mirror of
https://github.com/Z3Prover/z3
synced 2025-04-07 18:05:21 +00:00
Fix typos.
This commit is contained in:
parent
57318bab5b
commit
3149d7f7a4
|
@ -682,7 +682,7 @@ namespace datatype {
|
|||
|
||||
/**
|
||||
\brief Return true if the inductive datatype is well-founded.
|
||||
Pre-condition: The given argument constains the parameters of an inductive datatype.
|
||||
Pre-condition: The given argument constrains the parameters of an inductive datatype.
|
||||
*/
|
||||
bool util::is_well_founded(unsigned num_types, sort* const* sorts) {
|
||||
buffer<bool> well_founded(num_types, false);
|
||||
|
|
|
@ -154,7 +154,7 @@ namespace realclosure {
|
|||
|
||||
struct value {
|
||||
unsigned m_ref_count; //!< Reference counter
|
||||
bool m_rational; //!< True if the value is represented as an abitrary precision rational value.
|
||||
bool m_rational; //!< True if the value is represented as an arbitrary precision rational value.
|
||||
mpbqi m_interval; //!< approximation as an interval with binary rational end-points
|
||||
// When performing an operation OP, we may have to make the width (upper - lower) of m_interval very small.
|
||||
// The precision (i.e., a small interval) needed for executing OP is usually unnecessary for subsequent operations,
|
||||
|
@ -283,7 +283,7 @@ namespace realclosure {
|
|||
struct algebraic : public extension {
|
||||
polynomial m_p;
|
||||
mpbqi m_iso_interval;
|
||||
sign_det * m_sign_det; //!< != 0 if m_iso_interval constains more than one root of m_p.
|
||||
sign_det * m_sign_det; //!< != 0 if m_iso_interval constrains more than one root of m_p.
|
||||
unsigned m_sc_idx; //!< != UINT_MAX if m_sign_det != 0, in this case m_sc_idx < m_sign_det->m_sign_conditions.size()
|
||||
bool m_depends_on_infinitesimals; //!< True if the polynomial p depends on infinitesimal extensions.
|
||||
|
||||
|
@ -1741,7 +1741,7 @@ namespace realclosure {
|
|||
\brief In the sign determination algorithm main loop, we keep processing polynomials q,
|
||||
and checking whether they discriminate the roots of the target polynomial.
|
||||
|
||||
The vectors sc_cardinalities contains the cardinalites of the new realizable sign conditions.
|
||||
The vectors sc_cardinalities contains the cardinalities of the new realizable sign conditions.
|
||||
That is, we started we a sequence of sign conditions
|
||||
sc_1, ..., sc_n,
|
||||
If q2_used is true, then we expanded this sequence as
|
||||
|
@ -1750,7 +1750,7 @@ namespace realclosure {
|
|||
|
||||
Thus, q is useful (i.e., it is a discriminator for the roots of p) IF
|
||||
If !q2_used, then There is an i s.t. sc_cardinalities[2*i] > 0 && sc_cardinalities[2*i] > 0
|
||||
If q2_used, then There is an i s.t. AtLeatTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
|
||||
If q2_used, then There is an i s.t. AtLeastTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
|
||||
*/
|
||||
bool keep_new_sc_assignment(unsigned sz, int const * sc_cardinalities, bool q2_used) {
|
||||
SASSERT(q2_used || sz % 2 == 0);
|
||||
|
@ -2038,7 +2038,7 @@ namespace realclosure {
|
|||
// We should keep q only if it discriminated something.
|
||||
// That is,
|
||||
// If !use_q2, then There is an i s.t. sc_cardinalities[2*i] > 0 && sc_cardinalities[2*i] > 0
|
||||
// If use_q2, then There is an i s.t. AtLeatTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
|
||||
// If use_q2, then There is an i s.t. AtLeastTwo(sc_cardinalities[3*i] > 0, sc_cardinalities[3*i+1] > 0, sc_cardinalities[3*i+2] > 0)
|
||||
if (!keep_new_sc_assignment(sc_cardinalities.size(), sc_cardinalities.c_ptr(), use_q2)) {
|
||||
// skip q since it did not reduced the cardinality of the existing sign conditions.
|
||||
continue;
|
||||
|
|
|
@ -105,7 +105,7 @@ class sat_tactic : public tactic {
|
|||
else {
|
||||
// get simplified problem.
|
||||
#if 0
|
||||
IF_VERBOSE(TACTIC_VERBOSITY_LVL, verbose_stream() << "\"formula constains interpreted atoms, recovering formula from sat solver...\"\n";);
|
||||
IF_VERBOSE(TACTIC_VERBOSITY_LVL, verbose_stream() << "\"formula constrains interpreted atoms, recovering formula from sat solver...\"\n";);
|
||||
#endif
|
||||
m_solver.pop_to_base_level();
|
||||
ref<sat2goal::mc> mc;
|
||||
|
|
|
@ -209,7 +209,7 @@ namespace smt {
|
|||
|
||||
static void check_no_arithmetic(static_features const & st, char const * logic) {
|
||||
if (st.m_num_arith_ineqs > 0 || st.m_num_arith_terms > 0 || st.m_num_arith_eqs > 0)
|
||||
throw default_exception("Benchmark constains arithmetic, but specified logic does not support it.");
|
||||
throw default_exception("Benchmark constrains arithmetic, but specified logic does not support it.");
|
||||
}
|
||||
|
||||
void setup::setup_QF_UF() {
|
||||
|
|
|
@ -9424,15 +9424,15 @@ namespace smt {
|
|||
if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) {
|
||||
freeVarMap[var] = 1;
|
||||
} else {
|
||||
int lrConstainted = 0;
|
||||
int lrConstrained = 0;
|
||||
std::map<expr*, int>::iterator lrit = freeVarMap.begin();
|
||||
for (; lrit != freeVarMap.end(); lrit++) {
|
||||
if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) {
|
||||
lrConstainted = 1;
|
||||
lrConstrained = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (lrConstainted == 0) {
|
||||
if (lrConstrained == 0) {
|
||||
freeVarMap[var] = 1;
|
||||
}
|
||||
}
|
||||
|
@ -9451,15 +9451,15 @@ namespace smt {
|
|||
if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) {
|
||||
freeVarMap[var] = 1;
|
||||
} else {
|
||||
int lrConstainted = 0;
|
||||
int lrConstrained = 0;
|
||||
std::map<expr*, int>::iterator lrit = freeVarMap.begin();
|
||||
for (; lrit != freeVarMap.end(); lrit++) {
|
||||
if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) {
|
||||
lrConstainted = 1;
|
||||
lrConstrained = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (lrConstainted == 0) {
|
||||
if (lrConstrained == 0) {
|
||||
freeVarMap[var] = 1;
|
||||
}
|
||||
}
|
||||
|
@ -9471,15 +9471,15 @@ namespace smt {
|
|||
if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) {
|
||||
freeVarMap[var] = 1;
|
||||
} else {
|
||||
int lrConstainted = 0;
|
||||
int lrConstrained = 0;
|
||||
std::map<expr*, int>::iterator lrit = freeVarMap.begin();
|
||||
for (; lrit != freeVarMap.end(); lrit++) {
|
||||
if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) {
|
||||
lrConstainted = 1;
|
||||
lrConstrained = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (lrConstainted == 0) {
|
||||
if (lrConstrained == 0) {
|
||||
freeVarMap[var] = 1;
|
||||
}
|
||||
}
|
||||
|
@ -9500,15 +9500,15 @@ namespace smt {
|
|||
if (lrConstrainedMap.find(var) == lrConstrainedMap.end()) {
|
||||
freeVarMap[var] = 1;
|
||||
} else {
|
||||
int lrConstainted = 0;
|
||||
int lrConstrained = 0;
|
||||
std::map<expr*, int>::iterator lrit = freeVarMap.begin();
|
||||
for (; lrit != freeVarMap.end(); lrit++) {
|
||||
if (lrConstrainedMap[var].find(lrit->first) != lrConstrainedMap[var].end()) {
|
||||
lrConstainted = 1;
|
||||
lrConstrained = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (lrConstainted == 0) {
|
||||
if (lrConstrained == 0) {
|
||||
freeVarMap[var] = 1;
|
||||
}
|
||||
}
|
||||
|
@ -9762,7 +9762,7 @@ namespace smt {
|
|||
expr_ref concatlenExpr (mk_strlen(concat), m) ;
|
||||
bool allLeafResolved = true;
|
||||
if (! get_arith_value(concatlenExpr, lenValue)) {
|
||||
// the length fo concat is unresolved yet
|
||||
// the length of concat is unresolved yet
|
||||
if (get_len_value(concat, lenValue)) {
|
||||
// but all leaf nodes have length information
|
||||
TRACE("str", tout << "* length pop-up: " << mk_ismt2_pp(concat, m) << "| = " << lenValue << std::endl;);
|
||||
|
|
|
@ -492,7 +492,7 @@ lbool sls_engine::search() {
|
|||
|
||||
score = m_tracker.get_top_sum();
|
||||
|
||||
// update assertion weights if a weigthing is enabled (sp < 1024)
|
||||
// update assertion weights if a weighting is enabled (sp < 1024)
|
||||
if (m_paws)
|
||||
{
|
||||
for (unsigned i = 0; i < sz; i++)
|
||||
|
|
|
@ -193,14 +193,14 @@ namespace lp {
|
|||
}
|
||||
}
|
||||
|
||||
void adjust_rigth_side(formula_constraint & /* c*/, lisp_elem & /*el*/) {
|
||||
void adjust_right_side(formula_constraint & /* c*/, lisp_elem & /*el*/) {
|
||||
// lp_assert(el.m_head == "0"); // do nothing for the time being
|
||||
}
|
||||
|
||||
void set_constraint_coeffs(formula_constraint & c, lisp_elem & el) {
|
||||
lp_assert(el.m_elems.size() == 2);
|
||||
set_constraint_coeffs_on_coeff_element(c, el.m_elems[0]);
|
||||
adjust_rigth_side(c, el.m_elems[1]);
|
||||
adjust_right_side(c, el.m_elems[1]);
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue