3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

propogation based order lemma

Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
Lev 2019-01-29 18:02:06 -08:00 committed by Lev Nachmanson
parent 1235621610
commit 348faf15b1
2 changed files with 100 additions and 74 deletions

View file

@ -34,7 +34,7 @@ class factor {
factor_type m_type;
public:
factor() {}
factor(unsigned j) : factor(j, factor_type::VAR) {}
explicit factor(unsigned j) : factor(j, factor_type::VAR) {}
factor(unsigned i, factor_type t) : m_index(i), m_type(t) {}
unsigned index() const {return m_index;}
unsigned& index() {return m_index;}

View file

@ -250,6 +250,10 @@ struct solver::imp {
}
}
void explain(lpvar j, lp::explanation& exp) const {
m_vars_equivalence.explain(j, exp);
}
template <typename T>
std::ostream& print_product(const T & m, std::ostream& out) const {
for (unsigned k = 0; k < m.size(); k++) {
@ -1039,7 +1043,7 @@ struct solver::imp {
if (basic_lemma_for_mon(r)) {
return true;
}
if (++i == m_rm_table.to_refine().size()) {
if (++i == rm_ref.size()) {
i = 0;
}
} while(i != start);
@ -1311,7 +1315,9 @@ struct solver::imp {
const factor& b,
int d_sign,
const factor& d,
llc ab_cmp) {
llc ab_cmp,
bool model_based
) {
add_empty_lemma_and_explanation();
mk_ineq(rational(c_sign) * flip_sign(c), var(c), llc::LE, current_lemma());
negate_factor_equality(c, d);
@ -1319,10 +1325,12 @@ struct solver::imp {
mk_ineq(flip_sign(ac), var(ac), -flip_sign(bd), var(bd), ab_cmp, current_lemma());
explain(ac, current_expl());
explain(a, current_expl());
explain(c, current_expl());
explain(bd, current_expl());
explain(b, current_expl());
explain(d, current_expl()); // todo: double check that these explanations are enough!
if (!model_based) { // this will explain c == d
explain(c, current_expl());
explain(d, current_expl()); // todo: double check that these explanations are enough, too much!?
}
TRACE("nla_solver", print_lemma(current_lemma(), tout););
}
@ -1356,7 +1364,8 @@ struct solver::imp {
const factor& c,
const rooted_mon& bd,
const factor& b,
const factor& d) {
const factor& d,
bool model_based) {
SASSERT(abs(vvr(c)) == abs(vvr(d)));
auto cv = vvr(c); auto dv = vvr(d);
int c_sign, d_sign;
@ -1383,12 +1392,12 @@ struct solver::imp {
if (av < bv){
if(!(acv < bdv)) {
generate_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::LT);
generate_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::LT, model_based);
return true;
}
} else if (av > bv){
if(!(acv > bdv)) {
generate_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::GT);
generate_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::GT, model_based);
return true;
}
}
@ -1402,7 +1411,9 @@ struct solver::imp {
const factorization& ac_f,
unsigned k,
const rooted_mon& rm_bd,
const factor& d) {
const factor& d,
bool model_based
) {
TRACE("nla_solver", tout << "rm_ac = ";
print_rooted_monomial(rm_ac, tout);
tout << "\nrm_bd = ";
@ -1417,75 +1428,86 @@ struct solver::imp {
return false;
}
return order_lemma_on_ac_and_bd_and_factors(rm_ac, ac_f[(k + 1) % 2], ac_f[k], rm_bd, b, d);
return order_lemma_on_ac_and_bd_and_factors(rm_ac, ac_f[(k + 1) % 2], ac_f[k], rm_bd, b, d, model_based);
}
void maybe_add_a_factor(lpvar i,
const factor& c,
std::unordered_set<lpvar>& found_vars,
std::unordered_set<unsigned>& found_rm,
vector<factor> & r) const {
SASSERT(abs(vvr(i)) == abs(vvr(c)));
auto it = m_var_to_its_monomial.find(i);
if (it == m_var_to_its_monomial.end()) {
i = m_vars_equivalence.map_to_root(i);
if (!contains(found_vars, i)) {
found_vars.insert(i);
r.push_back(factor(i, factor_type::VAR));
}
} else {
SASSERT(m_monomials[it->second].var() == i && abs(vvr(m_monomials[it->second])) == abs(vvr(c)));
const index_with_sign & i_s = m_rm_table.get_rooted_mon(it->second);
unsigned rm_i = i_s.index();
// SASSERT(abs(vvr(m_rm_table.vec()[i])) == abs(vvr(c)));
if (!contains(found_rm, rm_i)) {
found_rm.insert(rm_i);
r.push_back(factor(rm_i, factor_type::RM));
TRACE("nla_solver", tout << "inserting factor = "; print_factor_with_vars(factor(rm_i, factor_type::RM), tout); );
}
}
}
// collect all vars and rooted monomials with the same absolute
// value as the absolute value af c and return them as factors
vector<factor> factors_with_the_same_abs_val(const factor& c) const {
vector<factor> factors_with_the_same_abs_val(const factor& c, bool model_based) const {
vector<factor> r;
std::unordered_set<lpvar> found_vars;
std::unordered_set<unsigned> found_rm;
TRACE("nla_solver", tout << "c = "; print_factor_with_vars(c, tout););
for (lpvar i : m_vars_equivalence.get_vars_with_the_same_abs_val(vvr(c))) {
SASSERT(abs(vvr(i)) == abs(vvr(c)));
auto it = m_var_to_its_monomial.find(i);
if (it == m_var_to_its_monomial.end()) {
i = m_vars_equivalence.map_to_root(i);
if (!contains(found_vars, i)) {
found_vars.insert(i);
r.push_back(factor(i, factor_type::VAR));
}
} else {
const monomial& m = m_monomials[it->second];
SASSERT(m.var() == i);
SASSERT(abs(vvr(m)) == abs(vvr(c)));
const index_with_sign & i_s = m_rm_table.get_rooted_mon(it->second);
i = i_s.index();
// SASSERT(abs(vvr(m_rm_table.vec()[i])) == abs(vvr(c)));
if (!contains(found_rm, i)) {
found_rm.insert(i);
r.push_back(factor(i, factor_type::RM));
TRACE("nla_solver", tout << "inserting factor = "; print_factor_with_vars(factor(i, factor_type::RM), tout); );
}
}
for (lpvar i : m_vars_equivalence.get_vars_with_the_same_abs_val(vvr(c))) {
maybe_add_a_factor(i, c, found_vars, found_rm, r);
}
return r;
}
bool order_lemma_on_ad(const rooted_mon& rm, const factorization& ac, unsigned k, bool model_based, const factor & d) {
TRACE("nla_solver", tout << "d = "; print_factor_with_vars(d, tout); );
SASSERT(abs(vvr(d)) == abs(vvr(ac[k])));
if (d.is_var()) {
TRACE("nla_solver", tout << "var(d) = " << var(d););
for (unsigned rm_bd : m_rm_table.var_map()[d.index()]) {
TRACE("nla_solver", );
if (order_lemma_on_ac_and_bd(rm ,ac, k, m_rm_table.vec()[rm_bd], d, model_based)) {
return true;
}
}
} else {
for (unsigned rm_b : m_rm_table.proper_factors()[d.index()]) {
if (order_lemma_on_ac_and_bd(rm , ac, k, m_rm_table.vec()[rm_b], d, model_based)) {
return true;
}
}
}
return false;
}
// a > b && c > 0 => ac > bc
// ac is a factorization of rm.vars()
// ac[k] plays the role of c
bool order_lemma_on_factor(const rooted_mon& rm, const factorization& ac, unsigned k) {
bool order_lemma_on_factor(const rooted_mon& rm, const factorization& ac, unsigned k, bool model_based) {
auto c = ac[k];
TRACE("nla_solver", tout << "k = " << k << ", c = "; print_factor_with_vars(c, tout); );
for (const factor & d : factors_with_the_same_abs_val(c)) {
TRACE("nla_solver", tout << "d = "; print_factor_with_vars(d, tout); );
SASSERT(abs(vvr(d)) == abs(vvr(c)));
if (d.is_var()) {
TRACE("nla_solver", tout << "var(d) = " << var(d););
for (unsigned rm_bd : m_rm_table.var_map()[d.index()]) {
TRACE("nla_solver", );
if (order_lemma_on_ac_and_bd(rm ,ac, k, m_rm_table.vec()[rm_bd], d)) {
return true;
}
}
} else {
for (unsigned rm_b : m_rm_table.proper_factors()[d.index()]) {
if (order_lemma_on_ac_and_bd(rm , ac, k, m_rm_table.vec()[rm_b], d)) {
return true;
}
}
}
for (const factor & d : factors_with_the_same_abs_val(c, model_based)) {
if (order_lemma_on_ad(rm, ac, k, model_based, d))
return true;
}
return false;
}
// a > b && c == d => ac > bd
// ac is a factorization of rm.vars()
bool order_lemma_on_factorization(const rooted_mon& rm, const factorization& ac) {
bool order_lemma_on_factorization(const rooted_mon& rm, const factorization& ac, bool model_based) {
SASSERT(ac.size() == 2);
CTRACE("nla_solver",
rm.vars().size() == 4,
@ -1496,7 +1518,7 @@ struct solver::imp {
if (v.is_zero())
continue;
if (order_lemma_on_factor(rm, ac, k)) {
if (order_lemma_on_factor(rm, ac, k, model_based)) {
return true;
}
}
@ -1504,29 +1526,33 @@ struct solver::imp {
}
// a > b && c > 0 => ac > bc
bool order_lemma_on_monomial(const rooted_mon& rm) {
bool order_lemma_on_monomial(const rooted_mon& rm, bool model_based) {
TRACE("nla_solver",
tout << "rm = "; print_product(rm, tout);
tout << ", orig = "; print_monomial(m_monomials[rm.orig_index()], tout);
);
for (auto ac : factorization_factory_imp(rm.vars(), *this)) {
if (ac.size() != 2)
continue;
if (order_lemma_on_factorization(rm, ac))
if (ac.size() == 2 && order_lemma_on_factorization(rm, ac, model_based))
return true;
}
return false;
}
bool order_lemma() {
bool order_lemma(bool model_based) {
TRACE("nla_solver", );
for (const auto& rm : m_rm_table.vec()) {
if (check_monomial(m_monomials[rm.orig_index()]))
continue;
if (order_lemma_on_monomial(rm)) {
const auto& rm_ref = m_rm_table.to_refine();
unsigned start = random() % rm_ref.size();
unsigned i = start;
do {
const rooted_mon& rm = m_rm_table.vec()[rm_ref[i]];
if (order_lemma_on_monomial(rm, model_based)) {
return true;
}
}
if (++i == rm_ref.size()) {
i = 0;
}
} while(i != start);
return false;
}
@ -1866,8 +1892,8 @@ struct solver::imp {
get_tang_points(a, b, below, val, xy);
TRACE("nla_solver", tout << "sign = " << sign << ", tang domain = "; print_tangent_domain(a, b, tout); tout << std::endl;);
generate_two_tang_lines(bf, xy, sign, j);
generate_tang_plane(a.x, a.y, var(bf.m_x), var(bf.m_y), below, j, sign);
generate_tang_plane(b.x, b.y, var(bf.m_x), var(bf.m_y), below, j, sign);
generate_tang_plane(a.x, a.y, bf.m_x, bf.m_y, below, j, sign);
generate_tang_plane(b.x, b.y, bf.m_x, bf.m_y, below, j, sign);
generate_explanations_of_tang_lemma(rm, bf);
}
@ -1904,15 +1930,15 @@ struct solver::imp {
void generate_two_tang_lines(const bfc & bf, const point& xy, const rational& sign, lpvar j) {
add_empty_lemma_and_explanation();
mk_ineq(var(bf.m_x), llc::NE, xy.x, m_lemma_vec->back());
mk_ineq(sign, j, - xy.x, var(bf.m_y), llc::EQ, m_lemma_vec->back());
mk_ineq(bf.m_x, llc::NE, xy.x, m_lemma_vec->back());
mk_ineq(sign, j, - xy.x, bf.m_y, llc::EQ, m_lemma_vec->back());
TRACE("nla_solver", print_lemma(m_lemma_vec->back(), tout););
add_empty_lemma_and_explanation();
mk_ineq(var(bf.m_y), llc::NE, xy.y, m_lemma_vec->back());
mk_ineq(sign, j, - xy.y, var(bf.m_x), llc::EQ, m_lemma_vec->back());
mk_ineq(bf.m_y, llc::NE, xy.y, m_lemma_vec->back());
mk_ineq(sign, j, - xy.y, bf.m_x, llc::EQ, m_lemma_vec->back());
TRACE("nla_solver", print_lemma(m_lemma_vec->back(), tout););
}
// Get two planes tangent to surface z = xy, one at point a, and another at point b.
// Get two planes tangent to surface z = xy, one at point a, and another at point b.
// One can show that these planes still create a cut.
void get_initial_tang_points(point &a, point &b, const point& xy,
bool below) const {
@ -1958,7 +1984,7 @@ struct solver::imp {
const rational & correct_val,
const rational & val,
bool below) const {
SASSERT(correct_val == xy.x * xy.y);
SASSERT(correct_val == xy.x * xy.y);
if (below && val > correct_val) return false;
rational sign = below? rational(1) : rational(-1);
rational px = tang_plane(plane, xy);
@ -2003,7 +2029,7 @@ struct solver::imp {
ret = l_false;
}
} else if (search_level == 1) {
if (order_lemma()) {
if (order_lemma(false) /* || order_lemma(true)*/) {
ret = l_false;
}
} else { // search_level == 3