3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 11:55:51 +00:00

delay internalize (#4714)

* adding array solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use default in model construction

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* debug delay internalization

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* bv

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* arrays

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* get rid of implied values and bounds

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* redo egraph

* remove out

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* remove files

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-09-28 19:24:16 -07:00 committed by GitHub
parent 25724401cf
commit 367e5fdd52
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
60 changed files with 1343 additions and 924 deletions

View file

@ -20,53 +20,77 @@ Author:
namespace bv {
bool solver::check_delay_internalized(euf::enode* n) {
expr* e = n->get_expr();
bool solver::check_delay_internalized(expr* e) {
if (!ctx.is_relevant(e))
return true;
if (get_internalize_mode(e) != internalize_mode::delay_i)
return true;
SASSERT(bv.is_bv(e));
SASSERT(get_internalize_mode(e) != internalize_mode::no_delay_i);
switch (to_app(e)->get_decl_kind()) {
case OP_BMUL:
return check_mul(n);
return check_mul(to_app(e));
case OP_BSMUL_NO_OVFL:
case OP_BSMUL_NO_UDFL:
case OP_BUMUL_NO_OVFL:
return check_bool_eval(expr2enode(e));
default:
return check_eval(n);
return check_bv_eval(expr2enode(e));
}
return true;
}
bool solver::should_bit_blast(expr* e) {
return bv.get_bv_size(e) <= 10;
return bv.get_bv_size(e) <= 12;
}
void solver::eval_args(euf::enode* n, vector<rational>& args) {
rational val;
for (euf::enode* arg : euf::enode_args(n)) {
theory_var v = arg->get_th_var(get_id());
VERIFY(get_fixed_value(v, val));
args.push_back(val);
}
expr_ref solver::eval_args(euf::enode* n, expr_ref_vector& args) {
for (euf::enode* arg : euf::enode_args(n))
args.push_back(eval_bv(arg));
expr_ref r(m.mk_app(n->get_decl(), args), m);
ctx.get_rewriter()(r);
return r;
}
bool solver::check_mul(euf::enode* n) {
SASSERT(n->num_args() >= 2);
app* e = to_app(n->get_expr());
rational val, val_mul(1);
vector<rational> args;
eval_args(n, args);
for (rational const& val_arg : args)
val_mul *= val_arg;
expr_ref solver::eval_bv(euf::enode* n) {
rational val;
theory_var v = n->get_th_var(get_id());
SASSERT(get_fixed_value(v, val));
VERIFY(get_fixed_value(v, val));
val_mul = mod(val_mul, power2(get_bv_size(v)));
IF_VERBOSE(12, verbose_stream() << "check_mul " << mk_bounded_pp(n->get_expr(), m) << " " << args << " = " << val_mul << " =? " << val << "\n");
if (val_mul == val)
return expr_ref(bv.mk_numeral(val, get_bv_size(v)), m);
}
bool solver::check_mul(app* e) {
SASSERT(e->get_num_args() >= 2);
expr_ref_vector args(m);
euf::enode* n = expr2enode(e);
auto r1 = eval_bv(n);
auto r2 = eval_args(n, args);
if (r1 == r2)
return true;
// Some possible approaches:
TRACE("bv", tout << mk_bounded_pp(e, m) << " evaluates to " << r1 << " arguments: " << args << "\n";);
// check x*0 = 0
if (!check_mul_zero(e, args, r1, r2))
return false;
// check base cases: val_mul = 0 or val = 0, some values in product are 1,
// check x*1 = x
if (!check_mul_one(e, args, r1, r2))
return false;
// Add propagation axiom for arguments
if (!check_mul_invertibility(e, args, r1))
return false;
// check discrepancies in low-order bits
// Add axioms for multiplication when fixing high-order bits to 0
// Add axioms for multiplication when fixing high-order bits
if (!check_mul_low_bits(e, args, r1, r2))
return false;
// Some other possible approaches:
// algebraic rules:
// x*(y+z), and there are nodes for x*y or x*z -> x*(y+z) = x*y + x*z
// compute S-polys for a set of constraints.
// Hensel lifting:
// The idea is dual to fixing high-order bits. Fix the low order bits where multiplication
@ -78,40 +102,316 @@ namespace bv {
// check tangets hi >= y >= y0 and hi' >= x => x*y >= x*y0
// compute S-polys for a set of constraints.
if (m_cheap_axioms)
return true;
set_delay_internalize(e, internalize_mode::no_delay_i);
internalize_circuit(e, v);
internalize_circuit(e);
return false;
}
bool solver::check_eval(euf::enode* n) {
expr_ref_vector args(m);
expr_ref r1(m), r2(m);
rational val;
app* a = to_app(n->get_expr());
theory_var v = n->get_th_var(get_id());
VERIFY(get_fixed_value(v, val));
r1 = bv.mk_numeral(val, get_bv_size(v));
SASSERT(bv.is_bv(a));
for (euf::enode* arg : euf::enode_args(n)) {
SASSERT(bv.is_bv(arg->get_expr()));
theory_var v_arg = arg->get_th_var(get_id());
VERIFY(get_fixed_value(v_arg, val));
args.push_back(bv.mk_numeral(val, get_bv_size(v_arg)));
/**
* Add invertibility condition for multiplication
*
* x * y = z => (y | -y) & z = z
*
* This propagator relates to Niemetz and Preiner's consistency and invertibility conditions.
* The idea is that the side-conditions for ensuring invertibility are valid
* and in some cases are cheap to bit-blast. For multiplication, we include only
* the _consistency_ condition because the side-constraints for invertibility
* appear expensive (to paraphrase FMCAD 2020 paper):
* x * s = t => (s = 0 or mcb(x << c, y << c))
*
* for c = ctz(s) and y = (t >> c) / (s >> c)
*
* mcb(x,t/s) just mean that the bit-vectors are compatible as ternary bit-vectors,
* which for propagation means that they are the same.
*/
bool solver::check_mul_invertibility(app* n, expr_ref_vector const& arg_values, expr* value) {
expr_ref inv(m), eq(m);
auto invert = [&](expr* s, expr* t) {
return bv.mk_bv_and(bv.mk_bv_or(s, bv.mk_bv_neg(s)), t);
};
auto check_invert = [&](expr* s) {
inv = invert(s, value);
ctx.get_rewriter()(inv);
return inv == value;
};
auto add_inv = [&](expr* s) {
inv = invert(s, n);
expr_ref eq(m.mk_eq(inv, n), m);
TRACE("bv", tout << "enforce " << eq << "\n";);
add_unit(b_internalize(eq));
};
bool ok = true;
for (unsigned i = 0; i < arg_values.size(); ++i) {
if (!check_invert(arg_values[i])) {
add_inv(n->get_arg(i));
ok = false;
}
}
r2 = m.mk_app(a->get_decl(), args);
ctx.get_rewriter()(r2);
return ok;
}
/*
* Check that multiplication with 0 is correctly propagated.
* If not, create algebraic axioms enforcing 0*x = 0 and x*0 = 0
*
* z = 0, then lsb(x) + 1 + lsb(y) + 1 >= sz
*/
bool solver::check_mul_zero(app* n, expr_ref_vector const& arg_values, expr* mul_value, expr* arg_value) {
SASSERT(mul_value != arg_value);
SASSERT(!(bv.is_zero(mul_value) && bv.is_zero(arg_value)));
if (bv.is_zero(arg_value)) {
unsigned sz = n->get_num_args();
expr_ref_vector args(m, sz, n->get_args());
for (unsigned i = 0; i < sz && !s().inconsistent(); ++i) {
args[i] = arg_value;
expr_ref r(m.mk_app(n->get_decl(), args), m);
set_delay_internalize(r, internalize_mode::init_bits_only_i); // do not bit-blast this multiplier.
expr_ref eq(m.mk_eq(r, arg_value), m);
args[i] = n->get_arg(i);
std::cout << eq << "@" << s().scope_lvl() << "\n";
add_unit(b_internalize(eq));
}
return false;
}
if (bv.is_zero(mul_value)) {
return true;
#if 0
vector<expr_ref_vector> lsb_bits;
for (expr* arg : *n) {
expr_ref_vector bits(m);
encode_lsb_tail(arg, bits);
lsb_bits.push_back(bits);
}
expr_ref_vector zs(m);
literal_vector lits;
expr_ref eq(m.mk_eq(n, mul_value), m);
lits.push_back(~b_internalize(eq));
for (unsigned i = 0; i < lsb_bits.size(); ++i) {
}
expr_ref z(m.mk_or(zs), m);
add_clause(lits);
// sum of lsb should be at least sz
return true;
#endif
}
return true;
}
/***
* check that 1*y = y, x*1 = x
*/
bool solver::check_mul_one(app* n, expr_ref_vector const& arg_values, expr* mul_value, expr* arg_value) {
if (arg_values.size() != 2)
return true;
if (bv.is_one(arg_values[0])) {
expr_ref mul1(m.mk_app(n->get_decl(), arg_values[0], n->get_arg(1)), m);
set_delay_internalize(mul1, internalize_mode::init_bits_only_i);
expr_ref eq(m.mk_eq(mul1, n->get_arg(1)), m);
add_unit(b_internalize(eq));
TRACE("bv", tout << eq << "\n";);
return false;
}
if (bv.is_one(arg_values[1])) {
expr_ref mul1(m.mk_app(n->get_decl(), n->get_arg(0), arg_values[1]), m);
set_delay_internalize(mul1, internalize_mode::init_bits_only_i);
expr_ref eq(m.mk_eq(mul1, n->get_arg(0)), m);
add_unit(b_internalize(eq));
TRACE("bv", tout << eq << "\n";);
return false;
}
return true;
}
/**
* Check for discrepancies in low-order bits.
* Add bit-blasting axioms if there are discrepancies within low order bits.
*/
bool solver::check_mul_low_bits(app* n, expr_ref_vector const& arg_values, expr* value1, expr* value2) {
rational v0, v1, two(2);
unsigned sz;
VERIFY(bv.is_numeral(value1, v0, sz));
VERIFY(bv.is_numeral(value2, v1));
unsigned num_bits = 10;
if (sz <= num_bits)
return true;
bool diff = false;
for (unsigned i = 0; !diff && i < num_bits; ++i) {
rational b0 = mod(v0, two);
rational b1 = mod(v1, two);
diff = b0 != b1;
div(v0, two, v0);
div(v1, two, v1);
}
if (!diff)
return true;
auto safe_for_fixing_bits = [&](expr* e) {
euf::enode* n = expr2enode(e);
theory_var v = n->get_th_var(get_id());
for (unsigned i = num_bits; i < sz; ++i) {
sat::literal lit = m_bits[v][i];
if (s().value(lit) == l_true && s().lvl(lit) > s().search_lvl())
return false;
}
return true;
};
for (expr* arg : *n)
if (!safe_for_fixing_bits(arg))
return true;
if (!safe_for_fixing_bits(n))
return true;
auto value_for_bv = [&](expr* e) {
euf::enode* n = expr2enode(e);
theory_var v = n->get_th_var(get_id());
rational val(0);
for (unsigned i = num_bits; i < sz; ++i) {
sat::literal lit = m_bits[v][i];
if (s().value(lit) == l_true && s().lvl(lit) <= s().search_lvl())
val += power2(i - num_bits);
}
return val;
};
auto extract_low_bits = [&](expr* e) {
rational val = value_for_bv(e);
expr_ref lo(bv.mk_extract(num_bits - 1, 0, e), m);
expr_ref hi(bv.mk_numeral(val, sz - num_bits), m);
return expr_ref(bv.mk_concat(lo, hi), m);
};
expr_ref_vector args(m);
for (expr* arg : *n)
args.push_back(extract_low_bits(arg));
expr_ref lhs(extract_low_bits(n), m);
expr_ref rhs(m.mk_app(n->get_decl(), args), m);
set_delay_internalize(rhs, internalize_mode::no_delay_i);
expr_ref eq(m.mk_eq(lhs, rhs), m);
add_unit(b_internalize(eq));
TRACE("bv", tout << "low-bits: " << eq << "\n";);
std::cout << "low bits\n";
return false;
}
/**
* The i'th bit in xs is 1 if the most significant bit of x is i or higher.
*/
void solver::encode_msb_tail(expr* x, expr_ref_vector& xs) {
theory_var v = expr2enode(x)->get_th_var(get_id());
sat::literal_vector const& bits = m_bits[v];
if (bits.empty())
return;
expr_ref tmp = literal2expr(bits.back());
for (unsigned i = bits.size() - 1; i-- > 0; ) {
auto b = bits[i];
tmp = m.mk_or(literal2expr(b), tmp);
xs.push_back(tmp);
}
};
/**
* The i'th bit in xs is 1 if the least significant bit of x is i or lower.
*/
void solver::encode_lsb_tail(expr* x, expr_ref_vector& xs) {
theory_var v = expr2enode(x)->get_th_var(get_id());
sat::literal_vector const& bits = m_bits[v];
if (bits.empty())
return;
expr_ref tmp = literal2expr(bits[0]);
for (unsigned i = 1; i < bits.size(); ++i) {
auto b = bits[i];
tmp = m.mk_or(literal2expr(b), tmp);
xs.push_back(tmp);
}
};
/**
* Check non-overflow of unsigned multiplication.
*
* no_overflow(x, y) = > msb(x) + msb(y) <= sz;
* msb(x) + msb(y) < sz => no_overflow(x,y)
*/
bool solver::check_umul_no_overflow(app* n, expr_ref_vector const& arg_values, expr* value) {
SASSERT(arg_values.size() == 2);
SASSERT(m.is_true(value) || m.is_false(value));
rational v0, v1;
unsigned sz;
VERIFY(bv.is_numeral(arg_values[0], v0, sz));
VERIFY(bv.is_numeral(arg_values[1], v1));
unsigned msb0 = v0.get_num_bits();
unsigned msb1 = v1.get_num_bits();
expr_ref_vector xs(m), ys(m), zs(m);
if (m.is_true(value) && msb0 + msb1 > sz && !v0.is_zero() && !v1.is_zero()) {
sat::literal no_overflow = expr2literal(n);
encode_msb_tail(n->get_arg(0), xs);
encode_msb_tail(n->get_arg(1), ys);
for (unsigned i = 1; i <= sz; ++i) {
sat::literal bit0 = b_internalize(xs.get(i - 1));
sat::literal bit1 = b_internalize(ys.get(sz - i));
add_clause(~no_overflow, ~bit0, ~bit1);
}
return false;
}
else if (m.is_false(value) && msb0 + msb1 < sz) {
encode_msb_tail(n->get_arg(0), xs);
encode_msb_tail(n->get_arg(1), ys);
sat::literal_vector lits;
lits.push_back(expr2literal(n));
for (unsigned i = 1; i < sz; ++i) {
expr_ref msb_ge_sz(m.mk_and(xs.get(i - 1), ys.get(sz - i - 1)), m);
lits.push_back(b_internalize(msb_ge_sz));
}
add_clause(lits);
return false;
}
return true;
}
bool solver::check_bv_eval(euf::enode* n) {
expr_ref_vector args(m);
app* a = n->get_app();
SASSERT(bv.is_bv(a));
auto r1 = eval_bv(n);
auto r2 = eval_args(n, args);
if (r1 == r2)
return true;
if (m_cheap_axioms)
return true;
set_delay_internalize(a, internalize_mode::no_delay_i);
internalize_circuit(a, v);
internalize_circuit(a);
return false;
}
bool solver::check_bool_eval(euf::enode* n) {
expr_ref_vector args(m);
SASSERT(m.is_bool(n->get_expr()));
sat::literal lit = expr2literal(n->get_expr());
expr* r1 = m.mk_bool_val(s().value(lit) == l_true);
auto r2 = eval_args(n, args);
if (r1 == r2)
return true;
app* a = n->get_app();
if (bv.is_bv_umul_no_ovfl(a) && !check_umul_no_overflow(a, args, r1))
return false;
if (m_cheap_axioms)
return true;
set_delay_internalize(a, internalize_mode::no_delay_i);
internalize_circuit(a);
return false;
}
void solver::set_delay_internalize(expr* e, internalize_mode mode) {
if (!m_delay_internalize.contains(e))
ctx.push(insert_obj_map<euf::solver, expr, internalize_mode>(m_delay_internalize, e));
else
ctx.push(remove_obj_map<euf::solver, expr, internalize_mode>(m_delay_internalize, e, m_delay_internalize[e]));
m_delay_internalize.insert(e, mode);
}
@ -120,6 +420,7 @@ namespace bv {
return internalize_mode::no_delay_i;
if (!get_config().m_bv_delay)
return internalize_mode::no_delay_i;
internalize_mode mode;
switch (to_app(e)->get_decl_kind()) {
case OP_BMUL:
case OP_BSMUL_NO_OVFL:
@ -129,18 +430,15 @@ namespace bv {
case OP_BUREM_I:
case OP_BSREM_I:
case OP_BUDIV_I:
case OP_BSDIV_I: {
case OP_BSDIV_I:
if (should_bit_blast(e))
return internalize_mode::no_delay_i;
internalize_mode mode = internalize_mode::init_bits_i;
mode = internalize_mode::delay_i;
if (!m_delay_internalize.find(e, mode))
set_delay_internalize(e, mode);
return mode;
}
m_delay_internalize.insert(e, mode);
return mode;
default:
return internalize_mode::no_delay_i;
}
}
}