3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-09-07 02:11:08 +00:00

Fix some spelling errors (mostly in comments).

This commit is contained in:
Florian Pigorsch 2018-10-20 17:07:41 +02:00
parent 880ce12e2d
commit 326bf401b9
121 changed files with 205 additions and 205 deletions

View file

@ -362,7 +362,7 @@ namespace upolynomial {
set_size(sz-1, buffer);
}
// Divide coeffients of p by their GCD
// Divide coefficients of p by their GCD
void core_manager::normalize(unsigned sz, numeral * p) {
if (sz == 0)
return;
@ -395,7 +395,7 @@ namespace upolynomial {
}
}
// Divide coeffients of p by their GCD
// Divide coefficients of p by their GCD
void core_manager::normalize(numeral_vector & p) {
normalize(p.size(), p.c_ptr());
}
@ -568,7 +568,7 @@ namespace upolynomial {
SASSERT(!is_alias(p1, buffer)); SASSERT(!is_alias(p2, buffer));
unsigned d;
rem(sz1, p1, sz2, p2, d, buffer);
// We don't ned to flip the sign if d is odd and leading coefficient of p2 is negative
// We don't need to flip the sign if d is odd and leading coefficient of p2 is negative
if (d % 2 == 0 || (sz2 > 0 && m().is_pos(p2[sz2-1])))
neg(buffer.size(), buffer.c_ptr());
}
@ -2005,7 +2005,7 @@ namespace upolynomial {
continue;
bool pos_a_n_k = m().is_pos(a_n_k);
if (pos_a_n_k == pos_a_n)
continue; // must have oposite signs
continue; // must have opposite signs
unsigned log2_a_n_k = pos_a_n_k ? m().log2(a_n_k) : m().mlog2(a_n_k);
if (log2_a_n > log2_a_n_k)
continue;
@ -2103,7 +2103,7 @@ namespace upolynomial {
frame_stack.pop_back();
}
// Auxiliar method for isolating the roots of p in the interval (0, 1).
// Auxiliary method for isolating the roots of p in the interval (0, 1).
// The basic idea is to split the interval in: (0, 1/2) and (1/2, 1).
// This is accomplished by analyzing the roots in the interval (0, 1) of the following polynomials.
// p1(x) := 2^n * p(x/2) where n = sz-1
@ -2574,10 +2574,10 @@ namespace upolynomial {
We say an interval (a, b) of a polynomial p is ISOLATING if p has only one root in the
interval (a, b).
We say an isolating interval (a, b) of a square free polynomial p is REFINEABLE if
We say an isolating interval (a, b) of a square free polynomial p is REFINABLE if
sign(p(a)) = -sign(p(b))
Not every isolating interval (a, b) of a square free polynomial p is refineable, because
Not every isolating interval (a, b) of a square free polynomial p is refinable, because
sign(p(a)) or sign(p(b)) may be zero.
Refinable intervals of square free polynomials are useful, because we can increase precision