mirror of
https://github.com/Z3Prover/z3
synced 2025-09-07 02:11:08 +00:00
Fix some spelling errors (mostly in comments).
This commit is contained in:
parent
880ce12e2d
commit
326bf401b9
121 changed files with 205 additions and 205 deletions
|
@ -362,7 +362,7 @@ namespace upolynomial {
|
|||
set_size(sz-1, buffer);
|
||||
}
|
||||
|
||||
// Divide coeffients of p by their GCD
|
||||
// Divide coefficients of p by their GCD
|
||||
void core_manager::normalize(unsigned sz, numeral * p) {
|
||||
if (sz == 0)
|
||||
return;
|
||||
|
@ -395,7 +395,7 @@ namespace upolynomial {
|
|||
}
|
||||
}
|
||||
|
||||
// Divide coeffients of p by their GCD
|
||||
// Divide coefficients of p by their GCD
|
||||
void core_manager::normalize(numeral_vector & p) {
|
||||
normalize(p.size(), p.c_ptr());
|
||||
}
|
||||
|
@ -568,7 +568,7 @@ namespace upolynomial {
|
|||
SASSERT(!is_alias(p1, buffer)); SASSERT(!is_alias(p2, buffer));
|
||||
unsigned d;
|
||||
rem(sz1, p1, sz2, p2, d, buffer);
|
||||
// We don't ned to flip the sign if d is odd and leading coefficient of p2 is negative
|
||||
// We don't need to flip the sign if d is odd and leading coefficient of p2 is negative
|
||||
if (d % 2 == 0 || (sz2 > 0 && m().is_pos(p2[sz2-1])))
|
||||
neg(buffer.size(), buffer.c_ptr());
|
||||
}
|
||||
|
@ -2005,7 +2005,7 @@ namespace upolynomial {
|
|||
continue;
|
||||
bool pos_a_n_k = m().is_pos(a_n_k);
|
||||
if (pos_a_n_k == pos_a_n)
|
||||
continue; // must have oposite signs
|
||||
continue; // must have opposite signs
|
||||
unsigned log2_a_n_k = pos_a_n_k ? m().log2(a_n_k) : m().mlog2(a_n_k);
|
||||
if (log2_a_n > log2_a_n_k)
|
||||
continue;
|
||||
|
@ -2103,7 +2103,7 @@ namespace upolynomial {
|
|||
frame_stack.pop_back();
|
||||
}
|
||||
|
||||
// Auxiliar method for isolating the roots of p in the interval (0, 1).
|
||||
// Auxiliary method for isolating the roots of p in the interval (0, 1).
|
||||
// The basic idea is to split the interval in: (0, 1/2) and (1/2, 1).
|
||||
// This is accomplished by analyzing the roots in the interval (0, 1) of the following polynomials.
|
||||
// p1(x) := 2^n * p(x/2) where n = sz-1
|
||||
|
@ -2574,10 +2574,10 @@ namespace upolynomial {
|
|||
We say an interval (a, b) of a polynomial p is ISOLATING if p has only one root in the
|
||||
interval (a, b).
|
||||
|
||||
We say an isolating interval (a, b) of a square free polynomial p is REFINEABLE if
|
||||
We say an isolating interval (a, b) of a square free polynomial p is REFINABLE if
|
||||
sign(p(a)) = -sign(p(b))
|
||||
|
||||
Not every isolating interval (a, b) of a square free polynomial p is refineable, because
|
||||
Not every isolating interval (a, b) of a square free polynomial p is refinable, because
|
||||
sign(p(a)) or sign(p(b)) may be zero.
|
||||
|
||||
Refinable intervals of square free polynomials are useful, because we can increase precision
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue