mirror of
https://github.com/Z3Prover/z3
synced 2025-05-02 21:37:02 +00:00
mv util/lp to math/lp
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
b6513b8e2d
commit
33cbd29ed0
150 changed files with 524 additions and 479 deletions
83
src/math/lp/nla_tangent_lemmas.h
Normal file
83
src/math/lp/nla_tangent_lemmas.h
Normal file
|
@ -0,0 +1,83 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/rational.h"
|
||||
#include "math/lp/factorization.h"
|
||||
#include "math/lp/nla_common.h"
|
||||
|
||||
namespace nla {
|
||||
class core;
|
||||
|
||||
struct point {
|
||||
rational x;
|
||||
rational y;
|
||||
point(const rational& a, const rational& b): x(a), y(b) {}
|
||||
point() {}
|
||||
inline point& operator*=(rational a) {
|
||||
x *= a;
|
||||
y *= a;
|
||||
return *this;
|
||||
}
|
||||
inline point operator+(const point& b) const {
|
||||
return point(x + b.x, y + b.y);
|
||||
}
|
||||
|
||||
inline point operator-(const point& b) const {
|
||||
return point(x - b.x, y - b.y);
|
||||
}
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, point const& a) { return out << "(" << a.x << ", " << a.y << ")"; }
|
||||
|
||||
|
||||
class tangents : common {
|
||||
public:
|
||||
tangents(core *core);
|
||||
void tangent_lemma();
|
||||
private:
|
||||
lpvar find_binomial_to_refine();
|
||||
void generate_explanations_of_tang_lemma(const monomial& m, const factorization& bf, lp::explanation& exp);
|
||||
void generate_simple_tangent_lemma(const monomial& m, const factorization&);
|
||||
void tangent_lemma_bf(const monomial& m,const factorization& bf);
|
||||
void generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j);
|
||||
|
||||
void generate_two_tang_lines(const factorization & bf, const point& xy, lpvar j);
|
||||
// Get two planes tangent to surface z = xy, one at point a, and another at point b.
|
||||
// One can show that these planes still create a cut.
|
||||
void get_initial_tang_points(point &a, point &b, const point& xy, bool below) const;
|
||||
|
||||
void push_tang_point(point &a, const point& xy, bool below, const rational& correct_val, const rational& val) const;
|
||||
|
||||
void push_tang_points(point &a, point &b, const point& xy, bool below, const rational& correct_val, const rational& val) const;
|
||||
|
||||
rational tang_plane(const point& a, const point& x) const;
|
||||
void get_tang_points(point &a, point &b, bool below, const rational& val, const point& xy) const;
|
||||
std::ostream& print_point(const point &a, std::ostream& out) const;
|
||||
std::ostream& print_tangent_domain(const point &a, const point &b, std::ostream& out) const;
|
||||
// "below" means that the val is below the surface xy
|
||||
bool plane_is_correct_cut(const point& plane,
|
||||
const point& xy,
|
||||
const rational & correct_val,
|
||||
const rational & val,
|
||||
bool below) const;
|
||||
template <typename T> rational val(T const& t) const;
|
||||
template <typename T> lpvar var(T const& t) const { return t.var(); }
|
||||
}; // end of tangents
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue