3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 19:35:50 +00:00

Fix some spelling errors (mostly in comments).

This commit is contained in:
Florian Pigorsch 2018-10-20 17:07:41 +02:00
parent 880ce12e2d
commit 326bf401b9
121 changed files with 205 additions and 205 deletions

View file

@ -948,7 +948,7 @@ namespace algebraic_numbers {
// zero is a root of p, and r_i is an isolating interval containing zero,
// then c is zero
reset(c);
TRACE("algebraic", tout << "reseting\nresult: "; display_root(tout, c); tout << "\n";);
TRACE("algebraic", tout << "resetting\nresult: "; display_root(tout, c); tout << "\n";);
return;
}
int zV = upm().sign_variations_at_zero(seq);
@ -1728,7 +1728,7 @@ namespace algebraic_numbers {
COMPARE_INTERVAL();
// if cell_a and cell_b, contain the same polynomial,
// and the intervals are overlaping, then they are
// and the intervals are overlapping, then they are
// the same root.
if (compare_p(cell_a, cell_b)) {
m_compare_poly_eq++;
@ -1825,7 +1825,7 @@ namespace algebraic_numbers {
// Here is an unexplored option for comparing numbers.
//
// The isolating intervals of a and b are still overlaping
// The isolating intervals of a and b are still overlapping
// Then we compute
// r(x) = Resultant(x - y1 + y2, p1(y1), p2(y2))
// where p1(y1) and p2(y2) are the polynomials defining a and b.

View file

@ -4052,7 +4052,7 @@ namespace polynomial {
// select a new random value in GF(p) that is not in vals, and store it in r
void peek_fresh(scoped_numeral_vector const & vals, unsigned p, scoped_numeral & r) {
SASSERT(vals.size() < p); // otherwise we cant keep the fresh value
SASSERT(vals.size() < p); // otherwise we can't keep the fresh value
unsigned sz = vals.size();
while (true) {
m().set(r, rand() % p);
@ -4149,7 +4149,7 @@ namespace polynomial {
TRACE("mgcd_detail", tout << "counter: " << counter << "\nidx: " << idx << "\nq: " << q << "\ndeg_q: " << deg_q << "\nmin_deg_q: " <<
min_deg_q << "\nnext_x: x" << vars[idx+1] << "\nmax_var(q): " << q_var << "\n";);
if (deg_q < min_deg_q) {
TRACE("mgcd_detail", tout << "reseting...\n";);
TRACE("mgcd_detail", tout << "resetting...\n";);
counter = 0;
min_deg_q = deg_q;
// start from scratch

View file

@ -131,12 +131,12 @@ namespace polynomial {
~factors();
/**
\brief Numer of distinct factors (not counting multiplicities).
\brief Number of distinct factors (not counting multiplicities).
*/
unsigned distinct_factors() const { return m_factors.size(); }
/**
\brief Numer of distinct factors (counting multiplicities).
\brief Number of distinct factors (counting multiplicities).
*/
unsigned total_factors() const { return m_total_factors; }

View file

@ -362,7 +362,7 @@ namespace upolynomial {
set_size(sz-1, buffer);
}
// Divide coeffients of p by their GCD
// Divide coefficients of p by their GCD
void core_manager::normalize(unsigned sz, numeral * p) {
if (sz == 0)
return;
@ -395,7 +395,7 @@ namespace upolynomial {
}
}
// Divide coeffients of p by their GCD
// Divide coefficients of p by their GCD
void core_manager::normalize(numeral_vector & p) {
normalize(p.size(), p.c_ptr());
}
@ -568,7 +568,7 @@ namespace upolynomial {
SASSERT(!is_alias(p1, buffer)); SASSERT(!is_alias(p2, buffer));
unsigned d;
rem(sz1, p1, sz2, p2, d, buffer);
// We don't ned to flip the sign if d is odd and leading coefficient of p2 is negative
// We don't need to flip the sign if d is odd and leading coefficient of p2 is negative
if (d % 2 == 0 || (sz2 > 0 && m().is_pos(p2[sz2-1])))
neg(buffer.size(), buffer.c_ptr());
}
@ -2005,7 +2005,7 @@ namespace upolynomial {
continue;
bool pos_a_n_k = m().is_pos(a_n_k);
if (pos_a_n_k == pos_a_n)
continue; // must have oposite signs
continue; // must have opposite signs
unsigned log2_a_n_k = pos_a_n_k ? m().log2(a_n_k) : m().mlog2(a_n_k);
if (log2_a_n > log2_a_n_k)
continue;
@ -2103,7 +2103,7 @@ namespace upolynomial {
frame_stack.pop_back();
}
// Auxiliar method for isolating the roots of p in the interval (0, 1).
// Auxiliary method for isolating the roots of p in the interval (0, 1).
// The basic idea is to split the interval in: (0, 1/2) and (1/2, 1).
// This is accomplished by analyzing the roots in the interval (0, 1) of the following polynomials.
// p1(x) := 2^n * p(x/2) where n = sz-1
@ -2574,10 +2574,10 @@ namespace upolynomial {
We say an interval (a, b) of a polynomial p is ISOLATING if p has only one root in the
interval (a, b).
We say an isolating interval (a, b) of a square free polynomial p is REFINEABLE if
We say an isolating interval (a, b) of a square free polynomial p is REFINABLE if
sign(p(a)) = -sign(p(b))
Not every isolating interval (a, b) of a square free polynomial p is refineable, because
Not every isolating interval (a, b) of a square free polynomial p is refinable, because
sign(p(a)) or sign(p(b)) may be zero.
Refinable intervals of square free polynomials are useful, because we can increase precision

View file

@ -256,12 +256,12 @@ namespace upolynomial {
void derivative(numeral_vector const & p, numeral_vector & d_p) { derivative(p.size(), p.c_ptr(), d_p); }
/**
\brief Divide coeffients of p by their GCD
\brief Divide coefficients of p by their GCD
*/
void normalize(unsigned sz, numeral * p);
/**
\brief Divide coeffients of p by their GCD
\brief Divide coefficients of p by their GCD
*/
void normalize(numeral_vector & p);

View file

@ -195,7 +195,7 @@ namespace upolynomial {
// the index we are currently trying to fix
int current_i = m_current_size - 1;
// the value we found as plausable (-1 we didn't find anything)
// the value we found as plausible (-1 we didn't find anything)
int current_value = -1;
if (remove_current) {