mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
Tune Grobner equations
\brief convert p == 0 into a solved form v == r, such that v has bounds [lo, oo) iff r has bounds [lo', oo) v has bounds (oo,hi] iff r has bounds (oo,hi'] The solved form allows the Grobner solver identify more bounds conflicts. A bad leading term can miss bounds conflicts. For example for x + y + z == 0 where x, y : [0, oo) and z : (oo,0] we prefer to solve z == -x - y instead of x == -z - y because the solution -z - y has neither an upper, nor a lower bound. The Grobner solver is augmented with a notion of a substitution that is applied before the solver is run.
This commit is contained in:
parent
f33c933241
commit
316ed778e0
|
@ -1308,7 +1308,7 @@ namespace dd {
|
|||
else if (l == lo() && h == hi())
|
||||
return *this;
|
||||
else
|
||||
return m.mk_var(v)*h + l;
|
||||
return m.mk_var(var())*h + l;
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -342,6 +342,7 @@ namespace dd {
|
|||
for (equation* e : m_solved) dealloc(e);
|
||||
for (equation* e : m_to_simplify) dealloc(e);
|
||||
for (equation* e : m_processed) dealloc(e);
|
||||
m_subst.reset();
|
||||
m_solved.reset();
|
||||
m_processed.reset();
|
||||
m_to_simplify.reset();
|
||||
|
@ -354,16 +355,39 @@ namespace dd {
|
|||
void solver::add(pdd const& p, u_dependency * dep) {
|
||||
if (p.is_zero()) return;
|
||||
equation * eq = alloc(equation, p, dep);
|
||||
if (check_conflict(*eq)) {
|
||||
if (check_conflict(*eq))
|
||||
return;
|
||||
}
|
||||
push_equation(to_simplify, eq);
|
||||
|
||||
if (!m_var2level.empty()) {
|
||||
if (!m_var2level.empty())
|
||||
m_levelp1 = std::max(m_var2level[p.var()]+1, m_levelp1);
|
||||
}
|
||||
update_stats_max_degree_and_size(*eq);
|
||||
}
|
||||
}
|
||||
|
||||
void solver::add_subst(unsigned v, pdd const& p, u_dependency* dep) {
|
||||
SASSERT(m_processed.empty());
|
||||
SASSERT(m_solved.empty());
|
||||
|
||||
m_subst.push_back({v, p, dep});
|
||||
|
||||
for (auto* e : m_to_simplify) {
|
||||
auto r = e->poly().subst_pdd(v, p);
|
||||
if (r == e->poly())
|
||||
continue;
|
||||
*e = m_dep_manager.mk_join(dep, e->dep());
|
||||
*e = r;
|
||||
}
|
||||
}
|
||||
|
||||
void solver::simplify(pdd& p, u_dependency*& d) {
|
||||
for (auto const& [v, q, d2] : m_subst) {
|
||||
pdd r = p.subst_pdd(v, q);
|
||||
if (r != p) {
|
||||
p = r;
|
||||
d = m_dep_manager.mk_join(d, d2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool solver::canceled() {
|
||||
return m_limit.is_canceled();
|
||||
|
@ -446,9 +470,24 @@ namespace dd {
|
|||
}
|
||||
|
||||
std::ostream& solver::display(std::ostream& out) const {
|
||||
out << "solved\n"; for (auto e : m_solved) display(out, *e);
|
||||
out << "processed\n"; for (auto e : m_processed) display(out, *e);
|
||||
out << "to_simplify\n"; for (auto e : m_to_simplify) display(out, *e);
|
||||
if (!m_solved.empty()) {
|
||||
out << "solved\n"; for (auto e : m_solved) display(out, *e);
|
||||
}
|
||||
if (!m_processed.empty()) {
|
||||
out << "processed\n"; for (auto e : m_processed) display(out, *e);
|
||||
}
|
||||
if (!m_to_simplify.empty()) {
|
||||
out << "to_simplify\n"; for (auto e : m_to_simplify) display(out, *e);
|
||||
}
|
||||
if (!m_subst.empty()) {
|
||||
out << "subst\n";
|
||||
for (auto const& [v, p, d] : m_subst) {
|
||||
out << "v" << v << " := " << p;
|
||||
if (m_print_dep)
|
||||
m_print_dep(d, out);
|
||||
out << "\n";
|
||||
}
|
||||
}
|
||||
return display_statistics(out);
|
||||
}
|
||||
|
||||
|
|
|
@ -118,6 +118,7 @@ private:
|
|||
equation_vector m_solved; // equations with solved variables, triangular
|
||||
equation_vector m_processed;
|
||||
equation_vector m_to_simplify;
|
||||
vector<std::tuple<unsigned, pdd, u_dependency*>> m_subst;
|
||||
mutable u_dependency_manager m_dep_manager;
|
||||
equation_vector m_all_eqs;
|
||||
equation* m_conflict;
|
||||
|
@ -136,6 +137,9 @@ public:
|
|||
void add(pdd const& p) { add(p, nullptr); }
|
||||
void add(pdd const& p, u_dependency * dep);
|
||||
|
||||
void simplify(pdd& p, u_dependency*& dep);
|
||||
void add_subst(unsigned v, pdd const& p, u_dependency* dep);
|
||||
|
||||
void simplify();
|
||||
void saturate();
|
||||
|
||||
|
|
|
@ -1716,7 +1716,7 @@ void core::configure_grobner() {
|
|||
for (lpvar k : emons()[j].vars())
|
||||
r *= pdd_expr(rational::one(), k, dep);
|
||||
r -= val_of_fixed_var_with_deps(j, dep);
|
||||
m_pdd_grobner.add(r, dep);
|
||||
add_eq_to_grobner(r, dep);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1880,6 +1880,76 @@ dd::pdd core::pdd_expr(const rational& c, lpvar j, u_dependency*& dep) {
|
|||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief convert p == 0 into a solved form v == r, such that
|
||||
v has bounds [lo, oo) iff r has bounds [lo', oo)
|
||||
v has bounds (oo,hi] iff r has bounds (oo,hi']
|
||||
|
||||
The solved form allows the Grobner solver identify more bounds conflicts.
|
||||
A bad leading term can miss bounds conflicts.
|
||||
For example for x + y + z == 0 where x, y : [0, oo) and z : (oo,0]
|
||||
we prefer to solve z == -x - y instead of x == -z - y
|
||||
because the solution -z - y has neither an upper, nor a lower bound.
|
||||
*/
|
||||
bool core::is_solved(dd::pdd const& p, unsigned& v, dd::pdd& r) {
|
||||
if (!p.is_linear())
|
||||
return false;
|
||||
r = p;
|
||||
unsigned num_lo = 0, num_hi = 0;
|
||||
unsigned lo = 0, hi = 0;
|
||||
rational lc, hc, c;
|
||||
while (!r.is_val()) {
|
||||
SASSERT(r.hi().is_val());
|
||||
v = r.var();
|
||||
rational val = r.hi().val();
|
||||
switch (m_lar_solver.get_column_type(v)) {
|
||||
case lp::column_type::lower_bound:
|
||||
if (val > 0) num_lo++, lo = v, lc = val; else num_hi++, hi = v, hc = val;
|
||||
break;
|
||||
case lp::column_type::upper_bound:
|
||||
if (val < 0) num_lo++, lo = v, lc = val; else num_hi++, hi = v, hc = val;
|
||||
break;
|
||||
case lp::column_type::fixed:
|
||||
case lp::column_type::boxed:
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
if (num_lo > 1 && num_hi > 1)
|
||||
return false;
|
||||
r = r.lo();
|
||||
}
|
||||
if (num_lo == 1 && num_hi > 1) {
|
||||
v = lo;
|
||||
c = lc;
|
||||
}
|
||||
else if (num_hi == 1 && num_lo > 1) {
|
||||
v = hi;
|
||||
c = hc;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
|
||||
r = c*m_pdd_manager.mk_var(v) - p;
|
||||
if (c != 1)
|
||||
r = r * (1/c);
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief add an equality to grobner solver, convert it to solved form if available.
|
||||
*/
|
||||
void core::add_eq_to_grobner(dd::pdd& p, u_dependency* dep) {
|
||||
unsigned v;
|
||||
dd::pdd q(m_pdd_manager);
|
||||
m_pdd_grobner.simplify(p, dep);
|
||||
if (is_solved(p, v, q))
|
||||
m_pdd_grobner.add_subst(v, q, dep);
|
||||
else
|
||||
m_pdd_grobner.add(p, dep);
|
||||
}
|
||||
|
||||
|
||||
void core::add_row_to_grobner(const vector<lp::row_cell<rational>> & row) {
|
||||
u_dependency *dep = nullptr;
|
||||
rational val;
|
||||
|
@ -1887,7 +1957,7 @@ void core::add_row_to_grobner(const vector<lp::row_cell<rational>> & row) {
|
|||
for (const auto &p : row)
|
||||
sum += pdd_expr(p.coeff(), p.var(), dep);
|
||||
TRACE("grobner", print_row(row, tout) << " " << sum << "\n");
|
||||
m_pdd_grobner.add(sum, dep);
|
||||
add_eq_to_grobner(sum, dep);
|
||||
}
|
||||
|
||||
|
||||
|
@ -1907,7 +1977,6 @@ void core::find_nl_cluster() {
|
|||
TRACE("grobner", tout << "vars in cluster: ";
|
||||
for (lpvar j : active_var_set()) tout << "j" << j << " "; tout << "\n";
|
||||
display_matrix_of_m_rows(tout);
|
||||
/*emons().display(tout << "emons\n");*/
|
||||
);
|
||||
}
|
||||
|
||||
|
|
|
@ -466,7 +466,9 @@ public:
|
|||
void display_matrix_of_m_rows(std::ostream & out) const;
|
||||
void set_active_vars_weights(nex_creator&);
|
||||
unsigned get_var_weight(lpvar) const;
|
||||
void add_row_to_grobner(const vector<lp::row_cell<rational>> & row);
|
||||
void add_row_to_grobner(const vector<lp::row_cell<rational>> & row);
|
||||
bool is_solved(dd::pdd const& p, unsigned& v, dd::pdd& r);
|
||||
void add_eq_to_grobner(dd::pdd& p, u_dependency* dep);
|
||||
bool check_pdd_eq(const dd::solver::equation*);
|
||||
const rational& val_of_fixed_var_with_deps(lpvar j, u_dependency*& dep);
|
||||
dd::pdd pdd_expr(const rational& c, lpvar j, u_dependency*&);
|
||||
|
|
Loading…
Reference in a new issue