3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 18:05:21 +00:00

Fix typos.

This commit is contained in:
Bruce Mitchener 2018-11-30 22:19:30 +07:00
parent 57318bab5b
commit 3149d7f7a4
7 changed files with 24 additions and 24 deletions

View file

@ -682,7 +682,7 @@ namespace datatype {
/**
\brief Return true if the inductive datatype is well-founded.
Pre-condition: The given argument constains the parameters of an inductive datatype.
Pre-condition: The given argument constrains the parameters of an inductive datatype.
*/
bool util::is_well_founded(unsigned num_types, sort* const* sorts) {
buffer<bool> well_founded(num_types, false);

View file

@ -154,7 +154,7 @@ namespace realclosure {
struct value {
unsigned m_ref_count; //!< Reference counter
bool m_rational; //!< True if the value is represented as an abitrary precision rational value.
bool m_rational; //!< True if the value is represented as an arbitrary precision rational value.
mpbqi m_interval; //!< approximation as an interval with binary rational end-points
// When performing an operation OP, we may have to make the width (upper - lower) of m_interval very small.
// The precision (i.e., a small interval) needed for executing OP is usually unnecessary for subsequent operations,
@ -283,7 +283,7 @@ namespace realclosure {
struct algebraic : public extension {
polynomial m_p;
mpbqi m_iso_interval;
sign_det * m_sign_det; //!< != 0 if m_iso_interval constains more than one root of m_p.
sign_det * m_sign_det; //!< != 0 if m_iso_interval constrains more than one root of m_p.
unsigned m_sc_idx; //!< != UINT_MAX if m_sign_det != 0, in this case m_sc_idx < m_sign_det->m_sign_conditions.size()
bool m_depends_on_infinitesimals; //!< True if the polynomial p depends on infinitesimal extensions.
@ -1741,7 +1741,7 @@ namespace realclosure {
\brief In the sign determination algorithm main loop, we keep processing polynomials q,
and checking whether they discriminate the roots of the target polynomial.
The vectors sc_cardinalities contains the cardinalites of the new realizable sign conditions.
The vectors sc_cardinalities contains the cardinalities of the new realizable sign conditions.
That is, we started we a sequence of sign conditions
sc_1, ..., sc_n,
If q2_used is true, then we expanded this sequence as
@ -1750,7 +1750,7 @@ namespace realclosure {
Thus, q is useful (i.e., it is a discriminator for the roots of p) IF
If !q2_used, then There is an i s.t. sc_cardinalities[2*i] > 0 && sc_cardinalities[2*i] > 0
If q2_used, then There is an i s.t. AtLeatTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
If q2_used, then There is an i s.t. AtLeastTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
*/
bool keep_new_sc_assignment(unsigned sz, int const * sc_cardinalities, bool q2_used) {
SASSERT(q2_used || sz % 2 == 0);
@ -2038,7 +2038,7 @@ namespace realclosure {
// We should keep q only if it discriminated something.
// That is,
// If !use_q2, then There is an i s.t. sc_cardinalities[2*i] > 0 && sc_cardinalities[2*i] > 0
// If use_q2, then There is an i s.t. AtLeatTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
// If use_q2, then There is an i s.t. AtLeastTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
if (!keep_new_sc_assignment(sc_cardinalities.size(), sc_cardinalities.c_ptr(), use_q2)) {
// skip q since it did not reduced the cardinality of the existing sign conditions.
continue;

View file

@ -105,7 +105,7 @@ class sat_tactic : public tactic {
else {
// get simplified problem.
#if 0
IF_VERBOSE(TACTIC_VERBOSITY_LVL, verbose_stream() << "\"formula constains interpreted atoms, recovering formula from sat solver...\"\n";);
IF_VERBOSE(TACTIC_VERBOSITY_LVL, verbose_stream() << "\"formula constrains interpreted atoms, recovering formula from sat solver...\"\n";);
#endif
m_solver.pop_to_base_level();
ref<sat2goal::mc> mc;

View file

@ -209,7 +209,7 @@ namespace smt {
static void check_no_arithmetic(static_features const & st, char const * logic) {
if (st.m_num_arith_ineqs > 0 || st.m_num_arith_terms > 0 || st.m_num_arith_eqs > 0)
throw default_exception("Benchmark constains arithmetic, but specified logic does not support it.");
throw default_exception("Benchmark constrains arithmetic, but specified logic does not support it.");
}
void setup::setup_QF_UF() {

View file

@ -9424,15 +9424,15 @@ namespace smt {
if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) {
freeVarMap[var] = 1;
} else {
int lrConstainted = 0;
int lrConstrained = 0;
std::map<expr*, int>::iterator lrit = freeVarMap.begin();
for (; lrit != freeVarMap.end(); lrit++) {
if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) {
lrConstainted = 1;
lrConstrained = 1;
break;
}
}
if (lrConstainted == 0) {
if (lrConstrained == 0) {
freeVarMap[var] = 1;
}
}
@ -9451,15 +9451,15 @@ namespace smt {
if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) {
freeVarMap[var] = 1;
} else {
int lrConstainted = 0;
int lrConstrained = 0;
std::map<expr*, int>::iterator lrit = freeVarMap.begin();
for (; lrit != freeVarMap.end(); lrit++) {
if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) {
lrConstainted = 1;
lrConstrained = 1;
break;
}
}
if (lrConstainted == 0) {
if (lrConstrained == 0) {
freeVarMap[var] = 1;
}
}
@ -9471,15 +9471,15 @@ namespace smt {
if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) {
freeVarMap[var] = 1;
} else {
int lrConstainted = 0;
int lrConstrained = 0;
std::map<expr*, int>::iterator lrit = freeVarMap.begin();
for (; lrit != freeVarMap.end(); lrit++) {
if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) {
lrConstainted = 1;
lrConstrained = 1;
break;
}
}
if (lrConstainted == 0) {
if (lrConstrained == 0) {
freeVarMap[var] = 1;
}
}
@ -9500,15 +9500,15 @@ namespace smt {
if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) {
freeVarMap[var] = 1;
} else {
int lrConstainted = 0;
int lrConstrained = 0;
std::map<expr*, int>::iterator lrit = freeVarMap.begin();
for (; lrit != freeVarMap.end(); lrit++) {
if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) {
lrConstainted = 1;
lrConstrained = 1;
break;
}
}
if (lrConstainted == 0) {
if (lrConstrained == 0) {
freeVarMap[var] = 1;
}
}
@ -9762,7 +9762,7 @@ namespace smt {
expr_ref concatlenExpr (mk_strlen(concat), m) ;
bool allLeafResolved = true;
if (! get_arith_value(concatlenExpr, lenValue)) {
// the length fo concat is unresolved yet
// the length of concat is unresolved yet
if (get_len_value(concat, lenValue)) {
// but all leaf nodes have length information
TRACE("str", tout << "* length pop-up: " << mk_ismt2_pp(concat, m) << "| = " << lenValue << std::endl;);

View file

@ -492,7 +492,7 @@ lbool sls_engine::search() {
score = m_tracker.get_top_sum();
// update assertion weights if a weigthing is enabled (sp < 1024)
// update assertion weights if a weighting is enabled (sp < 1024)
if (m_paws)
{
for (unsigned i = 0; i < sz; i++)

View file

@ -193,14 +193,14 @@ namespace lp {
}
}
void adjust_rigth_side(formula_constraint & /* c*/, lisp_elem & /*el*/) {
void adjust_right_side(formula_constraint & /* c*/, lisp_elem & /*el*/) {
// lp_assert(el.m_head == "0"); // do nothing for the time being
}
void set_constraint_coeffs(formula_constraint & c, lisp_elem & el) {
lp_assert(el.m_elems.size() == 2);
set_constraint_coeffs_on_coeff_element(c, el.m_elems[0]);
adjust_rigth_side(c, el.m_elems[1]);
adjust_right_side(c, el.m_elems[1]);
}