3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 03:15:50 +00:00

mv util/lp to math/lp

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-06-03 16:46:19 -07:00
parent b6513b8e2d
commit 33cbd29ed0
150 changed files with 524 additions and 479 deletions

99
src/math/lp/constraint.h Normal file
View file

@ -0,0 +1,99 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
namespace lp {
class constraint; // forward definition
struct constraint_hash {
size_t operator() (const constraint* c) const;
};
struct constraint_equal {
bool operator() (const constraint * a, const constraint * b) const;
};
class constraint { // we only have less or equal for the inequality sign, which is enough for integral variables
int m_id;
bool m_is_ineq;
polynomial m_poly;
mpq m_d; // the divider for the case of a divisibility constraint
std::unordered_set<constraint_index> m_assert_origins; // these indices come from the client and get collected during tightening
public :
unsigned id() const { return m_id; }
const polynomial & poly() const { return m_poly; }
polynomial & poly() { return m_poly; }
std::unordered_set<constraint_index> & assert_origins() { return m_assert_origins;}
const std::unordered_set<constraint_index> & assert_origins() const { return m_assert_origins;}
bool is_lemma() const { return !is_assert(); }
bool is_assert() const { return m_assert_origins.size() == 1; }
bool is_ineq() const { return m_is_ineq; }
const mpq & divider() const { return m_d; }
public:
constraint(
unsigned id,
constraint_index assert_origin,
const polynomial & p,
bool is_ineq):
m_id(id),
m_is_ineq(is_ineq),
m_poly(p)
{ // creates an assert
m_assert_origins.insert(assert_origin);
}
constraint(
unsigned id,
const std::unordered_set<constraint_index>& origins,
const polynomial & p,
bool is_ineq):
m_id(id),
m_is_ineq(is_ineq),
m_poly(p),
m_assert_origins(origins)
{}
constraint(
unsigned id,
const polynomial & p,
bool is_ineq):
m_id(id),
m_is_ineq(is_ineq),
m_poly(p) { // creates a lemma
}
public:
constraint() {}
const mpq & coeff(var_index j) const {
return m_poly.coeff(j);
}
const vector<monomial>& coeffs() const { return m_poly.m_coeffs;}
bool is_tight(unsigned j) const {
const mpq & a = m_poly.coeff(j);
return a == 1 || a == -1;
}
void add_predecessor(const constraint* p) {
lp_assert(p != nullptr);
for (auto m : p->assert_origins())
m_assert_origins.insert(m); }
};
}