/blob/master/src/sat/sat_parallel.cpp)
|
|
@ -225,13 +225,15 @@ extern "C" {
|
|||
Z3_TRY;
|
||||
LOG_Z3_mk_fresh_func_decl(c, prefix, domain_size, domain, range);
|
||||
RESET_ERROR_CODE();
|
||||
CHECK_IS_SORT(range, nullptr);
|
||||
CHECK_SORTS(domain_size, domain, nullptr);
|
||||
if (prefix == nullptr) {
|
||||
prefix = "";
|
||||
}
|
||||
|
||||
func_decl* d = mk_c(c)->m().mk_fresh_func_decl(prefix,
|
||||
domain_size,
|
||||
reinterpret_cast<sort*const*>(domain),
|
||||
to_sorts(domain),
|
||||
to_sort(range), false);
|
||||
|
||||
mk_c(c)->save_ast_trail(d);
|
||||
|
@ -243,9 +245,11 @@ extern "C" {
|
|||
Z3_TRY;
|
||||
LOG_Z3_mk_fresh_const(c, prefix, ty);
|
||||
RESET_ERROR_CODE();
|
||||
CHECK_IS_SORT(ty, nullptr);
|
||||
if (prefix == nullptr) {
|
||||
prefix = "";
|
||||
}
|
||||
|
||||
app* a = mk_c(c)->m().mk_fresh_const(prefix, to_sort(ty), false);
|
||||
mk_c(c)->save_ast_trail(a);
|
||||
RETURN_Z3(of_ast(a));
|
||||
|
@ -654,6 +658,7 @@ extern "C" {
|
|||
Z3_TRY;
|
||||
LOG_Z3_get_sort_name(c, t);
|
||||
RESET_ERROR_CODE();
|
||||
CHECK_IS_SORT(t, of_symbol(symbol::null));
|
||||
CHECK_VALID_AST(t, of_symbol(symbol::null));
|
||||
return of_symbol(to_sort(t)->get_name());
|
||||
Z3_CATCH_RETURN(of_symbol(symbol::null));
|
||||
|
|
|
@ -286,10 +286,13 @@ namespace api {
|
|||
inline api::context * mk_c(Z3_context c) { return reinterpret_cast<api::context*>(c); }
|
||||
#define RESET_ERROR_CODE() { mk_c(c)->reset_error_code(); }
|
||||
#define SET_ERROR_CODE(ERR, MSG) { mk_c(c)->set_error_code(ERR, MSG); }
|
||||
#define CHECK_NON_NULL(_p_,_ret_) { if (_p_ == 0) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is null"); return _ret_; } }
|
||||
#define CHECK_VALID_AST(_a_, _ret_) { if (_a_ == 0 || !CHECK_REF_COUNT(_a_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "not a valid ast"); return _ret_; } }
|
||||
#define CHECK_NON_NULL(_p_,_ret_) { if (_p_ == nullptr) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is null"); return _ret_; } }
|
||||
#define CHECK_VALID_AST(_a_, _ret_) { if (_a_ == nullptr || !CHECK_REF_COUNT(_a_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "not a valid ast"); return _ret_; } }
|
||||
inline bool is_expr(Z3_ast a) { return is_expr(to_ast(a)); }
|
||||
#define CHECK_IS_EXPR(_p_, _ret_) { if (_p_ == 0 || !is_expr(_p_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is not an expression"); return _ret_; } }
|
||||
#define CHECK_IS_EXPR(_p_, _ret_) { if (_p_ == nullptr || !is_expr(_p_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is not an expression"); return _ret_; } }
|
||||
#define CHECK_IS_SORT(_p_, _ret_) { if (_p_ == nullptr || !is_sort(_p_)) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is not a sort"); return _ret_; } }
|
||||
#define CHECK_SORTS(_n_, _ps_, _ret_) { for (unsigned i = 0; i < _n_; ++i) if (!is_sort(_ps_[i])) { SET_ERROR_CODE(Z3_INVALID_ARG, "ast is not a sort"); return _ret_; } }
|
||||
|
||||
inline bool is_bool_expr(Z3_context c, Z3_ast a) { return is_expr(a) && mk_c(c)->m().is_bool(to_expr(a)); }
|
||||
#define CHECK_FORMULA(_a_, _ret_) { if (_a_ == 0 || !CHECK_REF_COUNT(_a_) || !is_bool_expr(c, _a_)) { SET_ERROR_CODE(Z3_INVALID_ARG, nullptr); return _ret_; } }
|
||||
#define CHECK_FORMULA(_a_, _ret_) { if (_a_ == nullptr || !CHECK_REF_COUNT(_a_) || !is_bool_expr(c, _a_)) { SET_ERROR_CODE(Z3_INVALID_ARG, nullptr); return _ret_; } }
|
||||
inline void check_sorts(Z3_context c, ast * n) { mk_c(c)->check_sorts(n); }
|
||||
|
|
|
@ -67,6 +67,7 @@ inline ast * const * to_asts(Z3_ast const* a) { return reinterpret_cast<ast* con
|
|||
|
||||
inline sort * to_sort(Z3_sort a) { return reinterpret_cast<sort*>(a); }
|
||||
inline Z3_sort of_sort(sort* s) { return reinterpret_cast<Z3_sort>(s); }
|
||||
inline bool is_sort(Z3_sort a) { return is_sort(to_sort(a)); }
|
||||
|
||||
inline sort * const * to_sorts(Z3_sort const* a) { return reinterpret_cast<sort* const*>(a); }
|
||||
inline Z3_sort const * of_sorts(sort* const* s) { return reinterpret_cast<Z3_sort const*>(s); }
|
||||
|
|
|
@ -1506,6 +1506,8 @@ def Consts(names, sort):
|
|||
|
||||
def FreshConst(sort, prefix="c"):
|
||||
"""Create a fresh constant of a specified sort"""
|
||||
if z3_debug():
|
||||
_z3_assert(is_sort(sort), f"Z3 sort expected, got {type(sort)}")
|
||||
ctx = _get_ctx(sort.ctx)
|
||||
return _to_expr_ref(Z3_mk_fresh_const(ctx.ref(), prefix, sort.ast), ctx)
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ Author:
|
|||
Nikolaj Bjorner (nbjorner) 2023-11-11
|
||||
|
||||
Completion modulo AC
|
||||
|
||||
|
||||
E set of eqs
|
||||
pick critical pair xy = z by j1 xu = v by j2 in E
|
||||
Add new equation zu = xyu = vy by j1, j2
|
||||
|
@ -22,7 +22,7 @@ Completion modulo AC
|
|||
|
||||
Sets P - processed, R - reductions, S - to simplify
|
||||
|
||||
new equality l = r:
|
||||
new equality l = r:
|
||||
reduce l = r modulo R if equation is external
|
||||
orient l = r - if it cannot be oriented, discard
|
||||
if l = r is a reduction rule then reduce R, S using l = r, insert into R
|
||||
|
@ -46,9 +46,9 @@ backward subsumption e as (l = r) using (l' = r') in P u S:
|
|||
|
||||
is reduction rule e as (l = r):
|
||||
l is a unit, and r is unit, is empty, or is zero.
|
||||
|
||||
|
||||
superpose e as (l = r) with (l' = r') in P:
|
||||
if l and l' share a common subset x.
|
||||
if l and l' share a common subset x.
|
||||
|
||||
forward simplify (l' = r') in P u S using e as (l = r):
|
||||
|
||||
|
@ -56,10 +56,10 @@ forward simplify (l' = r') in P u S using e as (l = r):
|
|||
More notes:
|
||||
|
||||
Justifications for new equations are joined (requires extension to egraph/justification)
|
||||
|
||||
|
||||
Process new merges so use list is updated
|
||||
Justifications for processed merges are recorded
|
||||
|
||||
|
||||
Updated equations are recorded for restoration on backtracking
|
||||
|
||||
Keep track of foreign / shared occurrences of AC functions.
|
||||
|
@ -91,7 +91,7 @@ More notes:
|
|||
TODOs:
|
||||
|
||||
- Efficiency of handling shared terms.
|
||||
- The shared terms hash table is not incremental.
|
||||
- The shared terms hash table is not incremental.
|
||||
It could be made incremental by updating it on every merge similar to how the egraph handles it.
|
||||
- V2 using multiplicities instead of repeated values in monomials.
|
||||
- Squash trail updates when equations or monomials are modified within the same epoch.
|
||||
|
@ -131,20 +131,18 @@ namespace euf {
|
|||
return;
|
||||
for (auto arg : enode_args(n))
|
||||
if (is_op(arg))
|
||||
register_shared(arg);
|
||||
register_shared(arg);
|
||||
}
|
||||
|
||||
// unit -> {}
|
||||
void ac_plugin::add_unit(enode* u) {
|
||||
m_units.push_back(u);
|
||||
mk_node(u);
|
||||
auto m_id = to_monomial(u, {});
|
||||
init_equation(eq(to_monomial(u), m_id, justification::axiom(get_id())));
|
||||
void ac_plugin::add_unit(enode* u) {
|
||||
push_equation(u, nullptr);
|
||||
}
|
||||
|
||||
// zero x -> zero
|
||||
void ac_plugin::add_zero(enode* z) {
|
||||
mk_node(z)->is_zero = true;
|
||||
// zeros persist
|
||||
}
|
||||
|
||||
void ac_plugin::register_shared(enode* n) {
|
||||
|
@ -165,12 +163,16 @@ namespace euf {
|
|||
push_undo(is_register_shared);
|
||||
}
|
||||
|
||||
void ac_plugin::push_scope_eh() {
|
||||
push_undo(is_push_scope);
|
||||
}
|
||||
|
||||
void ac_plugin::undo() {
|
||||
auto k = m_undo.back();
|
||||
m_undo.pop_back();
|
||||
switch (k) {
|
||||
case is_add_eq: {
|
||||
m_active.pop_back();
|
||||
case is_queue_eq: {
|
||||
m_queued.pop_back();
|
||||
break;
|
||||
}
|
||||
case is_add_node: {
|
||||
|
@ -180,14 +182,15 @@ namespace euf {
|
|||
n->~node();
|
||||
break;
|
||||
}
|
||||
case is_add_monomial: {
|
||||
m_monomials.pop_back();
|
||||
case is_push_scope: {
|
||||
m_active.reset();
|
||||
m_passive.reset();
|
||||
m_units.reset();
|
||||
m_queue_head = 0;
|
||||
break;
|
||||
}
|
||||
case is_update_eq: {
|
||||
auto const& [idx, eq] = m_update_eq_trail.back();
|
||||
m_active[idx] = eq;
|
||||
m_update_eq_trail.pop_back();
|
||||
case is_add_monomial: {
|
||||
m_monomials.pop_back();
|
||||
break;
|
||||
}
|
||||
case is_add_shared_index: {
|
||||
|
@ -203,7 +206,7 @@ namespace euf {
|
|||
break;
|
||||
}
|
||||
case is_register_shared: {
|
||||
auto s = m_shared.back();
|
||||
auto s = m_shared.back();
|
||||
m_shared_nodes[s.n->get_id()] = false;
|
||||
m_shared.pop_back();
|
||||
break;
|
||||
|
@ -316,14 +319,24 @@ namespace euf {
|
|||
}
|
||||
|
||||
void ac_plugin::merge_eh(enode* l, enode* r) {
|
||||
if (l == r)
|
||||
return;
|
||||
push_equation(l, r);
|
||||
}
|
||||
|
||||
void ac_plugin::pop_equation(enode* l, enode* r) {
|
||||
m_fuel += m_fuel_inc;
|
||||
auto j = justification::equality(l, r);
|
||||
auto m1 = to_monomial(l);
|
||||
auto m2 = to_monomial(r);
|
||||
TRACE(plugin, tout << "merge: " << m_name << " " << g.bpp(l) << " == " << g.bpp(r) << " " << m_pp_ll(*this, monomial(m1)) << " == " << m_pp_ll(*this, monomial(m2)) << "\n");
|
||||
init_equation(eq(m1, m2, j));
|
||||
if (!r) {
|
||||
m_units.push_back(l);
|
||||
mk_node(l);
|
||||
auto m_id = to_monomial(l, {});
|
||||
init_equation(eq(to_monomial(l), m_id, justification::axiom(get_id())), true);
|
||||
}
|
||||
else {
|
||||
auto j = justification::equality(l, r);
|
||||
auto m1 = to_monomial(l);
|
||||
auto m2 = to_monomial(r);
|
||||
TRACE(plugin, tout << "merge: " << m_name << " " << g.bpp(l) << " == " << g.bpp(r) << " " << m_pp_ll(*this, monomial(m1)) << " == " << m_pp_ll(*this, monomial(m2)) << "\n");
|
||||
init_equation(eq(m1, m2, j), true);
|
||||
}
|
||||
}
|
||||
|
||||
void ac_plugin::diseq_eh(enode* eq) {
|
||||
|
@ -336,64 +349,80 @@ namespace euf {
|
|||
register_shared(b);
|
||||
}
|
||||
|
||||
bool ac_plugin::init_equation(eq const& e) {
|
||||
m_active.push_back(e);
|
||||
auto& eq = m_active.back();
|
||||
deduplicate(monomial(eq.l).m_nodes, monomial(eq.r).m_nodes);
|
||||
|
||||
if (orient_equation(eq)) {
|
||||
auto& ml = monomial(eq.l);
|
||||
auto& mr = monomial(eq.r);
|
||||
|
||||
unsigned eq_id = m_active.size() - 1;
|
||||
|
||||
if (ml.size() == 1 && mr.size() == 1)
|
||||
push_merge(ml[0]->n, mr[0]->n, eq.j);
|
||||
|
||||
for (auto n : ml) {
|
||||
if (!n->n->is_marked2()) {
|
||||
n->eqs.push_back(eq_id);
|
||||
n->n->mark2();
|
||||
push_undo(is_add_eq_index);
|
||||
m_node_trail.push_back(n);
|
||||
for (auto s : n->shared)
|
||||
m_shared_todo.insert(s);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto n : mr) {
|
||||
if (!n->n->is_marked2()) {
|
||||
n->eqs.push_back(eq_id);
|
||||
n->n->mark2();
|
||||
push_undo(is_add_eq_index);
|
||||
m_node_trail.push_back(n);
|
||||
for (auto s : n->shared)
|
||||
m_shared_todo.insert(s);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto n : ml)
|
||||
n->n->unmark2();
|
||||
|
||||
for (auto n : mr)
|
||||
n->n->unmark2();
|
||||
|
||||
SASSERT(well_formed(eq));
|
||||
|
||||
TRACE(plugin, display_equation_ll(tout, eq) << " shared: " << m_shared_todo << "\n");
|
||||
m_to_simplify_todo.insert(eq_id);
|
||||
m_new_eqs.push_back(eq_id);
|
||||
|
||||
//display_equation_ll(verbose_stream() << "init " << eq_id << ": ", eq) << "\n";
|
||||
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
m_active.pop_back();
|
||||
return false;
|
||||
}
|
||||
void ac_plugin::push_equation(enode* l, enode* r) {
|
||||
if (l == r)
|
||||
return;
|
||||
m_queued.push_back({ l, r });
|
||||
push_undo(is_queue_eq);
|
||||
}
|
||||
|
||||
bool ac_plugin::init_equation(eq eq, bool is_active) {
|
||||
deduplicate(monomial(eq.l), monomial(eq.r));
|
||||
if (!orient_equation(eq))
|
||||
return false;
|
||||
|
||||
#if 1
|
||||
if (is_reducing(eq))
|
||||
is_active = true;
|
||||
#else
|
||||
|
||||
is_active = true; // set to active by default
|
||||
#endif
|
||||
|
||||
if (!is_active) {
|
||||
m_passive.push_back(eq);
|
||||
return true;
|
||||
}
|
||||
|
||||
m_active.push_back(eq);
|
||||
auto& ml = monomial(eq.l);
|
||||
auto& mr = monomial(eq.r);
|
||||
|
||||
unsigned eq_id = m_active.size() - 1;
|
||||
|
||||
if (ml.size() == 1 && mr.size() == 1)
|
||||
push_merge(ml[0]->n, mr[0]->n, eq.j);
|
||||
|
||||
for (auto n : ml) {
|
||||
if (!n->n->is_marked2()) {
|
||||
n->eqs.push_back(eq_id);
|
||||
n->n->mark2();
|
||||
push_undo(is_add_eq_index);
|
||||
m_node_trail.push_back(n);
|
||||
for (auto s : n->shared)
|
||||
m_shared_todo.insert(s);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto n : mr) {
|
||||
if (!n->n->is_marked2()) {
|
||||
n->eqs.push_back(eq_id);
|
||||
n->n->mark2();
|
||||
push_undo(is_add_eq_index);
|
||||
m_node_trail.push_back(n);
|
||||
for (auto s : n->shared)
|
||||
m_shared_todo.insert(s);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto n : ml)
|
||||
n->n->unmark2();
|
||||
|
||||
for (auto n : mr)
|
||||
n->n->unmark2();
|
||||
|
||||
SASSERT(well_formed(eq));
|
||||
|
||||
TRACE(plugin, display_equation_ll(tout, eq) << " shared: " << m_shared_todo << "\n");
|
||||
m_to_simplify_todo.insert(eq_id);
|
||||
m_new_eqs.push_back(eq_id);
|
||||
|
||||
//display_equation_ll(verbose_stream() << "init " << eq_id << ": ", eq) << "\n";
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool ac_plugin::orient_equation(eq& e) {
|
||||
auto& ml = monomial(e.l);
|
||||
auto& mr = monomial(e.r);
|
||||
|
@ -402,7 +431,7 @@ namespace euf {
|
|||
if (ml.size() < mr.size()) {
|
||||
std::swap(e.l, e.r);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else {
|
||||
sort(ml);
|
||||
sort(mr);
|
||||
|
@ -412,7 +441,7 @@ namespace euf {
|
|||
if (ml[i]->id() < mr[i]->id())
|
||||
std::swap(e.l, e.r);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -429,7 +458,7 @@ namespace euf {
|
|||
return false;
|
||||
if (!is_sorted(mr))
|
||||
return false;
|
||||
for (unsigned i = 0; i < ml.size(); ++i) {
|
||||
for (unsigned i = 0; i < ml.size(); ++i) {
|
||||
if (ml[i]->id() == mr[i]->id())
|
||||
continue;
|
||||
if (ml[i]->id() < mr[i]->id())
|
||||
|
@ -455,8 +484,11 @@ namespace euf {
|
|||
|
||||
uint64_t ac_plugin::filter(monomial_t& m) {
|
||||
auto& bloom = m.m_bloom;
|
||||
if (bloom.m_tick == m_tick)
|
||||
|
||||
if (bloom.m_tick == m_tick) {
|
||||
SASSERT(bloom_filter_is_correct(m.m_nodes, m.m_bloom));
|
||||
return bloom.m_filter;
|
||||
}
|
||||
bloom.m_filter = 0;
|
||||
for (auto n : m)
|
||||
bloom.m_filter |= (1ull << (n->id() % 64ull));
|
||||
|
@ -466,6 +498,13 @@ namespace euf {
|
|||
return bloom.m_filter;
|
||||
}
|
||||
|
||||
bool ac_plugin::bloom_filter_is_correct(ptr_vector<node> const& m, bloom const& b) const {
|
||||
uint64_t f = 0;
|
||||
for (auto n : m)
|
||||
f |= (1ull << (n->id() % 64ull));
|
||||
return b.m_filter == f;
|
||||
}
|
||||
|
||||
bool ac_plugin::can_be_subset(monomial_t& subset, monomial_t& superset) {
|
||||
if (subset.size() > superset.size())
|
||||
return false;
|
||||
|
@ -477,6 +516,7 @@ namespace euf {
|
|||
bool ac_plugin::can_be_subset(monomial_t& subset, ptr_vector<node> const& m, bloom& bloom) {
|
||||
if (subset.size() > m.size())
|
||||
return false;
|
||||
SASSERT(bloom.m_tick != m_tick || bloom_filter_is_correct(m, bloom));
|
||||
if (bloom.m_tick != m_tick) {
|
||||
bloom.m_filter = 0;
|
||||
for (auto n : m)
|
||||
|
@ -501,10 +541,10 @@ namespace euf {
|
|||
ns.push_back(n);
|
||||
for (unsigned i = 0; i < ns.size(); ++i) {
|
||||
auto k = ns[i];
|
||||
if (is_op(k))
|
||||
ns.append(k->num_args(), k->args());
|
||||
else
|
||||
m.push_back(mk_node(k));
|
||||
if (is_op(k))
|
||||
ns.append(k->num_args(), k->args());
|
||||
else
|
||||
m.push_back(mk_node(k));
|
||||
}
|
||||
return to_monomial(n, m);
|
||||
}
|
||||
|
@ -562,6 +602,10 @@ namespace euf {
|
|||
}
|
||||
|
||||
void ac_plugin::propagate() {
|
||||
while (m_queue_head < m_queued.size()) {
|
||||
auto [l, r] = m_queued[m_queue_head++];
|
||||
pop_equation(l, r);
|
||||
}
|
||||
while (true) {
|
||||
loop_start:
|
||||
if (m_fuel == 0)
|
||||
|
@ -575,15 +619,15 @@ namespace euf {
|
|||
SASSERT(well_formed(m_active[eq_id]));
|
||||
|
||||
// simplify eq using processed
|
||||
TRACE(plugin,
|
||||
for (auto other_eq : forward_iterator(eq_id))
|
||||
tout << "forward iterator " << eq_id << " vs " << other_eq << " " << is_processed(other_eq) << "\n");
|
||||
TRACE(plugin,
|
||||
for (auto other_eq : forward_iterator(eq_id))
|
||||
tout << "forward iterator " << eq_id << " vs " << other_eq << " " << is_processed(other_eq) << "\n");
|
||||
for (auto other_eq : forward_iterator(eq_id))
|
||||
if (is_processed(other_eq) && forward_simplify(eq_id, other_eq))
|
||||
goto loop_start;
|
||||
|
||||
auto& eq = m_active[eq_id];
|
||||
deduplicate(monomial(eq.l).m_nodes, monomial(eq.r).m_nodes);
|
||||
deduplicate(monomial(eq.l), monomial(eq.r));
|
||||
if (monomial(eq.l).size() == 0) {
|
||||
set_status(eq_id, eq_status::is_dead_eq);
|
||||
continue;
|
||||
|
@ -605,8 +649,8 @@ namespace euf {
|
|||
for (auto other_eq : backward_iterator(eq_id))
|
||||
if (is_active(other_eq))
|
||||
backward_simplify(eq_id, other_eq);
|
||||
forward_subsume_new_eqs();
|
||||
|
||||
forward_subsume_new_eqs();
|
||||
|
||||
// superpose, create new equations
|
||||
unsigned new_sup = 0;
|
||||
for (auto other_eq : superpose_iterator(eq_id))
|
||||
|
@ -623,12 +667,20 @@ namespace euf {
|
|||
}
|
||||
|
||||
unsigned ac_plugin::pick_next_eq() {
|
||||
init_pick:
|
||||
while (!m_to_simplify_todo.empty()) {
|
||||
unsigned id = *m_to_simplify_todo.begin();
|
||||
if (id < m_active.size() && is_to_simplify(id))
|
||||
return id;
|
||||
m_to_simplify_todo.remove(id);
|
||||
}
|
||||
if (!m_passive.empty()) {
|
||||
auto eq = m_passive.back();
|
||||
// verbose_stream() << "pick passive " << eq_pp_ll(*this, eq) << "\n";
|
||||
m_passive.pop_back();
|
||||
init_equation(eq, true);
|
||||
goto init_pick;
|
||||
}
|
||||
return UINT_MAX;
|
||||
}
|
||||
|
||||
|
@ -637,14 +689,10 @@ namespace euf {
|
|||
auto& eq = m_active[id];
|
||||
if (eq.status == eq_status::is_dead_eq)
|
||||
return;
|
||||
if (are_equal(monomial(eq.l), monomial(eq.r)))
|
||||
if (are_equal(monomial(eq.l), monomial(eq.r)))
|
||||
s = eq_status::is_dead_eq;
|
||||
|
||||
if (eq.status != s) {
|
||||
m_update_eq_trail.push_back({ id, eq });
|
||||
eq.status = s;
|
||||
push_undo(is_update_eq);
|
||||
}
|
||||
eq.status = s;
|
||||
switch (s) {
|
||||
case eq_status::is_processed_eq:
|
||||
case eq_status::is_reducing_eq:
|
||||
|
@ -657,7 +705,7 @@ namespace euf {
|
|||
set_status(id, eq_status::is_dead_eq);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -673,7 +721,7 @@ namespace euf {
|
|||
}
|
||||
|
||||
//
|
||||
// backward iterator allows simplification of eq
|
||||
// forward iterator allows simplification of eq
|
||||
// The rhs of eq is a super-set of lhs of other eq.
|
||||
//
|
||||
unsigned_vector const& ac_plugin::forward_iterator(unsigned eq_id) {
|
||||
|
@ -733,7 +781,7 @@ namespace euf {
|
|||
unsigned j = 0;
|
||||
m_eq_seen.reserve(m_active.size() + 1, false);
|
||||
for (unsigned i = 0; i < m_eq_occurs.size(); ++i) {
|
||||
unsigned id = m_eq_occurs[i];
|
||||
unsigned id = m_eq_occurs[i];
|
||||
if (m_eq_seen[id])
|
||||
continue;
|
||||
if (id == eq_id)
|
||||
|
@ -749,7 +797,7 @@ namespace euf {
|
|||
}
|
||||
|
||||
//
|
||||
// forward iterator simplifies other eqs where their rhs is a superset of lhs of eq
|
||||
// backward iterator simplifies other eqs where their rhs is a superset of lhs of eq
|
||||
//
|
||||
unsigned_vector const& ac_plugin::backward_iterator(unsigned eq_id) {
|
||||
auto& eq = m_active[eq_id];
|
||||
|
@ -768,7 +816,7 @@ namespace euf {
|
|||
}
|
||||
|
||||
void ac_plugin::init_ref_counts(monomial_t const& monomial, ref_counts& counts) const {
|
||||
init_ref_counts(monomial.m_nodes, counts);
|
||||
init_ref_counts(monomial.m_nodes, counts);
|
||||
}
|
||||
|
||||
void ac_plugin::init_ref_counts(ptr_vector<node> const& monomial, ref_counts& counts) const {
|
||||
|
@ -786,7 +834,7 @@ namespace euf {
|
|||
init_ref_counts(m, check);
|
||||
return
|
||||
all_of(counts, [&](unsigned i) { return check[i] == counts[i]; }) &&
|
||||
all_of(check, [&](unsigned i) { return check[i] == counts[i]; });
|
||||
all_of(check, [&](unsigned i) { return check[i] == counts[i]; });
|
||||
}
|
||||
|
||||
void ac_plugin::backward_simplify(unsigned src_eq, unsigned dst_eq) {
|
||||
|
@ -843,10 +891,8 @@ namespace euf {
|
|||
reduce(m_src_r, j);
|
||||
auto new_r = to_monomial(m_src_r);
|
||||
index_new_r(dst_eq, monomial(m_active[dst_eq].r), monomial(new_r));
|
||||
m_update_eq_trail.push_back({ dst_eq, m_active[dst_eq] });
|
||||
m_active[dst_eq].r = new_r;
|
||||
m_active[dst_eq].j = j;
|
||||
push_undo(is_update_eq);
|
||||
m_src_r.reset();
|
||||
m_src_r.append(monomial(src.r).m_nodes);
|
||||
TRACE(plugin_verbose, tout << "rewritten to " << m_pp_ll(*this, monomial(new_r)) << "\n");
|
||||
|
@ -862,7 +908,7 @@ namespace euf {
|
|||
//
|
||||
// dst_ids, dst_count contain rhs of dst_eq
|
||||
//
|
||||
TRACE(plugin, tout << "backward simplify " << eq_pp_ll(*this, src) << " " << eq_pp_ll(*this, dst) << " can-be-subset: " << can_be_subset(monomial(src.l), monomial(dst.r)) << "\n");
|
||||
TRACE(plugin, tout << "forward simplify " << eq_pp_ll(*this, src) << " " << eq_pp_ll(*this, dst) << " can-be-subset: " << can_be_subset(monomial(src.l), monomial(dst.r)) << "\n");
|
||||
|
||||
if (forward_subsumes(src_eq, dst_eq)) {
|
||||
set_status(dst_eq, eq_status::is_dead_eq);
|
||||
|
@ -873,11 +919,11 @@ namespace euf {
|
|||
// check that src.l is a subset of dst.r
|
||||
if (!can_be_subset(monomial(src.l), monomial(dst.r)))
|
||||
return false;
|
||||
if (!is_subset(m_dst_r_counts, m_src_l_counts, monomial(src.l)))
|
||||
return false;
|
||||
if (monomial(dst.r).size() == 0)
|
||||
return false;
|
||||
|
||||
if (!is_subset(m_dst_r_counts, m_src_l_counts, monomial(src.l)))
|
||||
return false;
|
||||
if (monomial(dst.r).size() == 0)
|
||||
return false;
|
||||
|
||||
|
||||
SASSERT(is_correct_ref_count(monomial(dst.r), m_dst_r_counts));
|
||||
|
||||
|
@ -885,17 +931,15 @@ namespace euf {
|
|||
init_ref_counts(monomial(src.l), m_src_l_counts);
|
||||
|
||||
//verbose_stream() << "forward simplify " << eq_pp_ll(*this, src_eq) << " for " << eq_pp_ll(*this, dst_eq) << "\n";
|
||||
|
||||
|
||||
rewrite1(m_src_l_counts, monomial(src.r), m_dst_r_counts, m);
|
||||
auto j = justify_rewrite(src_eq, dst_eq);
|
||||
reduce(m, j);
|
||||
auto new_r = to_monomial(m);
|
||||
index_new_r(dst_eq, monomial(m_active[dst_eq].r), monomial(new_r));
|
||||
m_update_eq_trail.push_back({ dst_eq, m_active[dst_eq] });
|
||||
m_active[dst_eq].r = new_r;
|
||||
m_active[dst_eq].j = j;
|
||||
TRACE(plugin, tout << "rewritten to " << m_pp(*this, monomial(new_r)) << "\n");
|
||||
push_undo(is_update_eq);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -913,7 +957,7 @@ namespace euf {
|
|||
m_new_eqs.reset();
|
||||
}
|
||||
|
||||
bool ac_plugin::is_forward_subsumed(unsigned eq_id) {
|
||||
bool ac_plugin::is_forward_subsumed(unsigned eq_id) {
|
||||
return any_of(forward_iterator(eq_id), [&](unsigned other_eq) { return forward_subsumes(other_eq, eq_id); });
|
||||
}
|
||||
|
||||
|
@ -968,14 +1012,16 @@ namespace euf {
|
|||
}
|
||||
// now dst.r and src.r should align and have the same elements.
|
||||
// since src.r is a subset of dst.r we iterate over dst.r
|
||||
if (!all_of(monomial(src.r), [&](node* n) {
|
||||
unsigned id = n->id();
|
||||
if (!all_of(monomial(src.r), [&](node* n) {
|
||||
unsigned id = n->id();
|
||||
return m_src_r_counts[id] == m_dst_r_counts[id]; })) {
|
||||
TRACE(plugin_verbose, tout << "dst.r and src.r do not align\n");
|
||||
SASSERT(!are_equal(m_active[src_eq], m_active[dst_eq]));
|
||||
return false;
|
||||
}
|
||||
return all_of(monomial(dst.r), [&](node* n) { unsigned id = n->id(); return m_src_r_counts[id] == m_dst_r_counts[id]; });
|
||||
bool r = all_of(monomial(dst.r), [&](node* n) { unsigned id = n->id(); return m_src_r_counts[id] == m_dst_r_counts[id]; });
|
||||
SASSERT(r || !are_equal(m_active[src_eq], m_active[dst_eq]));
|
||||
return r;
|
||||
}
|
||||
|
||||
// src_l_counts, src_r_counts are initialized for src.l, src.r
|
||||
|
@ -990,7 +1036,7 @@ namespace euf {
|
|||
return false;
|
||||
unsigned size_diff = monomial(dst.l).size() - monomial(src.l).size();
|
||||
if (size_diff != monomial(dst.r).size() - monomial(src.r).size())
|
||||
return false;
|
||||
return false;
|
||||
if (!is_superset(m_src_l_counts, m_dst_l_counts, monomial(dst.l)))
|
||||
return false;
|
||||
if (!is_superset(m_src_r_counts, m_dst_r_counts, monomial(dst.r)))
|
||||
|
@ -1026,14 +1072,14 @@ namespace euf {
|
|||
unsigned dst_count = dst_counts[id];
|
||||
unsigned src_count = src_l[id];
|
||||
SASSERT(dst_count > 0);
|
||||
|
||||
|
||||
if (src_count == 0) {
|
||||
dst[j++] = n;
|
||||
dst[j++] = n;
|
||||
}
|
||||
else if (src_count < dst_count) {
|
||||
dst[j++] = n;
|
||||
dst_counts.dec(id, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
dst.shrink(j);
|
||||
dst.append(src_r.m_nodes);
|
||||
|
@ -1047,11 +1093,11 @@ namespace euf {
|
|||
init_loop:
|
||||
if (m.size() == 1)
|
||||
return change;
|
||||
bloom b;
|
||||
bloom b;
|
||||
init_ref_counts(m, m_m_counts);
|
||||
for (auto n : m) {
|
||||
if (n->is_zero) {
|
||||
m[0] = n;
|
||||
m[0] = n;
|
||||
m.shrink(1);
|
||||
break;
|
||||
}
|
||||
|
@ -1060,9 +1106,9 @@ namespace euf {
|
|||
if (!is_reducing(eq)) // also can use processed?
|
||||
continue;
|
||||
auto& src = m_active[eq];
|
||||
|
||||
if (!is_equation_oriented(src))
|
||||
continue;
|
||||
|
||||
if (!is_equation_oriented(src))
|
||||
continue;
|
||||
if (!can_be_subset(monomial(src.l), m, b))
|
||||
continue;
|
||||
if (!is_subset(m_m_counts, m_eq_counts, monomial(src.l)))
|
||||
|
@ -1078,9 +1124,8 @@ namespace euf {
|
|||
change = true;
|
||||
goto init_loop;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (false);
|
||||
}
|
||||
} while (false);
|
||||
VERIFY(sz >= m.size());
|
||||
return change;
|
||||
}
|
||||
|
@ -1122,7 +1167,7 @@ namespace euf {
|
|||
auto& src = m_active[src_eq];
|
||||
auto& dst = m_active[dst_eq];
|
||||
|
||||
unsigned max_left = std::max(monomial(src.l).size(), monomial(dst.l).size());
|
||||
unsigned max_left = std::max(monomial(src.l).size(), monomial(dst.l).size());
|
||||
unsigned min_right = std::max(monomial(src.r).size(), monomial(dst.r).size());
|
||||
|
||||
|
||||
|
@ -1151,7 +1196,7 @@ namespace euf {
|
|||
m_src_r.shrink(src_r_size);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// compute CD
|
||||
for (auto n : monomial(src.l)) {
|
||||
unsigned id = n->id();
|
||||
|
@ -1171,18 +1216,18 @@ namespace euf {
|
|||
reduce(m_src_r, j);
|
||||
deduplicate(m_src_r, m_dst_r);
|
||||
|
||||
|
||||
|
||||
bool added_eq = false;
|
||||
auto src_r = src.r;
|
||||
unsigned max_left_new = std::max(m_src_r.size(), m_dst_r.size());
|
||||
unsigned min_right_new = std::min(m_src_r.size(), m_dst_r.size());
|
||||
if (max_left_new <= max_left && min_right_new <= min_right)
|
||||
added_eq = init_equation(eq(to_monomial(m_src_r), to_monomial(m_dst_r), j));
|
||||
if (max_left_new <= max_left && min_right_new <= min_right)
|
||||
added_eq = init_equation(eq(to_monomial(m_src_r), to_monomial(m_dst_r), j), false);
|
||||
|
||||
CTRACE(plugin, added_eq,
|
||||
tout << "superpose: " << m_name << " " << eq_pp_ll(*this, src) << " " << eq_pp_ll(*this, dst) << " --> ";
|
||||
tout << m_pp_ll(*this, m_src_r) << "== " << m_pp_ll(*this, m_dst_r) << "\n";);
|
||||
|
||||
tout << m_pp_ll(*this, m_src_r) << "== " << m_pp_ll(*this, m_dst_r) << "\n";);
|
||||
|
||||
m_src_r.reset();
|
||||
m_src_r.append(monomial(src_r).m_nodes);
|
||||
return added_eq;
|
||||
|
@ -1191,7 +1236,7 @@ namespace euf {
|
|||
bool ac_plugin::is_reducing(eq const& e) const {
|
||||
auto const& l = monomial(e.l);
|
||||
auto const& r = monomial(e.r);
|
||||
return l.size() == 1 && r.size() <= 1;
|
||||
return l.size() == 1 && r.size() <= 1;
|
||||
}
|
||||
|
||||
void ac_plugin::backward_reduce(unsigned eq_id) {
|
||||
|
@ -1202,23 +1247,36 @@ namespace euf {
|
|||
SASSERT(is_active(other_eq));
|
||||
backward_reduce(eq, other_eq);
|
||||
}
|
||||
for (auto p : m_passive) {
|
||||
bool change = false;
|
||||
if (backward_reduce_monomial(eq, p, monomial(p.l)))
|
||||
change = true;
|
||||
if (backward_reduce_monomial(eq, p, monomial(p.r)))
|
||||
change = true;
|
||||
(void)change;
|
||||
CTRACE(plugin, change,
|
||||
verbose_stream() << "backward reduce " << eq_pp_ll(*this, eq) << " " << eq_pp_ll(*this, p) << "\n");
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: this is destructive. It breaks reversibility.
|
||||
// TODO: also need justifications from eq if there is a change.
|
||||
void ac_plugin::backward_reduce(eq const& eq, unsigned other_eq_id) {
|
||||
auto& other_eq = m_active[other_eq_id];
|
||||
auto& other_eq = m_active[other_eq_id];
|
||||
TRACE(plugin_verbose,
|
||||
tout << "backward reduce " << eq_pp_ll(*this, eq) << " " << eq_pp_ll(*this, other_eq) << "\n");
|
||||
bool change = false;
|
||||
if (backward_reduce_monomial(eq, monomial(other_eq.l)))
|
||||
if (backward_reduce_monomial(eq, other_eq, monomial(other_eq.l)))
|
||||
change = true;
|
||||
if (backward_reduce_monomial(eq, monomial(other_eq.r)))
|
||||
if (backward_reduce_monomial(eq, other_eq, monomial(other_eq.r)))
|
||||
change = true;
|
||||
if (change)
|
||||
set_status(other_eq_id, eq_status::is_to_simplify_eq);
|
||||
CTRACE(plugin, change,
|
||||
tout << "backward reduce " << eq_pp_ll(*this, eq) << " " << eq_pp_ll(*this, other_eq) << "\n");
|
||||
if (change) {
|
||||
set_status(other_eq_id, eq_status::is_to_simplify_eq);
|
||||
}
|
||||
}
|
||||
|
||||
bool ac_plugin::backward_reduce_monomial(eq const& eq, monomial_t& m) {
|
||||
auto const& r = monomial(eq.r);
|
||||
bool ac_plugin::backward_reduce_monomial(eq const& src, eq& dst, monomial_t& m) {
|
||||
auto const& r = monomial(src.r);
|
||||
unsigned j = 0;
|
||||
bool change = false;
|
||||
for (auto n : m) {
|
||||
|
@ -1241,7 +1299,11 @@ namespace euf {
|
|||
m.m_nodes[j++] = r[0];
|
||||
}
|
||||
m.m_nodes.shrink(j);
|
||||
return change;
|
||||
if (change) {
|
||||
m.m_bloom.m_tick = 0;
|
||||
dst.j = join(dst.j, src);
|
||||
}
|
||||
return change;
|
||||
}
|
||||
|
||||
bool ac_plugin::are_equal(monomial_t& a, monomial_t& b) {
|
||||
|
@ -1252,8 +1314,8 @@ namespace euf {
|
|||
if (a.size() != b.size())
|
||||
return false;
|
||||
m_eq_counts.reset();
|
||||
for (auto n : a)
|
||||
m_eq_counts.inc(n->id(), 1);
|
||||
for (auto n : a)
|
||||
m_eq_counts.inc(n->id(), 1);
|
||||
for (auto n : b) {
|
||||
unsigned id = n->id();
|
||||
if (m_eq_counts[id] == 0)
|
||||
|
@ -1277,21 +1339,29 @@ namespace euf {
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
void ac_plugin::deduplicate(monomial_t& a, monomial_t& b) {
|
||||
unsigned sza = a.size(), szb = b.size();
|
||||
deduplicate(a.m_nodes, b.m_nodes);
|
||||
if (sza != a.size())
|
||||
a.m_bloom.m_tick = 0;
|
||||
if (szb != b.size())
|
||||
b.m_bloom.m_tick = 0;
|
||||
}
|
||||
|
||||
void ac_plugin::deduplicate(ptr_vector<node>& a, ptr_vector<node>& b) {
|
||||
{
|
||||
for (auto n : a) {
|
||||
if (n->is_zero) {
|
||||
a[0] = n;
|
||||
a.shrink(1);
|
||||
break;
|
||||
}
|
||||
for (auto n : a) {
|
||||
if (n->is_zero) {
|
||||
a[0] = n;
|
||||
a.shrink(1);
|
||||
break;
|
||||
}
|
||||
for (auto n : b) {
|
||||
if (n->is_zero) {
|
||||
b[0] = n;
|
||||
b.shrink(1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
for (auto n : b) {
|
||||
if (n->is_zero) {
|
||||
b[0] = n;
|
||||
b.shrink(1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1340,14 +1410,14 @@ namespace euf {
|
|||
while (!m_shared_todo.empty()) {
|
||||
auto idx = *m_shared_todo.begin();
|
||||
m_shared_todo.remove(idx);
|
||||
if (idx < m_shared.size())
|
||||
if (idx < m_shared.size())
|
||||
simplify_shared(idx, m_shared[idx]);
|
||||
}
|
||||
m_monomial_table.reset();
|
||||
for (auto const& s1 : m_shared) {
|
||||
shared s2;
|
||||
TRACE(plugin_verbose, tout << "shared " << s1.m << ": " << m_pp_ll(*this, monomial(s1.m)) << "\n");
|
||||
if (!m_monomial_table.find(s1.m, s2))
|
||||
if (!m_monomial_table.find(s1.m, s2))
|
||||
m_monomial_table.insert(s1.m, s1);
|
||||
else if (s2.n->get_root() != s1.n->get_root()) {
|
||||
TRACE(plugin, tout << "merge shared " << g.bpp(s1.n->get_root()) << " and " << g.bpp(s2.n->get_root()) << "\n");
|
||||
|
@ -1380,14 +1450,12 @@ namespace euf {
|
|||
}
|
||||
}
|
||||
for (auto n : monomial(old_m))
|
||||
n->n->unmark2();
|
||||
n->n->unmark2();
|
||||
m_update_shared_trail.push_back({ idx, s });
|
||||
push_undo(is_update_shared);
|
||||
m_shared[idx].m = new_m;
|
||||
m_shared[idx].j = j;
|
||||
|
||||
TRACE(plugin_verbose, tout << "shared simplified to " << m_pp_ll(*this, monomial(new_m)) << "\n");
|
||||
|
||||
push_merge(old_n, new_n, j);
|
||||
}
|
||||
|
||||
|
@ -1397,19 +1465,15 @@ namespace euf {
|
|||
}
|
||||
|
||||
justification::dependency* ac_plugin::justify_equation(unsigned eq) {
|
||||
auto const& e = m_active[eq];
|
||||
auto* j = m_dep_manager.mk_leaf(e.j);
|
||||
j = justify_monomial(j, monomial(e.l));
|
||||
j = justify_monomial(j, monomial(e.r));
|
||||
return j;
|
||||
}
|
||||
|
||||
justification::dependency* ac_plugin::justify_monomial(justification::dependency* j, monomial_t const& m) {
|
||||
return j;
|
||||
return m_dep_manager.mk_leaf(m_active[eq].j);
|
||||
}
|
||||
|
||||
justification ac_plugin::join(justification j, unsigned eq) {
|
||||
return justification::dependent(m_dep_manager.mk_join(m_dep_manager.mk_leaf(j), justify_equation(eq)));
|
||||
}
|
||||
|
||||
justification ac_plugin::join(justification j, eq const& eq) {
|
||||
return justification::dependent(m_dep_manager.mk_join(m_dep_manager.mk_leaf(j), m_dep_manager.mk_leaf(eq.j)));
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -123,6 +123,7 @@ namespace euf {
|
|||
func_decl* m_decl = nullptr;
|
||||
bool m_is_injective = false;
|
||||
vector<eq> m_active, m_passive;
|
||||
enode_pair_vector m_queued;
|
||||
ptr_vector<node> m_nodes;
|
||||
bool_vector m_shared_nodes;
|
||||
vector<monomial_t> m_monomials;
|
||||
|
@ -146,21 +147,21 @@ namespace euf {
|
|||
|
||||
// backtrackable state
|
||||
enum undo_kind {
|
||||
is_add_eq,
|
||||
is_queue_eq,
|
||||
is_add_monomial,
|
||||
is_add_node,
|
||||
is_update_eq,
|
||||
is_add_shared_index,
|
||||
is_add_eq_index,
|
||||
is_register_shared,
|
||||
is_update_shared
|
||||
is_update_shared,
|
||||
is_push_scope
|
||||
};
|
||||
svector<undo_kind> m_undo;
|
||||
ptr_vector<node> m_node_trail;
|
||||
unsigned m_queue_head = 0;
|
||||
|
||||
svector<std::pair<unsigned, shared>> m_update_shared_trail;
|
||||
svector<std::tuple<node*, unsigned, unsigned>> m_merge_trail;
|
||||
svector<std::pair<unsigned, eq>> m_update_eq_trail;
|
||||
|
||||
|
||||
|
||||
|
@ -178,6 +179,7 @@ namespace euf {
|
|||
enode* from_monomial(ptr_vector<node> const& m);
|
||||
monomial_t const& monomial(unsigned i) const { return m_monomials[i]; }
|
||||
monomial_t& monomial(unsigned i) { return m_monomials[i]; }
|
||||
|
||||
void sort(monomial_t& monomial);
|
||||
bool is_sorted(monomial_t const& monomial) const;
|
||||
uint64_t filter(monomial_t& m);
|
||||
|
@ -188,11 +190,12 @@ namespace euf {
|
|||
bool are_equal(eq const& a, eq const& b) {
|
||||
return are_equal(monomial(a.l), monomial(b.l)) && are_equal(monomial(a.r), monomial(b.r));
|
||||
}
|
||||
bool bloom_filter_is_correct(ptr_vector<node> const& m, bloom const& b) const;
|
||||
bool well_formed(eq const& e) const;
|
||||
bool is_reducing(eq const& e) const;
|
||||
void backward_reduce(unsigned eq_id);
|
||||
void backward_reduce(eq const& src, unsigned dst);
|
||||
bool backward_reduce_monomial(eq const& eq, monomial_t& m);
|
||||
void backward_reduce(eq const& eq, unsigned dst);
|
||||
bool backward_reduce_monomial(eq const& src, eq & dst, monomial_t& m);
|
||||
void forward_subsume_new_eqs();
|
||||
bool is_forward_subsumed(unsigned dst_eq);
|
||||
bool forward_subsumes(unsigned src_eq, unsigned dst_eq);
|
||||
|
@ -207,8 +210,10 @@ namespace euf {
|
|||
UNREACHABLE();
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
bool init_equation(eq const& e);
|
||||
|
||||
bool init_equation(eq e, bool is_active);
|
||||
void push_equation(enode* l, enode* r);
|
||||
void pop_equation(enode* l, enode* r);
|
||||
bool orient_equation(eq& e);
|
||||
void set_status(unsigned eq_id, eq_status s);
|
||||
unsigned pick_next_eq();
|
||||
|
@ -217,6 +222,7 @@ namespace euf {
|
|||
void backward_simplify(unsigned eq_id, unsigned using_eq);
|
||||
bool forward_simplify(unsigned eq_id, unsigned using_eq);
|
||||
bool superpose(unsigned src_eq, unsigned dst_eq);
|
||||
void deduplicate(monomial_t& a, monomial_t& b);
|
||||
void deduplicate(ptr_vector<node>& a, ptr_vector<node>& b);
|
||||
|
||||
ptr_vector<node> m_src_r, m_src_l, m_dst_r, m_dst_l;
|
||||
|
@ -260,8 +266,8 @@ namespace euf {
|
|||
|
||||
justification justify_rewrite(unsigned eq1, unsigned eq2);
|
||||
justification::dependency* justify_equation(unsigned eq);
|
||||
justification::dependency* justify_monomial(justification::dependency* d, monomial_t const& m);
|
||||
justification join(justification j1, unsigned eq);
|
||||
justification join(justification j1, eq const& eq);
|
||||
|
||||
bool is_correct_ref_count(monomial_t const& m, ref_counts const& counts) const;
|
||||
bool is_correct_ref_count(ptr_vector<node> const& m, ref_counts const& counts) const;
|
||||
|
@ -301,6 +307,8 @@ namespace euf {
|
|||
|
||||
void undo() override;
|
||||
|
||||
void push_scope_eh() override;
|
||||
|
||||
void propagate() override;
|
||||
|
||||
std::ostream& display(std::ostream& out) const override;
|
||||
|
|
|
@ -43,6 +43,11 @@ namespace euf {
|
|||
|
||||
void undo() override;
|
||||
|
||||
void push_scope_eh() override {
|
||||
m_add.push_scope_eh();
|
||||
m_mul.push_scope_eh();
|
||||
}
|
||||
|
||||
void propagate() override;
|
||||
|
||||
std::ostream& display(std::ostream& out) const override;
|
||||
|
|
|
@ -103,6 +103,9 @@ namespace euf {
|
|||
m_scopes.push_back(m_updates.size());
|
||||
m_region.push_scope();
|
||||
m_updates.push_back(update_record(m_new_th_eqs_qhead, update_record::new_th_eq_qhead()));
|
||||
for (auto p : m_plugins)
|
||||
if (p)
|
||||
p->push_scope_eh();
|
||||
}
|
||||
SASSERT(m_new_th_eqs_qhead <= m_new_th_eqs.size());
|
||||
}
|
||||
|
|
|
@ -52,6 +52,8 @@ namespace euf {
|
|||
virtual void propagate() = 0;
|
||||
|
||||
virtual void undo() = 0;
|
||||
|
||||
virtual void push_scope_eh() {}
|
||||
|
||||
virtual std::ostream& display(std::ostream& out) const = 0;
|
||||
|
||||
|
|
|
@ -2265,6 +2265,20 @@ br_status bv_rewriter::mk_bv_ext_rotate_left(expr * arg1, expr * arg2, expr_ref
|
|||
unsigned shift = static_cast<unsigned>((r2 % numeral(bv_size)).get_uint64() % static_cast<uint64_t>(bv_size));
|
||||
return mk_bv_rotate_left(shift, arg1, result);
|
||||
}
|
||||
expr* x = nullptr, * y = nullptr;
|
||||
if (m_util.is_ext_rotate_right(arg1, x, y) && arg2 == y) {
|
||||
// bv_ext_rotate_left(bv_ext_rotate_right(x, y), y) --> x
|
||||
result = x;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (m_util.is_ext_rotate_left(arg1, x, y)) {
|
||||
result = m_util.mk_bv_rotate_left(x, m_util.mk_bv_add(y, arg2));
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
if (m_util.is_ext_rotate_right(arg1, x, y)) {
|
||||
result = m_util.mk_bv_rotate_left(x, m_util.mk_bv_sub(arg2, y));
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
|
@ -2275,6 +2289,20 @@ br_status bv_rewriter::mk_bv_ext_rotate_right(expr * arg1, expr * arg2, expr_ref
|
|||
unsigned shift = static_cast<unsigned>((r2 % numeral(bv_size)).get_uint64() % static_cast<uint64_t>(bv_size));
|
||||
return mk_bv_rotate_right(shift, arg1, result);
|
||||
}
|
||||
expr* x = nullptr, * y = nullptr;
|
||||
if (m_util.is_ext_rotate_left(arg1, x, y) && arg2 == y) {
|
||||
// bv_ext_rotate_right(bv_ext_rotate_left(x, y), y) --> x
|
||||
result = x;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (m_util.is_ext_rotate_right(arg1, x, y)) {
|
||||
result = m_util.mk_bv_rotate_right(x, m_util.mk_bv_add(y, arg2));
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
if (m_util.is_ext_rotate_left(arg1, x, y)) {
|
||||
result = m_util.mk_bv_rotate_right(x, m_util.mk_bv_sub(arg2, y));
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
|
|
|
@ -1224,16 +1224,40 @@ namespace seq {
|
|||
let n = len(x)
|
||||
- len(a ++ b) = len(a) + len(b) if x = a ++ b
|
||||
- len(unit(u)) = 1 if x = unit(u)
|
||||
- len(extract(x, o, l)) = l if len(x) >= o + l etc
|
||||
- len(str) = str.length() if x = str
|
||||
- len(empty) = 0 if x = empty
|
||||
- len(int.to.str(i)) >= 1 if x = int.to.str(i) and more generally if i = 0 then 1 else 1+floor(log(|i|))
|
||||
- len(x) >= 0 otherwise
|
||||
*/
|
||||
void axioms::length_axiom(expr* n) {
|
||||
expr* x = nullptr;
|
||||
expr* x = nullptr, * y = nullptr, * offs = nullptr, * l = nullptr;
|
||||
VERIFY(seq.str.is_length(n, x));
|
||||
if (seq.str.is_concat(x) ||
|
||||
seq.str.is_unit(x) ||
|
||||
if (seq.str.is_concat(x) && to_app(x)->get_num_args() != 0) {
|
||||
ptr_vector<expr> args;
|
||||
for (auto arg : *to_app(x))
|
||||
args.push_back(seq.str.mk_length(arg));
|
||||
expr_ref len(a.mk_add(args), m);
|
||||
add_clause(mk_eq(len, n));
|
||||
}
|
||||
else if (seq.str.is_extract(x, y, offs, l)) {
|
||||
// len(extract(y, o, l)) = l if len(y) >= o + l, o >= 0, l >= 0
|
||||
// len(extract(y, o, l)) = 0 if o < 0 or l <= 0 or len(y) < o
|
||||
// len(extract(y, o, l)) = len(y) - o if o <= len(y) < o + l
|
||||
expr_ref len_y(mk_len(y), m);
|
||||
expr_ref z(a.mk_int(0), m);
|
||||
expr_ref y_ge_l = mk_ge(a.mk_sub(len_y, a.mk_add(offs, l)), 0);
|
||||
expr_ref y_ge_o = mk_ge(a.mk_sub(len_y, offs), 0);
|
||||
expr_ref offs_ge_0 = mk_ge(offs, 0);
|
||||
expr_ref l_ge_0 = mk_ge(l, 0);
|
||||
|
||||
add_clause(~offs_ge_0, ~l_ge_0, ~y_ge_l, mk_eq(n, l));
|
||||
add_clause(offs_ge_0, mk_eq(n, z));
|
||||
add_clause(l_ge_0, mk_eq(n, z));
|
||||
add_clause(y_ge_o, mk_eq(n, z));
|
||||
add_clause(~y_ge_o, y_ge_l, mk_eq(n, a.mk_sub(len_y, offs)));
|
||||
}
|
||||
else if (seq.str.is_unit(x) ||
|
||||
seq.str.is_empty(x) ||
|
||||
seq.str.is_string(x)) {
|
||||
expr_ref len(n, m);
|
||||
|
|
|
@ -6021,6 +6021,12 @@ bool seq_rewriter::reduce_eq_empty(expr* l, expr* r, expr_ref& result) {
|
|||
result = m_autil.mk_lt(s, zero());
|
||||
return true;
|
||||
}
|
||||
// at(s, offset) = "" <=> len(s) <= offset or offset < 0
|
||||
if (str().is_at(r, s, offset)) {
|
||||
expr_ref len_s(str().mk_length(s), m());
|
||||
result = m().mk_or(m_autil.mk_le(len_s, offset), m_autil.mk_lt(offset, zero()));
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -112,7 +112,7 @@ eliminate:
|
|||
--*/
|
||||
|
||||
|
||||
|
||||
#include "params/smt_params_helper.hpp"
|
||||
#include "ast/ast_ll_pp.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "ast/recfun_decl_plugin.h"
|
||||
|
@ -166,7 +166,7 @@ void elim_unconstrained::eliminate() {
|
|||
expr_ref rr(m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz), m);
|
||||
bool inverted = m_inverter(t->get_decl(), t->get_num_args(), m_args.data() + sz, r);
|
||||
proof_ref pr(m);
|
||||
if (inverted && m_enable_proofs) {
|
||||
if (inverted && m_config.m_enable_proofs) {
|
||||
expr * s = m.mk_app(t->get_decl(), t->get_num_args(), m_args.data() + sz);
|
||||
expr * eq = m.mk_eq(s, r);
|
||||
proof * pr1 = m.mk_def_intro(eq);
|
||||
|
@ -267,7 +267,7 @@ void elim_unconstrained::reset_nodes() {
|
|||
*/
|
||||
void elim_unconstrained::init_nodes() {
|
||||
|
||||
m_enable_proofs = false;
|
||||
m_config.m_enable_proofs = false;
|
||||
m_trail.reset();
|
||||
m_fmls.freeze_suffix();
|
||||
|
||||
|
@ -276,7 +276,7 @@ void elim_unconstrained::init_nodes() {
|
|||
auto [f, p, d] = m_fmls[i]();
|
||||
terms.push_back(f);
|
||||
if (p)
|
||||
m_enable_proofs = true;
|
||||
m_config.m_enable_proofs = true;
|
||||
}
|
||||
|
||||
m_heap.reset();
|
||||
|
@ -303,7 +303,7 @@ void elim_unconstrained::init_nodes() {
|
|||
for (expr* e : terms)
|
||||
get_node(e).set_top();
|
||||
|
||||
m_inverter.set_produce_proofs(m_enable_proofs);
|
||||
m_inverter.set_produce_proofs(m_config.m_enable_proofs);
|
||||
|
||||
}
|
||||
|
||||
|
@ -422,6 +422,8 @@ void elim_unconstrained::update_model_trail(generic_model_converter& mc, vector<
|
|||
}
|
||||
|
||||
void elim_unconstrained::reduce() {
|
||||
if (!m_config.m_enabled)
|
||||
return;
|
||||
generic_model_converter_ref mc = alloc(generic_model_converter, m, "elim-unconstrained");
|
||||
m_inverter.set_model_converter(mc.get());
|
||||
m_created_compound = true;
|
||||
|
@ -436,3 +438,8 @@ void elim_unconstrained::reduce() {
|
|||
mc->reset();
|
||||
}
|
||||
}
|
||||
|
||||
void elim_unconstrained::updt_params(params_ref const& p) {
|
||||
smt_params_helper sp(p);
|
||||
m_config.m_enabled = sp.elim_unconstrained();
|
||||
}
|
||||
|
|
|
@ -79,6 +79,10 @@ class elim_unconstrained : public dependent_expr_simplifier {
|
|||
unsigned m_num_eliminated = 0;
|
||||
void reset() { m_num_eliminated = 0; }
|
||||
};
|
||||
struct config {
|
||||
bool m_enabled = true;
|
||||
bool m_enable_proofs = false;
|
||||
};
|
||||
expr_inverter m_inverter;
|
||||
ptr_vector<node> m_nodes;
|
||||
var_lt m_lt;
|
||||
|
@ -86,8 +90,8 @@ class elim_unconstrained : public dependent_expr_simplifier {
|
|||
expr_ref_vector m_trail;
|
||||
expr_ref_vector m_args;
|
||||
stats m_stats;
|
||||
config m_config;
|
||||
bool m_created_compound = false;
|
||||
bool m_enable_proofs = false;
|
||||
|
||||
bool is_var_lt(int v1, int v2) const;
|
||||
node& get_node(unsigned n) const { return *m_nodes[n]; }
|
||||
|
@ -119,4 +123,7 @@ public:
|
|||
void collect_statistics(statistics& st) const override { st.update("elim-unconstrained", m_stats.m_num_eliminated); }
|
||||
|
||||
void reset_statistics() override { m_stats.reset(); }
|
||||
|
||||
void updt_params(params_ref const& p) override;
|
||||
|
||||
};
|
||||
|
|
|
@ -46,6 +46,7 @@ Outline of a presumably better scheme:
|
|||
#include "ast/simplifiers/solve_context_eqs.h"
|
||||
#include "ast/converters/generic_model_converter.h"
|
||||
#include "params/tactic_params.hpp"
|
||||
#include "params/smt_params_helper.hpp"
|
||||
|
||||
|
||||
namespace euf {
|
||||
|
@ -118,7 +119,10 @@ namespace euf {
|
|||
SASSERT(j == var2id(v));
|
||||
if (m_fmls.frozen(v))
|
||||
continue;
|
||||
|
||||
|
||||
if (!m_config.m_enable_non_ground && has_quantifiers(t))
|
||||
continue;
|
||||
|
||||
bool is_safe = true;
|
||||
unsigned todo_sz = todo.size();
|
||||
|
||||
|
@ -126,6 +130,8 @@ namespace euf {
|
|||
// all time-stamps must be at or above current level
|
||||
// unexplored variables that are part of substitution are appended to work list.
|
||||
SASSERT(m_todo.empty());
|
||||
|
||||
|
||||
m_todo.push_back(t);
|
||||
expr_fast_mark1 visited;
|
||||
while (!m_todo.empty()) {
|
||||
|
@ -224,6 +230,9 @@ namespace euf {
|
|||
|
||||
void solve_eqs::reduce() {
|
||||
|
||||
if (!m_config.m_enabled)
|
||||
return;
|
||||
|
||||
m_fmls.freeze_suffix();
|
||||
|
||||
for (extract_eq* ex : m_extract_plugins)
|
||||
|
@ -330,6 +339,9 @@ namespace euf {
|
|||
for (auto* ex : m_extract_plugins)
|
||||
ex->updt_params(p);
|
||||
m_rewriter.updt_params(p);
|
||||
smt_params_helper sp(p);
|
||||
m_config.m_enabled = sp.solve_eqs();
|
||||
m_config.m_enable_non_ground = sp.solve_eqs_non_ground();
|
||||
}
|
||||
|
||||
void solve_eqs::collect_param_descrs(param_descrs& r) {
|
||||
|
|
|
@ -41,6 +41,8 @@ namespace euf {
|
|||
struct config {
|
||||
bool m_context_solve = true;
|
||||
unsigned m_max_occs = UINT_MAX;
|
||||
bool m_enabled = true;
|
||||
bool m_enable_non_ground = true;
|
||||
};
|
||||
|
||||
stats m_stats;
|
||||
|
|
|
@ -386,7 +386,7 @@ public:
|
|||
void change_basis(unsigned entering, unsigned leaving) {
|
||||
TRACE(lar_solver, tout << "entering = " << entering << ", leaving = " << leaving << "\n";);
|
||||
SASSERT(m_basis_heading[entering] < 0);
|
||||
SASSERT(m_basis_heading[leaving] >= 0);
|
||||
SASSERT(m_basis_heading[leaving] >= 0);
|
||||
|
||||
int place_in_basis = m_basis_heading[leaving];
|
||||
int place_in_non_basis = - m_basis_heading[entering] - 1;
|
||||
|
@ -568,17 +568,17 @@ public:
|
|||
insert_column_into_inf_heap(j);
|
||||
}
|
||||
void insert_column_into_inf_heap(unsigned j) {
|
||||
if (!m_inf_heap.contains(j)) {
|
||||
if (!m_inf_heap.contains(j)) {
|
||||
m_inf_heap.reserve(j+1);
|
||||
m_inf_heap.insert(j);
|
||||
m_inf_heap.insert(j);
|
||||
TRACE(lar_solver_inf_heap, tout << "insert into inf_heap j = " << j << "\n";);
|
||||
}
|
||||
SASSERT(!column_is_feasible(j));
|
||||
}
|
||||
void remove_column_from_inf_heap(unsigned j) {
|
||||
if (m_inf_heap.contains(j)) {
|
||||
if (m_inf_heap.contains(j)) {
|
||||
TRACE(lar_solver_inf_heap, tout << "erase from heap j = " << j << "\n";);
|
||||
m_inf_heap.erase(j);
|
||||
m_inf_heap.erase(j);
|
||||
}
|
||||
SASSERT(column_is_feasible(j));
|
||||
}
|
||||
|
|
|
@ -20,6 +20,7 @@ def_module_params(module_name='smt',
|
|||
('delay_units_threshold', UINT, 32, 'maximum number of learned unit clauses before restarting, ignored if delay_units is false'),
|
||||
('elim_unconstrained', BOOL, True, 'pre-processing: eliminate unconstrained subterms'),
|
||||
('solve_eqs', BOOL, True, 'pre-processing: solve equalities'),
|
||||
('solve_eqs.non_ground', BOOL, True, 'pre-processing: solve equalities. Allow eliminating variables by non-ground solutions which can break behavior for model evaluation.'),
|
||||
('propagate_values', BOOL, True, 'pre-processing: propagate values'),
|
||||
('bound_simplifier', BOOL, True, 'apply bounds simplification during pre-processing'),
|
||||
('pull_nested_quantifiers', BOOL, False, 'pre-processing: pull nested quantifiers'),
|
||||
|
|
|
@ -198,6 +198,7 @@ namespace smt {
|
|||
};
|
||||
lit_node* m_dll_lits;
|
||||
svector<std::array<double, 2>> m_lit_scores;
|
||||
|
||||
clause_vector m_aux_clauses;
|
||||
clause_vector m_lemmas;
|
||||
vector<clause_vector> m_clauses_to_reinit;
|
||||
|
|
|
@ -1545,6 +1545,7 @@ namespace smt {
|
|||
|
||||
auto new_score = m_lit_scores[v][0] * m_lit_scores[v][1];
|
||||
m_pq_scores.set(v, new_score);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -92,6 +92,7 @@ namespace smt {
|
|||
sl.push_child(&(new_m->limit()));
|
||||
}
|
||||
|
||||
|
||||
auto cube = [](context& ctx, expr_ref_vector& lasms, expr_ref& c) {
|
||||
lookahead lh(ctx);
|
||||
c = lh.choose();
|
||||
|
@ -122,6 +123,7 @@ namespace smt {
|
|||
expr* e = ctx.bool_var2expr(node.key);
|
||||
if (!e) continue;
|
||||
|
||||
|
||||
expr_ref lit(e, m);
|
||||
conjuncts.push_back(lit);
|
||||
|
||||
|
|
|
@ -439,7 +439,6 @@ final_check_status theory_seq::final_check_eh() {
|
|||
}
|
||||
|
||||
|
||||
|
||||
bool theory_seq::set_empty(expr* x) {
|
||||
add_axiom(~mk_eq(m_autil.mk_int(0), mk_len(x), false), mk_eq_empty(x));
|
||||
return true;
|
||||
|
@ -475,9 +474,8 @@ bool theory_seq::check_fixed_length(bool is_zero, bool check_long_strings) {
|
|||
bool found = false;
|
||||
for (unsigned i = 0; i < m_length.size(); ++i) {
|
||||
expr* e = m_length.get(i);
|
||||
if (fixed_length(e, is_zero, check_long_strings)) {
|
||||
found = true;
|
||||
}
|
||||
if (fixed_length(e, is_zero, check_long_strings))
|
||||
found = true;
|
||||
}
|
||||
return found;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue