mirror of
https://github.com/Z3Prover/z3
synced 2025-07-18 02:16:40 +00:00
fix the factorization sign to be equal to the monomial sign
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
df5f3f9722
commit
375027d195
13 changed files with 185 additions and 151 deletions
|
@ -29,10 +29,22 @@ tangents::tangents(core * c) : common(c) {}
|
|||
std::ostream& tangents::print_tangent_domain(const point &a, const point &b, std::ostream& out) const {
|
||||
return out << "(" << a << ", " << b << ")";
|
||||
}
|
||||
unsigned tangents::find_binomial_to_refine() {
|
||||
unsigned start = c().random();
|
||||
unsigned sz = c().m_to_refine.size();
|
||||
for (unsigned k = 0; k < sz; k++) {
|
||||
lpvar j = c().m_to_refine[(k + start) % sz];
|
||||
if (c().emons()[j].size() == 2)
|
||||
return j;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
void tangents::generate_simple_tangent_lemma(const monomial& m) {
|
||||
if (m.size() != 2)
|
||||
return;
|
||||
void tangents::generate_simple_tangent_lemma() {
|
||||
lpvar j = find_binomial_to_refine();
|
||||
if (!is_set(j)) return;
|
||||
const monomial& m = c().emons()[j];
|
||||
SASSERT(m.size() != 2);
|
||||
TRACE("nla_solver", tout << "m:" << pp_mon(c(), m) << std::endl;);
|
||||
c().add_empty_lemma();
|
||||
const rational v = c().product_value(m.vars());
|
||||
|
@ -66,65 +78,70 @@ void tangents::generate_simple_tangent_lemma(const monomial& m) {
|
|||
}
|
||||
|
||||
void tangents::tangent_lemma() {
|
||||
bfc bf;
|
||||
lpvar j;
|
||||
rational sign;
|
||||
const monomial* rm = nullptr;
|
||||
|
||||
if (c().find_bfc_to_refine(bf, j, sign, rm)) {
|
||||
tangent_lemma_bf(bf, j, sign, rm);
|
||||
} else {
|
||||
TRACE("nla_solver", tout << "cannot find a bfc to refine\n"; );
|
||||
if (rm != nullptr)
|
||||
generate_simple_tangent_lemma(*rm);
|
||||
if (!c().m_settings.run_tangents()) {
|
||||
TRACE("nla_solver", tout << "not generating tangent lemmas\n";);
|
||||
return;
|
||||
}
|
||||
factorization bf(nullptr);
|
||||
const monomial* m;
|
||||
if (c().find_bfc_to_refine(m, bf)) {
|
||||
tangent_lemma_bf(*m, bf);
|
||||
}
|
||||
}
|
||||
|
||||
void tangents::generate_explanations_of_tang_lemma(const monomial& rm, const bfc& bf, lp::explanation& exp) {
|
||||
void tangents::generate_explanations_of_tang_lemma(const monomial& rm, const factorization& bf, lp::explanation& exp) {
|
||||
// here we repeat the same explanation for each lemma
|
||||
c().explain(rm, exp);
|
||||
c().explain(bf.m_x, exp);
|
||||
c().explain(bf.m_y, exp);
|
||||
c().explain(bf[0], exp);
|
||||
c().explain(bf[1], exp);
|
||||
}
|
||||
|
||||
void tangents::generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j, const rational& j_sign) {
|
||||
void tangents::generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j) {
|
||||
lpvar jx = var(x);
|
||||
lpvar jy = var(y);
|
||||
add_empty_lemma();
|
||||
c().negate_relation(jx, a);
|
||||
c().negate_relation(jy, b);
|
||||
bool sbelow = j_sign.is_pos()? below: !below;
|
||||
#if Z3DEBUG
|
||||
int mult_sign = nla::rat_sign(a - val(jx))*nla::rat_sign(b - val(jy));
|
||||
SASSERT((mult_sign == 1) == sbelow);
|
||||
SASSERT((mult_sign == 1) == below);
|
||||
// If "mult_sign is 1" then (a - x)(b-y) > 0 and ab - bx - ay + xy > 0
|
||||
// or -ab + bx + ay < xy or -ay - bx + xy > -ab
|
||||
// j_sign*val(j) stands for xy. So, finally we have -ay - bx + j_sign*j > - ab
|
||||
// val(j) stands for xy. So, finally we have -ay - bx + j > - ab
|
||||
#endif
|
||||
|
||||
lp::lar_term t;
|
||||
t.add_coeff_var(-a, jy);
|
||||
t.add_coeff_var(-b, jx);
|
||||
t.add_coeff_var( j_sign, j);
|
||||
c().mk_ineq(t, sbelow? llc::GT : llc::LT, - a*b);
|
||||
}
|
||||
void tangents::tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const monomial* rm){
|
||||
t.add_var(j);
|
||||
c().mk_ineq(t, below? llc::GT : llc::LT, - a*b);
|
||||
}
|
||||
|
||||
void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
|
||||
point a, b;
|
||||
point xy (val(bf.m_x), val(bf.m_y));
|
||||
point xy (val(bf[0]), val(bf[1]));
|
||||
rational correct_mult_val = xy.x * xy.y;
|
||||
rational v = val(j) * sign;
|
||||
lpvar j =m.var();
|
||||
// We have canonize_sign(m)*m.vars() = m.rvars()
|
||||
// Let s = canonize_sign(bf). Then we have bf[1]*bf[1] = s*m.rvars()
|
||||
// s*canonize_sign(m)*val(m).
|
||||
// Therefore sign*val(m) = val((bf[0])*val(bf[1]), where sign = canonize_sign(bf)*canonize_sign(m)
|
||||
|
||||
SASSERT(canonize_sign(bf) == canonize_sign(m));
|
||||
rational v = val(j);
|
||||
bool below = v < correct_mult_val;
|
||||
TRACE("nla_solver", tout << "rm = " << rm << ", below = " << below << std::endl; );
|
||||
TRACE("nla_solver", tout << "below = " << below << std::endl; );
|
||||
get_tang_points(a, b, below, v, xy);
|
||||
TRACE("nla_solver", tout << "sign = " << sign << ", tang domain = "; print_tangent_domain(a, b, tout); tout << std::endl;);
|
||||
TRACE("nla_solver", tout << "tang domain = "; print_tangent_domain(a, b, tout); tout << std::endl;);
|
||||
unsigned lemmas_size_was = c().m_lemma_vec->size();
|
||||
generate_two_tang_lines(bf, xy, sign, j);
|
||||
generate_tang_plane(a.x, a.y, bf.m_x, bf.m_y, below, j, sign);
|
||||
generate_tang_plane(b.x, b.y, bf.m_x, bf.m_y, below, j, sign);
|
||||
// if rm == nullptr there is no need to explain equivs since we work on a monomial and not on a rooted monomial
|
||||
if (rm != nullptr) {
|
||||
rational sign(1);
|
||||
generate_two_tang_lines(bf, xy, j);
|
||||
generate_tang_plane(a.x, a.y, bf[0], bf[1], below, j);
|
||||
generate_tang_plane(b.x, b.y, bf[0], bf[1], below, j);
|
||||
|
||||
if (!bf.is_mon()) {
|
||||
lp::explanation expl;
|
||||
generate_explanations_of_tang_lemma(*rm, bf, expl);
|
||||
generate_explanations_of_tang_lemma(m, bf, expl);
|
||||
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++) {
|
||||
auto &l = ((*c().m_lemma_vec)[i]);
|
||||
l.expl().add(expl);
|
||||
|
@ -135,14 +152,14 @@ void tangents::tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, co
|
|||
c().print_specific_lemma((*c().m_lemma_vec)[i], tout); );
|
||||
}
|
||||
|
||||
void tangents::generate_two_tang_lines(const bfc & bf, const point& xy, const rational& sign, lpvar j) {
|
||||
void tangents::generate_two_tang_lines(const factorization & bf, const point& xy, lpvar j) {
|
||||
add_empty_lemma();
|
||||
c().mk_ineq(var(bf.m_x), llc::NE, xy.x);
|
||||
c().mk_ineq(sign, j, - xy.x, var(bf.m_y), llc::EQ);
|
||||
c().mk_ineq(var(bf[0]), llc::NE, xy.x);
|
||||
c().mk_ineq(j, - xy.x, var(bf[1]), llc::EQ);
|
||||
|
||||
add_empty_lemma();
|
||||
c().mk_ineq(var(bf.m_y), llc::NE, xy.y);
|
||||
c().mk_ineq(sign, j, - xy.y, var(bf.m_x), llc::EQ);
|
||||
c().mk_ineq(var(bf[1]), llc::NE, xy.y);
|
||||
c().mk_ineq(j, - xy.y, var(bf[0]), llc::EQ);
|
||||
}
|
||||
|
||||
// Get two planes tangent to surface z = xy, one at point a, and another at point b.
|
||||
|
@ -168,7 +185,7 @@ void tangents::push_tang_point(point &a, const point& xy, bool below, const rati
|
|||
while (steps--) {
|
||||
del *= rational(2);
|
||||
point na = xy + del;
|
||||
TRACE("nla_solver", tout << "del = " << del << std::endl;);
|
||||
TRACE("nla_solver_tp", tout << "del = " << del << std::endl;);
|
||||
if (!plane_is_correct_cut(na, xy, correct_val, val, below)) {
|
||||
TRACE("nla_solver_tp", tout << "exit";tout << std::endl;);
|
||||
return;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue