mirror of
https://github.com/Z3Prover/z3
synced 2025-04-23 17:15:31 +00:00
Fix typos.
This commit is contained in:
parent
57318bab5b
commit
3149d7f7a4
7 changed files with 24 additions and 24 deletions
|
@ -154,7 +154,7 @@ namespace realclosure {
|
|||
|
||||
struct value {
|
||||
unsigned m_ref_count; //!< Reference counter
|
||||
bool m_rational; //!< True if the value is represented as an abitrary precision rational value.
|
||||
bool m_rational; //!< True if the value is represented as an arbitrary precision rational value.
|
||||
mpbqi m_interval; //!< approximation as an interval with binary rational end-points
|
||||
// When performing an operation OP, we may have to make the width (upper - lower) of m_interval very small.
|
||||
// The precision (i.e., a small interval) needed for executing OP is usually unnecessary for subsequent operations,
|
||||
|
@ -283,7 +283,7 @@ namespace realclosure {
|
|||
struct algebraic : public extension {
|
||||
polynomial m_p;
|
||||
mpbqi m_iso_interval;
|
||||
sign_det * m_sign_det; //!< != 0 if m_iso_interval constains more than one root of m_p.
|
||||
sign_det * m_sign_det; //!< != 0 if m_iso_interval constrains more than one root of m_p.
|
||||
unsigned m_sc_idx; //!< != UINT_MAX if m_sign_det != 0, in this case m_sc_idx < m_sign_det->m_sign_conditions.size()
|
||||
bool m_depends_on_infinitesimals; //!< True if the polynomial p depends on infinitesimal extensions.
|
||||
|
||||
|
@ -1741,7 +1741,7 @@ namespace realclosure {
|
|||
\brief In the sign determination algorithm main loop, we keep processing polynomials q,
|
||||
and checking whether they discriminate the roots of the target polynomial.
|
||||
|
||||
The vectors sc_cardinalities contains the cardinalites of the new realizable sign conditions.
|
||||
The vectors sc_cardinalities contains the cardinalities of the new realizable sign conditions.
|
||||
That is, we started we a sequence of sign conditions
|
||||
sc_1, ..., sc_n,
|
||||
If q2_used is true, then we expanded this sequence as
|
||||
|
@ -1750,7 +1750,7 @@ namespace realclosure {
|
|||
|
||||
Thus, q is useful (i.e., it is a discriminator for the roots of p) IF
|
||||
If !q2_used, then There is an i s.t. sc_cardinalities[2*i] > 0 && sc_cardinalities[2*i] > 0
|
||||
If q2_used, then There is an i s.t. AtLeatTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
|
||||
If q2_used, then There is an i s.t. AtLeastTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
|
||||
*/
|
||||
bool keep_new_sc_assignment(unsigned sz, int const * sc_cardinalities, bool q2_used) {
|
||||
SASSERT(q2_used || sz % 2 == 0);
|
||||
|
@ -2038,7 +2038,7 @@ namespace realclosure {
|
|||
// We should keep q only if it discriminated something.
|
||||
// That is,
|
||||
// If !use_q2, then There is an i s.t. sc_cardinalities[2*i] > 0 && sc_cardinalities[2*i] > 0
|
||||
// If use_q2, then There is an i s.t. AtLeatTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
|
||||
// If use_q2, then There is an i s.t. AtLeastTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
|
||||
if (!keep_new_sc_assignment(sc_cardinalities.size(), sc_cardinalities.c_ptr(), use_q2)) {
|
||||
// skip q since it did not reduced the cardinality of the existing sign conditions.
|
||||
continue;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue