3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 01:24:08 +00:00

started new PB solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-11-15 16:44:08 -08:00
parent 0acf331ed1
commit 314f03c12c
4 changed files with 822 additions and 2 deletions

View file

@ -63,11 +63,11 @@ def init_project_def():
add_lib('tab', ['muz', 'transforms'], 'muz/tab')
add_lib('bmc', ['muz', 'transforms'], 'muz/bmc')
add_lib('fp', ['muz', 'pdr', 'clp', 'tab', 'rel', 'bmc'], 'muz/fp')
add_lib('opt', ['smt'], 'opt')
add_lib('smtlogic_tactics', ['arith_tactics', 'bv_tactics', 'nlsat_tactic', 'smt_tactic', 'aig_tactic', 'fp', 'muz','qe'], 'tactic/smtlogics')
add_lib('ufbv_tactic', ['normal_forms', 'core_tactics', 'macros', 'smt_tactic', 'rewriter'], 'tactic/ufbv')
add_lib('portfolio', ['smtlogic_tactics', 'ufbv_tactic', 'fpa', 'aig_tactic', 'fp', 'qe','sls_tactic', 'subpaving_tactic'], 'tactic/portfolio')
add_lib('smtparser', ['portfolio'], 'parsers/smt')
add_lib('opt', ['smt', 'smtlogic_tactics'], 'opt')
API_files = ['z3_api.h', 'z3_algebraic.h', 'z3_polynomial.h', 'z3_rcf.h']
add_lib('api', ['portfolio', 'user_plugin', 'smtparser', 'realclosure'],
includes2install=['z3.h', 'z3_v1.h', 'z3_macros.h'] + API_files)

View file

@ -18,7 +18,7 @@ Notes:
--*/
#include "fu_malik.h"
#include "smtlogics/qfbv_tactic.h"
#include "qfbv_tactic.h"
#include "tactic2solver.h"
#include "goal.h"
#include "probe.h"

703
src/smt/theory_pb.cpp Normal file
View file

@ -0,0 +1,703 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
theory_pb.cpp
Abstract:
Pseudo-Boolean theory plugin.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-05
Notes:
--*/
#include "theory_pb.h"
#include "smt_context.h"
#include "ast_pp.h"
#include "sorting_network.h"
namespace smt {
theory_pb::theory_pb(ast_manager& m):
theory(m.mk_family_id("card")),
m_util(m)
{}
theory_pb::~theory_pb() {
reset_eh();
}
theory * theory_pb::mk_fresh(context * new_ctx) {
return alloc(theory_pb, new_ctx->get_manager());
}
bool theory_pb::internalize_atom(app * atom, bool gate_ctx) {
context& ctx = get_context();
ast_manager& m = get_manager();
unsigned num_args = atom->get_num_args();
SASSERT(m_util.is_at_most_k(atom) || m_util.is_le(atom));
if (ctx.b_internalized(atom)) {
return false;
}
m_stats.m_num_predicates++;
SASSERT(!ctx.b_internalized(atom));
bool_var abv = ctx.mk_bool_var(atom);
ineq* c = alloc(ineq, atom, literal(abv));
c->m_k = m_util.get_k(atom);
int& k = c->m_k;
arg_t& args = c->m_args;
// extract literals and coefficients.
for (unsigned i = 0; i < num_args; ++i) {
expr* arg = atom->get_arg(i);
literal l = compile_arg(arg);
int c = m_util.get_le_coeff(atom, i);
args.push_back(std::make_pair(l, c));
}
// turn W <= k into -W >= -k
for (unsigned i = 0; i < args.size(); ++i) {
args[i].second = -args[i].second;
}
k = -k;
lbool is_true = normalize_ineq(args, k);
literal lit(abv);
switch(is_true) {
case l_false:
lit = ~lit;
// fall-through
case l_true:
ctx.mk_th_axiom(get_id(), 1, &lit);
TRACE("card", tout << mk_pp(atom, m) << " := " << lit << "\n";);
dealloc(c);
return true;
case l_undef:
break;
}
// TBD: special cases: args.size() == 1
// maximal coefficient:
int& max_coeff = c->m_max_coeff;
max_coeff = 0;
for (unsigned i = 0; i < args.size(); ++i) {
max_coeff = std::max(max_coeff, args[i].second);
}
// compute watch literals:
int sum = 0;
unsigned& wsz = c->m_watch_sz;
wsz = 0;
while (sum < k + max_coeff && wsz < args.size()) {
sum += args[wsz].second;
wsz++;
}
for (unsigned i = 0; i < wsz; ++i) {
add_watch(args[i].first, c);
}
// pre-compile threshold for cardinality
bool is_cardinality = true;
for (unsigned i = 0; is_cardinality && i < args.size(); ++i) {
is_cardinality = (args[i].second == 1);
}
if (is_cardinality) {
unsigned log = 1, n = 1;
while (n <= args.size()) {
++log;
n *= 2;
}
c->m_compilation_threshold = args.size()*log;
TRACE("card", tout << "threshold:" << (args.size()*log) << "\n";);
}
else {
c->m_compilation_threshold = UINT_MAX;
}
m_ineqs.insert(abv, c);
m_ineqs_trail.push_back(abv);
TRACE("card", display(tout, *c););
return true;
}
literal theory_pb::compile_arg(expr* arg) {
context& ctx = get_context();
ast_manager& m = get_manager();
if (!ctx.b_internalized(arg)) {
ctx.internalize(arg, false);
}
bool_var bv;
bool has_bv = false;
bool negate = m.is_not(arg, arg);
if (ctx.b_internalized(arg)) {
bv = ctx.get_bool_var(arg);
if (null_theory_var == ctx.get_var_theory(bv)) {
ctx.set_var_theory(bv, get_id());
}
has_bv = (ctx.get_var_theory(bv) == get_id());
}
// pre-processing should better remove negations under cardinality.
// assumes relevancy level = 2 or 0.
if (!has_bv) {
expr_ref tmp(m), fml(m);
tmp = m.mk_fresh_const("card_proxy",m.mk_bool_sort());
fml = m.mk_iff(tmp, arg);
ctx.internalize(fml, false);
SASSERT(ctx.b_internalized(tmp));
bv = ctx.get_bool_var(tmp);
SASSERT(null_theory_var == ctx.get_var_theory(bv));
ctx.set_var_theory(bv, get_id());
literal lit(ctx.get_bool_var(fml));
ctx.mk_th_axiom(get_id(), 1, &lit);
ctx.mark_as_relevant(tmp);
}
return negate?~literal(bv):literal(bv);
}
void theory_pb::add_watch(literal l, ineq* c) {
unsigned idx = l.index();
ptr_vector<ineq>* ineqs;
if (!m_watch.find(idx, ineqs)) {
ineqs = alloc(ptr_vector<ineq>);
m_watch.insert(idx, ineqs);
}
ineqs->push_back(c);
}
static unsigned gcd(unsigned a, unsigned b) {
while (a != b) {
if (a == 0) return b;
if (b == 0) return a;
SASSERT(a != 0 && b != 0);
if (a < b) {
b %= a;
}
else {
a %= b;
}
}
return a;
}
lbool theory_pb::normalize_ineq(arg_t& args, int& k) {
// normalize first all literals to be positive:
// then we can can compare them more easily.
for (unsigned i = 0; i < args.size(); ++i) {
if (args[i].first.sign()) {
args[i].first.neg();
k -= args[i].second;
args[i].second = -args[i].second;
}
}
// sort and coalesce arguments:
std::sort(args.begin(), args.end());
for (unsigned i = 0; i + 1 < args.size(); ++i) {
if (args[i].first == args[i+1].first) {
args[i].second += args[i+1].second;
for (unsigned j = i+1; j + 1 < args.size(); ++j) {
args[j] = args[j+1];
}
args.resize(args.size()-1);
}
if (args[i].second == 0) {
for (unsigned j = i; j + 1 < args.size(); ++j) {
args[j] = args[j+1];
}
args.resize(args.size()-1);
}
}
//
// Ensure all coefficients are positive:
// c*l + y >= k
// <=>
// c*(1-~l) + y >= k
// <=>
// c - c*~l + y >= k
// <=>
// -c*~l + y >= k - c
//
unsigned sum = 0;
for (unsigned i = 0; i < args.size(); ++i) {
int c = args[i].second;
if (c < 0) {
args[i].second = -c;
args[i].first = ~args[i].first;
k -= c;
}
sum += args[i].second;
}
// detect tautologies:
if (k <= 0) {
args.reset();
return l_true;
}
// detect infeasible constraints:
if (static_cast<int>(sum) < k) {
args.reset();
return l_false;
}
// Ensure the largest coefficient is not larger than k:
for (unsigned i = 0; i < args.size(); ++i) {
int c = args[i].second;
if (c > k) {
args[i].second = k;
}
}
SASSERT(!args.empty());
// apply cutting plane reduction:
unsigned g = 0;
for (unsigned i = 0; g != 1 && i < args.size(); ++i) {
int c = args[i].second;
if (c != k) {
g = gcd(g, c);
}
}
if (g == 0) {
// all coefficients are equal to k.
for (unsigned i = 0; i < args.size(); ++i) {
SASSERT(args[i].second == k);
args[i].second = 1;
}
k = 1;
}
else if (g > 1) {
//
// Example 5x + 5y + 2z + 2u >= 5
// becomes 3x + 3y + z + u >= 3
//
int k_new = k / g; // k_new is the ceiling of k / g.
if (gcd(k, g) != g) {
k_new++;
}
for (unsigned i = 0; i < args.size(); ++i) {
int c = args[i].second;
if (c == k) {
c = k_new;
}
else {
c = c / g;
}
args[i].second = c;
}
k = k_new;
}
return l_undef;
}
void theory_pb::collect_statistics(::statistics& st) const {
st.update("pb axioms", m_stats.m_num_axioms);
st.update("pb propagations", m_stats.m_num_propagations);
st.update("pb predicates", m_stats.m_num_predicates);
st.update("pb compilations", m_stats.m_num_compiles);
}
void theory_pb::reset_eh() {
// m_watch;
u_map<ptr_vector<ineq>*>::iterator it = m_watch.begin(), end = m_watch.end();
for (; it != end; ++it) {
dealloc(it->m_value);
}
u_map<ineq*>::iterator itc = m_ineqs.begin(), endc = m_ineqs.end();
for (; itc != endc; ++itc) {
dealloc(itc->m_value);
}
m_watch.reset();
m_ineqs.reset();
m_ineqs_trail.reset();
m_ineqs_lim.reset();
m_stats.reset();
}
#if 0
void theory_pb::propagate_assignment(ineq& c) {
if (c.m_compiled) {
return;
}
if (should_compile(c)) {
compile_ineq(c);
return;
}
context& ctx = get_context();
ast_manager& m = get_manager();
arg_t const& args = c.m_args;
bool_var abv = c.m_bv;
int min = c.m_current_min;
int max = c.m_current_max;
int k = c.m_k;
TRACE("card",
tout << mk_pp(c.m_app, m) << " min: "
<< min << " max: " << max << "\n";);
//
// if min > k && abv != l_false -> force abv false
// if max <= k && abv != l_true -> force abv true
// if min == k && abv == l_true -> force positive
// unassigned literals false
// if max == k + 1 && abv == l_false -> force negative
// unassigned literals false
//
lbool aval = ctx.get_assignment(abv);
if (min > k && aval != l_false) {
literal_vector& lits = get_lits();
int curr_min = accumulate_min(lits, c);
SASSERT(curr_min > k);
add_assign(c, lits, ~literal(abv));
}
else if (max <= k && aval != l_true) {
literal_vector& lits = get_lits();
int curr_max = accumulate_max(lits, c);
SASSERT(curr_max <= k);
add_assign(c, lits, literal(abv));
}
else if (min <= k && k < min + get_max_delta(c) && aval == l_true) {
literal_vector& lits = get_lits();
lits.push_back(~literal(abv));
int curr_min = accumulate_min(lits, c);
if (curr_min > k) {
add_clause(c, lits);
}
else {
for (unsigned i = 0; i < args.size(); ++i) {
bool_var bv = args[i].first;
int inc = args[i].second;
if (curr_min + inc > k && inc_min(inc, ctx.get_assignment(bv)) == l_undef) {
add_assign(c, lits, literal(bv, inc > 0));
}
}
}
}
else if (max - get_max_delta(c) <= k && k < max && aval == l_false) {
literal_vector& lits = get_lits();
lits.push_back(literal(abv));
int curr_max = accumulate_max(lits, c);
if (curr_max <= k) {
add_clause(c, lits);
}
else {
for (unsigned i = 0; i < args.size(); ++i) {
bool_var bv = args[i].first;
int inc = args[i].second;
if (curr_max - abs(inc) <= k && dec_max(inc, ctx.get_assignment(bv)) == l_undef) {
add_assign(c, lits, literal(bv, inc < 0));
}
}
}
}
else if (aval == l_true) {
SASSERT(min < k);
literal_vector& lits = get_lits();
int curr_min = accumulate_min(lits, c);
bool all_inc = curr_min == k;
unsigned num_incs = 0;
for (unsigned i = 0; all_inc && i < args.size(); ++i) {
bool_var bv = args[i].first;
int inc = args[i].second;
if (inc_min(inc, ctx.get_assignment(bv)) == l_undef) {
all_inc = inc + min > k;
num_incs++;
}
}
if (num_incs > 0) {
std::cout << "missed T propgations " << num_incs << "\n";
}
}
else if (aval == l_false) {
literal_vector& lits = get_lits();
lits.push_back(literal(abv));
int curr_max = accumulate_max(lits, c);
bool all_dec = curr_max > k;
unsigned num_decs = 0;
for (unsigned i = 0; all_dec && i < args.size(); ++i) {
bool_var bv = args[i].first;
int inc = args[i].second;
if (dec_max(inc, ctx.get_assignment(bv)) == l_undef) {
all_dec = inc + max <= k;
num_decs++;
}
}
if (num_decs > 0) {
std::cout << "missed F propgations " << num_decs << "\n";
}
}
}
#endif
void theory_pb::assign_eh(bool_var v, bool is_true) {
context& ctx = get_context();
ast_manager& m = get_manager();
ptr_vector<ineq>* ineqs = 0;
ineq* c = 0;
TRACE("card", tout << "assign: " << mk_pp(ctx.bool_var2expr(v), m) << " <- " << is_true << "\n";);
if (m_watch.find(v, ineqs)) {
for (unsigned i = 0; i < ineqs->size(); ++i) {
// TBD: assign_use(v, is_true, *(*ineqs)[i]);
}
}
if (m_ineqs.find(v, c)) {
// TBD: propagate_assignment(*c);
}
}
struct theory_pb::sort_expr {
theory_pb& th;
context& ctx;
ast_manager& m;
expr_ref_vector m_trail;
sort_expr(theory_pb& th):
th(th),
ctx(th.get_context()),
m(th.get_manager()),
m_trail(m) {}
typedef expr* T;
typedef expr_ref_vector vector;
T mk_ite(T a, T b, T c) {
if (m.is_true(a)) {
return b;
}
if (m.is_false(a)) {
return c;
}
if (b == c) {
return b;
}
m_trail.push_back(m.mk_ite(a, b, c));
return m_trail.back();
}
T mk_le(T a, T b) {
return mk_ite(b, a, m.mk_true());
}
T mk_default() {
return m.mk_false();
}
literal internalize(ineq& ca, expr* e) {
obj_map<expr, literal> cache;
for (unsigned i = 0; i < ca.m_args.size(); ++i) {
cache.insert(ca.m_app->get_arg(i), literal(ca.m_args[i].first));
}
cache.insert(m.mk_false(), false_literal);
cache.insert(m.mk_true(), true_literal);
ptr_vector<expr> todo;
todo.push_back(e);
expr *a, *b, *c;
literal la, lb, lc;
while (!todo.empty()) {
expr* t = todo.back();
if (cache.contains(t)) {
todo.pop_back();
continue;
}
VERIFY(m.is_ite(t, a, b, c));
unsigned sz = todo.size();
if (!cache.find(a, la)) {
todo.push_back(a);
}
if (!cache.find(b, lb)) {
todo.push_back(b);
}
if (!cache.find(c, lc)) {
todo.push_back(c);
}
if (sz != todo.size()) {
continue;
}
todo.pop_back();
cache.insert(t, mk_ite(ca, t, la, lb, lc));
}
return cache.find(e);
}
literal mk_ite(ineq& ca, expr* t, literal a, literal b, literal c) {
if (a == true_literal) {
return b;
}
else if (a == false_literal) {
return c;
}
else if (b == true_literal && c == false_literal) {
return a;
}
else if (b == false_literal && c == true_literal) {
return ~a;
}
else if (b == c) {
return b;
}
else {
literal l;
if (ctx.b_internalized(t)) {
l = literal(ctx.get_bool_var(t));
}
else {
l = literal(ctx.mk_bool_var(t));
}
add_clause(~l, ~a, b);
add_clause(~l, a, c);
add_clause(l, ~a, ~b);
add_clause(l, a, ~c);
TRACE("card", tout << mk_pp(t, m) << " ::= (if ";
ctx.display_detailed_literal(tout, a);
ctx.display_detailed_literal(tout << " ", b);
ctx.display_detailed_literal(tout << " ", c);
tout << ")\n";);
return l;
}
}
// auxiliary clauses don't get garbage collected.
void add_clause(literal a, literal b, literal c) {
literal_vector& lits = th.get_lits();
if (a != null_literal) lits.push_back(a);
if (b != null_literal) lits.push_back(b);
if (c != null_literal) lits.push_back(c);
justification* js = 0;
TRACE("card",
ctx.display_literals_verbose(tout, lits.size(), lits.c_ptr()); tout << "\n";);
ctx.mk_clause(lits.size(), lits.c_ptr(), js, CLS_AUX, 0);
}
void add_clause(literal l1, literal l2) {
add_clause(l1, l2, null_literal);
}
};
bool theory_pb::should_compile(ineq& c) {
#if 1
return false;
#else
return c.m_num_propagations > c.m_compilation_threshold;
#endif
}
void theory_pb::compile_ineq(ineq& c) {
++m_stats.m_num_compiles;
ast_manager& m = get_manager();
context& ctx = get_context();
app* a = c.m_app;
SASSERT(m_util.is_at_most_k(a));
literal atmostk;
int k = m_util.get_k(a);
unsigned num_args = a->get_num_args();
sort_expr se(*this);
if (k >= static_cast<int>(num_args)) {
atmostk = true_literal;
}
else if (k < 0) {
atmostk = false_literal;
}
else {
sorting_network<sort_expr> sn(se);
expr_ref_vector in(m), out(m);
for (unsigned i = 0; i < num_args; ++i) {
in.push_back(c.m_app->get_arg(i));
}
sn(in, out);
atmostk = ~se.internalize(c, out[k].get()); // k'th output is 0.
TRACE("card", tout << "~atmost: " << mk_pp(out[k].get(), m) << "\n";);
}
literal thl = c.m_lit;
se.add_clause(~thl, atmostk);
se.add_clause(thl, ~atmostk);
TRACE("card", tout << mk_pp(a, m) << "\n";);
// auxiliary clauses get removed when popping scopes.
// we have to recompile the circuit after back-tracking.
ctx.push_trail(value_trail<context, bool>(c.m_compiled));
c.m_compiled = true;
}
void theory_pb::init_search_eh() {
}
void theory_pb::push_scope_eh() {
m_ineqs_lim.push_back(m_ineqs_trail.size());
}
void theory_pb::pop_scope_eh(unsigned num_scopes) {
unsigned sz = m_ineqs_lim[m_ineqs_lim.size()-num_scopes];
while (m_ineqs_trail.size() > sz) {
SASSERT(m_ineqs.contains(m_ineqs_trail.back()));
m_ineqs.remove(m_ineqs_trail.back());
m_ineqs_trail.pop_back();
}
m_ineqs_lim.resize(m_ineqs_lim.size()-num_scopes);
}
std::ostream& theory_pb::display(std::ostream& out, ineq& c) const {
ast_manager& m = get_manager();
out << mk_pp(c.m_app, m) << "\n";
for (unsigned i = 0; i < c.m_args.size(); ++i) {
out << c.m_args[i].second << "*" << c.m_args[i].first;
if (i + 1 < c.m_args.size()) {
out << " + ";
}
}
out << " >= " << c.m_k << "\n"
<< "propagations: " << c.m_num_propagations
<< " max_coeff: " << c.m_max_coeff
<< " watch size: " << c.m_watch_sz
<< "\n";
return out;
}
literal_vector& theory_pb::get_lits() {
m_literals.reset();
return m_literals;
}
void theory_pb::add_assign(ineq& c, literal_vector const& lits, literal l) {
literal_vector ls;
++c.m_num_propagations;
m_stats.m_num_propagations++;
context& ctx = get_context();
for (unsigned i = 0; i < lits.size(); ++i) {
ls.push_back(~lits[i]);
}
ctx.assign(l, ctx.mk_justification(theory_propagation_justification(get_id(), ctx.get_region(), ls.size(), ls.c_ptr(), l)));
}
void theory_pb::add_clause(ineq& c, literal_vector const& lits) {
++c.m_num_propagations;
m_stats.m_num_axioms++;
context& ctx = get_context();
TRACE("card", tout << "#prop:" << c.m_num_propagations << " - "; ctx.display_literals_verbose(tout, lits.size(), lits.c_ptr()); tout << "\n";);
justification* js = 0;
ctx.mk_clause(lits.size(), lits.c_ptr(), js, CLS_AUX_LEMMA, 0);
IF_VERBOSE(2, ctx.display_literals_verbose(verbose_stream(),
lits.size(), lits.c_ptr());
verbose_stream() << "\n";);
// ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
}
}

117
src/smt/theory_pb.h Normal file
View file

@ -0,0 +1,117 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
theory_pb.h
Abstract:
Cardinality theory plugin.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-05
Notes:
This custom theory handles cardinality constraints
It performs unit propagation and switches to creating
sorting circuits if it keeps having to propagate (create new clauses).
--*/
#include "smt_theory.h"
#include "card_decl_plugin.h"
#include "smt_clause.h"
namespace smt {
class theory_pb : public theory {
struct sort_expr;
typedef svector<std::pair<literal, int> > arg_t;
struct stats {
unsigned m_num_axioms;
unsigned m_num_propagations;
unsigned m_num_predicates;
unsigned m_num_compiles;
void reset() { memset(this, 0, sizeof(*this)); }
stats() { reset(); }
};
struct ineq {
app* m_app;
literal m_lit; // literal repesenting predicate
arg_t m_args; // encode args[0]*coeffs[0]+...+args[n-1]*coeffs[n-1] >= m_k;
int m_k; // invariants: m_k > 0, coeffs[i] > 0
// Watch the first few positions until the sum satisfies:
// sum coeffs[i] >= m_lower + max_coeff
int m_max_coeff; // maximal coefficient.
unsigned m_watch_sz; // number of literals being watched.
unsigned m_num_propagations;
unsigned m_compilation_threshold;
bool m_compiled;
ineq(app* a, literal l):
m_app(a),
m_lit(l),
m_num_propagations(0),
m_compilation_threshold(UINT_MAX),
m_compiled(false)
{}
};
typedef ptr_vector<ineq> watch_list;
u_map<watch_list*> m_watch; // per literal.
u_map<ineq*> m_ineqs; // per inequality.
unsigned_vector m_ineqs_trail;
unsigned_vector m_ineqs_lim;
literal_vector m_literals; // temporary vector
card_util m_util;
stats m_stats;
// internalize_atom:
lbool normalize_ineq(arg_t& args, int& k);
literal compile_arg(expr* arg);
void add_watch(literal l, ineq* c);
std::ostream& display(std::ostream& out, ineq& c) const;
void add_clause(ineq& c, literal_vector const& lits);
void add_assign(ineq& c, literal_vector const& lits, literal l);
literal_vector& get_lits();
//
// Utilities to compile cardinality
// constraints into a sorting network.
//
void compile_ineq(ineq& c);
bool should_compile(ineq& c);
unsigned get_compilation_threshold(ineq& c);
public:
theory_pb(ast_manager& m);
virtual ~theory_pb();
virtual theory * mk_fresh(context * new_ctx);
virtual bool internalize_atom(app * atom, bool gate_ctx);
virtual bool internalize_term(app * term) { UNREACHABLE(); return false; }
virtual void new_eq_eh(theory_var v1, theory_var v2) { }
virtual void new_diseq_eh(theory_var v1, theory_var v2) { }
virtual bool use_diseqs() const { return false; }
virtual bool build_models() const { return false; }
virtual final_check_status final_check_eh() { return FC_DONE; }
virtual void reset_eh();
virtual void assign_eh(bool_var v, bool is_true);
virtual void init_search_eh();
virtual void push_scope_eh();
virtual void pop_scope_eh(unsigned num_scopes);
virtual void collect_statistics(::statistics & st) const;
};
};