3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-21 07:54:42 +00:00

Lattice based refutation (#8211)

* add examples

* add lattice refutation solver class

* store partial order in vector

* capture partial order relations

* begin with the incremental reachability data structure

* implement data structure for incremental reachability

* fix bug in subset propagation

* add trace

* only propagate if new value was added

* begin implementing bitvector variant of reachability matrix

* fix path creation and cycle detection

* fix bug

* make conflict triggering more conservative

* check if theory vars are in bounds

* add cycle detection (including equality propagation)

* add examples

* remove example

* remove traces

* remove sln file
This commit is contained in:
lorenzwinkler1 2026-01-19 02:42:40 +01:00 committed by GitHub
parent ec3aafd51e
commit 31cbb4b144
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 789 additions and 2 deletions

View file

@ -59,6 +59,7 @@ z3_add_component(smt
theory_dense_diff_logic.cpp
theory_finite_set.cpp
theory_finite_set_size.cpp
theory_finite_set_lattice_refutation.cpp
theory_diff_logic.cpp
theory_dl.cpp
theory_dummy.cpp

View file

@ -28,7 +28,8 @@ namespace smt {
theory(ctx, ctx.get_manager().mk_family_id("finite_set")),
u(m),
m_axioms(m), m_rw(m), m_find(*this),
m_cardinality_solver(*this)
m_cardinality_solver(*this),
m_lattice_refutation(*this)
{
// Setup the add_clause callback for axioms
std::function<void(theory_axiom *)> add_clause_fn =
@ -227,8 +228,11 @@ namespace smt {
e = ctx.mk_enode(term, false, m.is_bool(term), true);
// Attach theory variable if this is a set
if (!is_attached_to_var(e))
if (!is_attached_to_var(e)){
ctx.attach_th_var(e, this, mk_var(e));
TRACE(finite_set, tout << "create_theory_var: " << e->get_th_var(get_id()) << " enode:" << e->get_expr() << "\n";);
}
// Assert immediate axioms
if (!ctx.relevancy())
@ -256,6 +260,10 @@ namespace smt {
ctx.push_trail(push_back_vector(m_eqs));
m_find.merge(v1, v2); // triggers merge_eh, which triggers incremental generation of theory axioms
}
m_lattice_refutation.add_equality(v1, v2);
// Check if Z3 has a boolean variable for it
TRACE(finite_set, tout << "new_eq_eh_r1: " << n1->get_root() << "r2: "<< n2->get_root() <<"\n";);
}
/**
@ -279,6 +287,7 @@ namespace smt {
ctx.push_trail(push_back_vector(m_diseqs));
m_axioms.extensionality_axiom(e1, e2);
}
m_lattice_refutation.add_disequality(v1,v2);
}
//
@ -405,6 +414,8 @@ namespace smt {
void theory_finite_set::assign_eh(bool_var v, bool is_true) {
TRACE(finite_set, tout << "assign_eh: v" << v << " is_true: " << is_true << "\n";);
expr *e = ctx.bool_var2expr(v);
TRACE(finite_set, tout << "assign_eh_expr: " << mk_pp(e, m) << "\n";);
// retrieve the watch list for clauses where e appears with opposite polarity
unsigned idx = 2 * e->get_id() + (is_true ? 1 : 0);
if (idx >= m_clauses.watch.size())

View file

@ -87,6 +87,7 @@ the theory solver uses a stand-alone satisfiability checker for Boolean algebras
#include "util/union_find.h"
#include "smt/smt_theory.h"
#include "smt/theory_finite_set_size.h"
#include "smt/theory_finite_set_lattice_refutation.h"
#include "model/finite_set_factory.h"
namespace smt {
@ -96,6 +97,7 @@ namespace smt {
using th_union_find = union_find<theory_finite_set>;
friend class theory_finite_set_test;
friend class theory_finite_set_size;
friend class theory_finite_set_lattice_refutation;
friend struct finite_set_value_proc;
struct var_data {
@ -139,6 +141,7 @@ namespace smt {
th_union_find m_find;
theory_clauses m_clauses;
theory_finite_set_size m_cardinality_solver;
theory_finite_set_lattice_refutation m_lattice_refutation;
finite_set_factory *m_factory = nullptr;
obj_map<enode, obj_map<enode, bool> *> m_set_members;
ptr_vector<func_decl> m_set_in_decls;

View file

@ -0,0 +1,307 @@
#include "smt/theory_finite_set_lattice_refutation.h"
#include "ast/rewriter/finite_set_axioms.h"
#include "smt/smt_theory.h"
#include "smt/theory_finite_set.h"
#include "smt/smt_context.h"
#include "iostream"
const int NUM_WORDS = 5;
// some example have shown, the introduction of large conflict clauses can severely slow down refutation
const int MAX_DECISION_LITERALS=10;
namespace smt {
reachability_matrix::reachability_matrix(context& ctx, theory_finite_set_lattice_refutation& t_lattice):
reachable(NUM_WORDS*NUM_WORDS*64, 0),
links(NUM_WORDS*NUM_WORDS*64*64, {nullptr, nullptr}),
link_dls(NUM_WORDS*NUM_WORDS*64*64, 0),
non_links(NUM_WORDS*NUM_WORDS*64),
non_link_justifications(NUM_WORDS*NUM_WORDS*64*64, {nullptr, nullptr}), largest_var(0), max_size(NUM_WORDS*64), ctx(ctx), t_lattice_refutation(t_lattice) {}
int reachability_matrix::get_max_var(){
return largest_var;
}
inline int reachability_matrix::get_word_index(int row, int col) const{
return (row * NUM_WORDS) + (col / 64);
};
inline uint64_t reachability_matrix::get_bitmask(int col) const{
return 1ull << (col%64);
};
bool reachability_matrix::is_reachability_forbidden(theory_var source, theory_var dest){
return non_links[get_word_index(source, dest)] & get_bitmask(dest);
}
bool reachability_matrix::in_bounds(theory_var source, theory_var dest){
return source >= 0 && dest >= 0 && source < max_size && dest<max_size;
}
bool reachability_matrix::is_reachable(theory_var source, theory_var dest){
return reachable[get_word_index(source,dest)] & get_bitmask(dest);
}
bool reachability_matrix::is_linked(theory_var source, theory_var dest){
return links[source*max_size+dest].first != nullptr;
}
bool reachability_matrix::bitwise_or_rows(int source_dest, int source){
bool changes = false;
for (int i = 0; i < NUM_WORDS; i++)
{
uint64_t old_value = reachable[source_dest*NUM_WORDS+i];
uint64_t new_value = reachable[source_dest*NUM_WORDS+i] | reachable[source*NUM_WORDS+i];
if(old_value == new_value){
continue;
}
ctx.push_trail(value_trail(reachable[source_dest*NUM_WORDS+i]));
reachable[source_dest*NUM_WORDS+i] = new_value;
changes = true;
check_reachability_conflict_word(source_dest, i);
}
return changes;
}
bool reachability_matrix::set_reachability(theory_var source, theory_var dest, enode_pair reachability_witness){
if (!in_bounds(source, dest) || is_reachable(source, dest)){
return false;
}
ctx.push_trail(value_trail(largest_var));
largest_var = std::max({largest_var, source, dest});
int word_idx = get_word_index(source, dest);
ctx.push_trail(value_trail(reachable[word_idx]));
reachable[word_idx] |= get_bitmask(dest);
ctx.push_trail(value_trail(links[source*max_size + dest]));
links[source*max_size+dest] = reachability_witness;
ctx.push_trail(value_trail(link_dls[source*max_size+dest]));
TRACE(finite_set, tout << "set_reachability(" << source << "," << dest <<"), dl: "<<ctx.get_scope_level());
link_dls[source*max_size+dest] = ctx.get_scope_level();
check_reachability_conflict(source, dest);
// update reachability of source
bitwise_or_rows(source, dest);
for (int i = 0; i <= largest_var; i++)
{ //update reachability of i to the nodes reachable from dest
if(!is_reachable(i, source) || i == source){
continue;
}
bitwise_or_rows(i, source);
}
if(conflict_word>=0 && conflict_row >=0){
for (int i = conflict_word*64; i < conflict_word*64+64; i++)
{
check_reachability_conflict(conflict_row, i);
}
conflict_word = -1;
conflict_row = -1;
}
return true;
}
bool reachability_matrix::set_non_reachability(theory_var source, theory_var dest, enode_pair non_reachability_witness){
if(is_reachability_forbidden(source, dest)){
return false;
}
ctx.push_trail(value_trail(largest_var));
largest_var = std::max({largest_var, source, dest});
ctx.push_trail(value_trail(non_links[get_word_index(source, dest)]));
non_links[get_word_index(source, dest)] |= get_bitmask(dest);
ctx.push_trail(value_trail(non_link_justifications[source*max_size+dest]));
non_link_justifications[source*max_size+dest] = non_reachability_witness;
check_reachability_conflict(source, dest);
return true;
}
theory_finite_set_lattice_refutation::theory_finite_set_lattice_refutation(theory_finite_set& th):
m(th.m), ctx(th.ctx), th(th), u(m), bs(m), m_assumption(m), reachability(th.ctx, *this) {}
// determines if the two enodes capture a subset relation:
// checks, whether intersect_expr = intersect(subset, return_value) for some return value
// otherwise return null
enode* theory_finite_set_lattice_refutation::get_superset(enode* subset, enode* intersect_expr){
expr* arg1 = nullptr, *arg2 = nullptr;
if(u.is_intersect(intersect_expr->get_expr(), arg1, arg2)){
if(arg1 == subset->get_expr()){
return ctx.get_enode(arg2);
}
if(arg2 == subset->get_expr()){
return ctx.get_enode(arg1);
}
}
return nullptr;
}
void theory_finite_set_lattice_refutation::add_equality(theory_var v1, theory_var v2){
auto n1 = th.get_enode(v1);
auto n2 = th.get_enode(v2);
enode* subset = n1;
enode* superset = get_superset(n1, n2);
if(superset == nullptr){
subset = n2;
superset = get_superset(n2, n1);
}
if(superset == nullptr){
add_set_equality(n1, n2);
return;
}
TRACE(finite_set, tout << "new_eq_intersection: " << enode_pp(subset, ctx) << "("<<th.get_th_var(subset)<<")" << "\\subseteq " << enode_pp(superset, ctx)<<"("<<th.get_th_var(superset)<<")");
add_subset(subset->get_th_var(th.get_id()), superset->get_th_var(th.get_id()), {n1, n2});
};
void reachability_matrix::get_path(theory_var source, theory_var dest, vector<enode_pair>& path, int& num_decisions){
SASSERT(is_reachable(source, dest));
vector<bool> visited(max_size, false);
if(source != dest){
visited[source] = true;
}
num_decisions = 0;
do{
bool success = false;
// TRACE(finite_set, tout << "get_path:source: "<<source);
for (int i = 0; i <= largest_var; i++)
{
if(!visited[i] && is_linked(source, i) && ((is_reachable(i, dest)) || i == dest)){
path.push_back(links[source*max_size+i]);
if(link_dls[source*max_size+i] != 0){
num_decisions +=1;
}
source = i;
visited[source] = true;
success = true;
break;
}
}
SASSERT(success);
}while(source != dest);
TRACE(finite_set, tout << "get_path_num_decisions: "<<num_decisions);
}
bool reachability_matrix::check_reachability_conflict(theory_var source, theory_var dest){
if(is_reachable(source,dest) && is_reachability_forbidden(source, dest)){
TRACE(finite_set, tout << "found_conflict1: "<<source<<" -> "<<dest);
vector<enode_pair> path;
int num_decisions;
get_path(source, dest, path, num_decisions);
// TRACE(finite_set, tout << "found path: "<<source<<" -> "<<dest<<" length: "<<path.size());
if(num_decisions <= MAX_DECISION_LITERALS){
TRACE(finite_set, tout << "num_decisions: "<<num_decisions<<" path_length: "<<path.size());
enode_pair diseq = non_link_justifications[source*max_size+dest];
t_lattice_refutation.trigger_conflict(path, diseq);
}
return true;
}
return false;
}
bool reachability_matrix::check_reachability_conflict_word(int row, int word){
if(reachable[row*NUM_WORDS+word] & non_links[row*NUM_WORDS+word]){
// somewhere in this word there is a conflict
conflict_row = row;
conflict_word = word;
return true;
}
return false;
}
void reachability_matrix::print_relations(){
TRACE(finite_set, tout << "largest_var: "<<largest_var);
for (size_t i = 0; i < max_size; i++)
{
for (size_t j = 0; j < max_size; j++)
{
if((reachable[get_word_index(i,j)]&get_bitmask(j)) || is_reachable(i,j)){
TRACE(finite_set, tout << "reachable: "<<i<<"->"<<j<<" :"<<is_reachable(i,j));
}
}
}
}
void theory_finite_set_lattice_refutation::trigger_conflict(vector<enode_pair> equalities, enode_pair clashing_disequality){
auto eq_expr = m.mk_not(m.mk_eq(clashing_disequality.first->get_expr(), clashing_disequality.second->get_expr()));
auto disequality_literal = ctx.get_literal(eq_expr);
auto j1 = ext_theory_conflict_justification(th.get_id(), ctx, 1, &disequality_literal, equalities.size(), equalities.data());
auto justification = ctx.mk_justification(j1);
TRACE(finite_set, tout << "conflict_literal: "<<disequality_literal);
TRACE(finite_set, tout << "setting_partial_order_conflict");
ctx.set_conflict(justification);
}
void theory_finite_set_lattice_refutation::add_disequality(theory_var v1, theory_var v2){
auto n1 = th.get_enode(v1);
auto n2 = th.get_enode(v2);
enode* subset = n1;
enode* superset = get_superset(n1, n2);
if(superset == nullptr){
subset = n2;
superset = get_superset(n2, n1);
}
if(superset == nullptr){
return;
}
TRACE(finite_set, tout << "new_diseq_intersection: " << enode_pp(subset, ctx) << "("<<th.get_th_var(subset)<<")" << "\\not\\subseteq " << enode_pp(superset, ctx)<<"("<<th.get_th_var(superset)<<")");
add_not_subset(subset->get_th_var(th.get_id()), superset->get_th_var(th.get_id()), {n1, n2});
};
void theory_finite_set_lattice_refutation::add_subset(theory_var subset_th, theory_var superset_th, enode_pair justifying_equality){
if(!reachability.in_bounds(subset_th, superset_th)){
return;
}
if (subset_th == null_theory_var || superset_th == null_theory_var){
return;
}
reachability.set_reachability(subset_th, superset_th, justifying_equality);
SASSERT(reachability.is_reachable(subset_th, superset_th));
if(reachability.is_reachable(superset_th, subset_th)){
TRACE(finite_set, tout << "cycle_detected: " << subset_th << " <--> " << superset_th);
vector<enode_pair> path;
int num_decisions;
reachability.get_path(subset_th, subset_th, path, num_decisions);
// we propagate the equality
// build justification to be used by all propagated equalities
auto j1 = ctx.mk_justification(ext_theory_conflict_justification(th.get_id(), ctx, 0, nullptr, path.size(), path.data()));
for (size_t i = 0; i < path.size()-1; i++)
{
auto set1 = path[i].first;
auto set2 = path[i+1].first;
ctx.add_eq(set1, set2, eq_justification(j1));
TRACE(finite_set, tout << "added_equality: " << set1 << " == " << set2);
}
}
};
void theory_finite_set_lattice_refutation::add_not_subset(theory_var subset_th, theory_var superset_th, enode_pair justifying_disequality){
if(!reachability.in_bounds(subset_th, superset_th)){
return;
}
if (subset_th == null_theory_var || superset_th == null_theory_var){
return;
}
reachability.set_non_reachability(subset_th, superset_th, justifying_disequality);
SASSERT(reachability.is_reachability_forbidden(subset_th, superset_th));
}
void theory_finite_set_lattice_refutation::add_set_equality(enode* set1, enode* set2){
theory_var set1_th = set1->get_th_var(th.get_id());
theory_var set2_th = set2->get_th_var(th.get_id());
if(!reachability.in_bounds(set1_th, set2_th)){
return;
}
reachability.set_reachability(set1_th, set2_th, {set1, set2});
SASSERT(reachability.is_reachable(set1_th, set2_th));
reachability.set_reachability(set2_th, set1_th, {set2, set1});
SASSERT(reachability.is_reachable(set2_th, set1_th));
}
}

View file

@ -0,0 +1,71 @@
#pragma once
#include "ast/finite_set_decl_plugin.h"
#include "ast/rewriter/finite_set_axioms.h"
#include "smt/smt_theory.h"
namespace smt {
class context;
class theory_finite_set;
class theory_finite_set_lattice_refutation;
class reachability_matrix{
std::vector<uint64_t> reachable;
std::vector<enode_pair> links;
std::vector<uint64_t> link_dls;
std::vector<uint64_t> non_links;
std::vector<enode_pair> non_link_justifications;
int largest_var;
int max_size;
context& ctx;
theory_finite_set_lattice_refutation& t_lattice_refutation;
int conflict_row = -1;
int conflict_word = -1;
// sets source_dest |= dest, and pushing the changed words to the trail
bool bitwise_or_rows(int source_dest, int source);
inline int get_word_index(int row, int col) const;
inline uint64_t get_bitmask(int col) const;
public:
void get_path(theory_var source, theory_var dest, vector<enode_pair>& path, int& num_decisions);
reachability_matrix(context& ctx, theory_finite_set_lattice_refutation& t_lattice);
bool in_bounds(theory_var source, theory_var dest);
bool is_reachable(theory_var source, theory_var dest);
bool is_reachability_forbidden(theory_var source, theory_var dest);
bool is_linked(theory_var source, theory_var dest);
bool check_reachability_conflict(theory_var source, theory_var dest);
bool check_reachability_conflict_word(int row, int word);
bool set_reachability(theory_var source, theory_var dest, enode_pair reachability_witness);
bool set_non_reachability(theory_var source, theory_var dest, enode_pair non_reachability_witness);
int get_max_var();
void print_relations();
};
class theory_finite_set_lattice_refutation {
ast_manager &m;
context &ctx;
theory_finite_set &th;
finite_set_util u;
expr_ref_vector bs;
expr_ref m_assumption;
reachability_matrix reachability;
enode* get_superset(enode*, enode*);
void add_subset(theory_var subset, theory_var superset, enode_pair justifying_equality);
void add_not_subset(theory_var subset, theory_var superset, enode_pair justifying_disequality);
void propagate_new_subset(theory_var v1, theory_var v2);
void add_set_equality(enode* set1, enode* set2);
public:
void trigger_conflict(vector<enode_pair> equalities, enode_pair clashing_disequality);
theory_finite_set_lattice_refutation(theory_finite_set &th);
void add_equality(theory_var v1, theory_var v2);
void add_disequality(theory_var v1, theory_var v2);
};
}