mirror of
https://github.com/Z3Prover/z3
synced 2025-07-23 12:48:53 +00:00
niil_solver basic case progress
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
3fb361c886
commit
3138c929ee
1 changed files with 104 additions and 62 deletions
|
@ -208,6 +208,7 @@ struct solver::imp {
|
||||||
unsigned m_i; // the monomial index
|
unsigned m_i; // the monomial index
|
||||||
int m_sign; // the monomial sign: -1 or 1
|
int m_sign; // the monomial sign: -1 or 1
|
||||||
mono_index_with_sign(unsigned i, int sign) : m_i(i), m_sign(sign) {}
|
mono_index_with_sign(unsigned i, int sign) : m_i(i), m_sign(sign) {}
|
||||||
|
mono_index_with_sign() {}
|
||||||
};
|
};
|
||||||
|
|
||||||
vars_equivalence m_vars_equivalence;
|
vars_equivalence m_vars_equivalence;
|
||||||
|
@ -494,62 +495,38 @@ struct solver::imp {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct var_index_with_constraints {
|
bool get_one_of_var(unsigned i, lpvar j, mono_index_with_sign & mi) {
|
||||||
unsigned m_i; // the index of the variable inside of m_vs
|
lpci lci;
|
||||||
svector<unsigned> m_cis; // constraint indices of the lower bound
|
lpci uci;
|
||||||
|
|
||||||
int m_sign;
|
|
||||||
var_index_with_constraints() { }
|
|
||||||
var_index_with_constraints(unsigned i,
|
|
||||||
unsigned ci0,
|
|
||||||
unsigned ci1) : m_i(i)
|
|
||||||
{
|
|
||||||
m_cis.push_back(ci0);
|
|
||||||
m_cis.push_back(ci1);
|
|
||||||
}
|
|
||||||
|
|
||||||
var_index_with_constraints(unsigned i,
|
|
||||||
unsigned ci) : m_i(i)
|
|
||||||
{
|
|
||||||
m_cis.push_back(ci);
|
|
||||||
}
|
|
||||||
void push_ci(unsigned ci) {
|
|
||||||
m_cis.push_back(ci);
|
|
||||||
}
|
|
||||||
unsigned size() const { return m_cis.size(); }
|
|
||||||
};
|
|
||||||
|
|
||||||
bool get_one_of_var(unsigned i, lpvar j, var_index_with_constraints & mi) {
|
|
||||||
SASSERT(mi.size() == 0);
|
|
||||||
lpci lci = -1;
|
|
||||||
lpci uci = -1;
|
|
||||||
rational lb, ub;
|
rational lb, ub;
|
||||||
bool lower_is_strict, upper_is_strict;
|
bool lower_is_strict, upper_is_strict;
|
||||||
m_lar_solver.has_lower_bound(j, lci, lb, lower_is_strict);
|
if (!m_lar_solver.has_lower_bound(j, lci, lb, lower_is_strict))
|
||||||
m_lar_solver.has_upper_bound(j, uci, ub, upper_is_strict);
|
return false;
|
||||||
|
if (!m_lar_solver.has_upper_bound(j, uci, ub, upper_is_strict))
|
||||||
|
return false;
|
||||||
|
|
||||||
if (is_set(uci) && is_set(lci) && ub == rational(1) && ub == lb) {
|
if (ub == lb) {
|
||||||
mi.push_ci(lci);
|
if (ub == rational(1)) {
|
||||||
mi.push_ci(uci);
|
mi.m_i = i;
|
||||||
mi.m_sign = 1;
|
mi.m_sign = 1;
|
||||||
return true;
|
|
||||||
}
|
}
|
||||||
if (is_set(uci) && is_set(lci) && ub == -rational(1) && ub == lb) {
|
else if (ub == -rational(1)) {
|
||||||
mi.push_ci(lci);
|
mi.m_i = i;
|
||||||
mi.push_ci(uci);
|
|
||||||
mi.m_sign = -1;
|
mi.m_sign = -1;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
return false;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
vector<var_index_with_constraints> get_ones_of_monomimal(const svector<lpvar> & vars) {
|
vector<mono_index_with_sign> get_ones_of_monomimal(const svector<lpvar> & vars) {
|
||||||
vector<var_index_with_constraints> ret;
|
TRACE("niil_solver", tout << "get_ones_of_monomimal";);
|
||||||
|
vector<mono_index_with_sign> ret;
|
||||||
for (unsigned i = 0; i < vars.size(); i++) {
|
for (unsigned i = 0; i < vars.size(); i++) {
|
||||||
var_index_with_constraints mi;
|
mono_index_with_sign mi;
|
||||||
get_one_of_var(i, vars[i], mi);
|
if (!get_one_of_var(i, vars[i], mi))
|
||||||
if (mi.size() != 2)
|
|
||||||
continue;
|
continue;
|
||||||
ret.push_back(mi);
|
ret.push_back(mi);
|
||||||
}
|
}
|
||||||
|
@ -558,35 +535,35 @@ struct solver::imp {
|
||||||
|
|
||||||
|
|
||||||
void get_large_and_small_indices_of_monomimal(const mon_eq& m,
|
void get_large_and_small_indices_of_monomimal(const mon_eq& m,
|
||||||
vector<var_index_with_constraints> & large,
|
vector<unsigned> & large,
|
||||||
vector<var_index_with_constraints> & small) {
|
vector<unsigned> & small) {
|
||||||
|
|
||||||
for (unsigned i = 0; i < m.m_vs.size(); i++) {
|
for (unsigned i = 0; i < m.m_vs.size(); i++) {
|
||||||
unsigned j = m.m_vs[i];
|
unsigned j = m.m_vs[i];
|
||||||
lp::constraint_index lci(static_cast<unsigned>(-1)), uci(static_cast<unsigned>(-1));
|
lp::constraint_index lci = -1, uci = -1;
|
||||||
rational lb, ub;
|
rational lb, ub;
|
||||||
bool is_strict;
|
bool is_strict;
|
||||||
if (m_lar_solver.has_lower_bound(j, lci, lb, is_strict)) {
|
if (m_lar_solver.has_lower_bound(j, lci, lb, is_strict)) {
|
||||||
SASSERT(!is_strict);
|
SASSERT(!is_strict);
|
||||||
if (lb >= rational(1)) {
|
if (lb >= rational(1)) {
|
||||||
large.push_back(var_index_with_constraints(i, lci, static_cast<unsigned>(-1)));
|
large.push_back(i);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (m_lar_solver.has_upper_bound(j, uci, ub, is_strict)) {
|
if (m_lar_solver.has_upper_bound(j, uci, ub, is_strict)) {
|
||||||
SASSERT(!is_strict);
|
SASSERT(!is_strict);
|
||||||
if (ub <= -rational(1)) {
|
if (ub <= -rational(1)) {
|
||||||
large.push_back(var_index_with_constraints(i, static_cast<unsigned>(-1), uci));
|
large.push_back(i);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (is_set(lci) && is_set(uci) && -rational(1) <= lb && ub <= rational(1))
|
if (is_set(lci) && is_set(uci) && -rational(1) <= lb && ub <= rational(1))
|
||||||
small.push_back(var_index_with_constraints(i, lci, uci));
|
small.push_back(i);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// v is the value of monomial, vars is the array of reduced to minimum variables of the monomial
|
// v is the value of monomial, vars is the array of reduced to minimum variables of the monomial
|
||||||
bool generate_basic_neutral_for_reduced_monomial(const mon_eq & m, const rational & v, const svector<lpvar> & vars) {
|
bool generate_basic_neutral_for_reduced_monomial(const mon_eq & m, const rational & v, const svector<lpvar> & vars) {
|
||||||
vector<var_index_with_constraints> ones_of_mon = get_ones_of_monomimal(vars);
|
vector<mono_index_with_sign> ones_of_mon = get_ones_of_monomimal(vars);
|
||||||
|
|
||||||
// if abs(m.m_vs[j]) is 1, then ones_of_mon[j] = sign, where sign is 1 in case of m.m_vs[j] = 1, or -1 otherwise.
|
// if abs(m.m_vs[j]) is 1, then ones_of_mon[j] = sign, where sign is 1 in case of m.m_vs[j] = 1, or -1 otherwise.
|
||||||
if (ones_of_mon.empty()) {
|
if (ones_of_mon.empty()) {
|
||||||
|
@ -596,7 +573,7 @@ struct solver::imp {
|
||||||
if (m_minimal_monomials.empty() && m.size() > 2)
|
if (m_minimal_monomials.empty() && m.size() > 2)
|
||||||
create_min_map();
|
create_min_map();
|
||||||
|
|
||||||
return process_ones_of_mon(m, ones_of_mon, vars);
|
return process_ones_of_mon(m, ones_of_mon, vars, v);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool generate_basic_lemma_for_mon_neutral(unsigned i_mon) {
|
bool generate_basic_lemma_for_mon_neutral(unsigned i_mon) {
|
||||||
|
@ -610,21 +587,86 @@ struct solver::imp {
|
||||||
return generate_basic_neutral_for_reduced_monomial(m, v, reduced_vars);
|
return generate_basic_neutral_for_reduced_monomial(m, v, reduced_vars);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// returns the variable m_i, of a monomial if found and sets the sign,
|
||||||
|
// if the
|
||||||
|
bool find_monomial_of_vars(const svector<lpvar>& vars, unsigned &j, int & sign) const {
|
||||||
|
if (vars.size() == 1) {
|
||||||
|
j = vars[0];
|
||||||
|
sign = 1;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
SASSERT(false); // not implemented
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool find_lpvar_and_sign_for_the_rest_of_monomial(
|
||||||
|
const mon_eq& m,
|
||||||
|
svector<lpvar> & vars,
|
||||||
|
const rational& v,
|
||||||
|
int sign,
|
||||||
|
lpvar& j) {
|
||||||
|
int other_sign;
|
||||||
|
if (find_monomial_of_vars(vars, j, other_sign))
|
||||||
|
return false;
|
||||||
|
|
||||||
|
sign *= other_sign;
|
||||||
|
rational other_val = m_lar_solver.get_column_value_rational(j);
|
||||||
|
return sign * other_val != v;
|
||||||
|
}
|
||||||
|
|
||||||
|
void add_explanation_of_one(const mono_index_with_sign & mi) {
|
||||||
|
SASSERT(false);
|
||||||
|
}
|
||||||
|
|
||||||
|
void generate_equality_for_neutral_case(const mon_eq & m,
|
||||||
|
const svector<unsigned> & mask,
|
||||||
|
const vector<mono_index_with_sign>& ones_of_monomial, int sign, lpvar j) {
|
||||||
|
expl_set expl;
|
||||||
|
SASSERT(sign == 1 || sign == -1);
|
||||||
|
add_explanation_of_reducing_to_mininal_monomial(m, expl);
|
||||||
|
m_expl->clear();
|
||||||
|
m_expl->add(expl);
|
||||||
|
for (unsigned k : mask) {
|
||||||
|
add_explanation_of_one(ones_of_monomial[k]);
|
||||||
|
}
|
||||||
|
TRACE("niil_solver",
|
||||||
|
for (auto &p : *m_expl)
|
||||||
|
m_lar_solver.print_constraint(p.second, tout); tout << "\n";
|
||||||
|
);
|
||||||
|
lp::lar_term t;
|
||||||
|
t.add_monomial(rational(1), m.var());
|
||||||
|
t.add_monomial(rational(- sign), j);
|
||||||
|
TRACE("niil_solver",
|
||||||
|
m_lar_solver.print_term(t, tout);
|
||||||
|
tout << "\n";
|
||||||
|
);
|
||||||
|
|
||||||
|
ineq in(lp::lconstraint_kind::EQ, t);
|
||||||
|
m_lemma->push_back(in);
|
||||||
|
}
|
||||||
|
|
||||||
// vars here are minimal vars for m.vs
|
// vars here are minimal vars for m.vs
|
||||||
bool process_ones_of_mon(const mon_eq& m,
|
bool process_ones_of_mon(const mon_eq& m,
|
||||||
const vector<var_index_with_constraints>& ones_of_monomial, const svector<lpvar> &min_vars) {
|
const vector<mono_index_with_sign>& ones_of_monomial, const svector<lpvar> &min_vars,
|
||||||
|
const rational& v) {
|
||||||
svector<unsigned> mask(ones_of_monomial.size(), (unsigned) 0);
|
svector<unsigned> mask(ones_of_monomial.size(), (unsigned) 0);
|
||||||
auto vars = min_vars;
|
auto vars = min_vars;
|
||||||
int sign;
|
int sign = 1;
|
||||||
// We crossing out the ones representing the mask from vars
|
// We crossing out the ones representing the mask from vars
|
||||||
do {
|
do {
|
||||||
for (unsigned k = 0; k < mask.size(); k++) {
|
for (unsigned k = 0; k < mask.size(); k++) {
|
||||||
if (mask[k] == 0) {
|
if (mask[k] == 0) {
|
||||||
mask[k] = 1;
|
mask[k] = 1;
|
||||||
sign *= ones_of_monomial[k].m_sign;
|
sign *= ones_of_monomial[k].m_sign;
|
||||||
vars.erase(ones_of_monomial[k].m_i);
|
TRACE("niil_solver", tout << "index m_i = " << ones_of_monomial[k].m_i;);
|
||||||
|
vars.erase(vars.begin() + ones_of_monomial[k].m_i);
|
||||||
std::sort(vars.begin(), vars.end());
|
std::sort(vars.begin(), vars.end());
|
||||||
SASSERT(false); // start here!!!!!!!!!!!!!!!!111111
|
// now the value of vars has to be v*sign
|
||||||
|
lpvar j;
|
||||||
|
if (!find_lpvar_and_sign_for_the_rest_of_monomial(m, vars, v, sign, j))
|
||||||
|
return false;
|
||||||
|
generate_equality_for_neutral_case(m, mask, ones_of_monomial, j, sign);
|
||||||
|
return true;
|
||||||
} else {
|
} else {
|
||||||
SASSERT(mask[k] == 1);
|
SASSERT(mask[k] == 1);
|
||||||
sign *= ones_of_monomial[k].m_sign;
|
sign *= ones_of_monomial[k].m_sign;
|
||||||
|
@ -633,15 +675,15 @@ struct solver::imp {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} while(true);
|
} while(true);
|
||||||
return false;
|
return false; // we exhausted the mask and did not find the compliment monomial
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
bool generate_basic_lemma_for_mon_proportionality(unsigned i_mon) {
|
bool generate_basic_lemma_for_mon_proportionality(unsigned i_mon) {
|
||||||
std::cout << "generate_basic_lemma_for_mon_proportionality\n";
|
std::cout << "generate_basic_lemma_for_mon_proportionality\n";
|
||||||
const mon_eq & m = m_monomials[i_mon];
|
const mon_eq & m = m_monomials[i_mon];
|
||||||
vector<var_index_with_constraints> large;
|
vector<unsigned> large;
|
||||||
vector<var_index_with_constraints> small;
|
vector<unsigned> small;
|
||||||
get_large_and_small_indices_of_monomimal(m, large, small);
|
get_large_and_small_indices_of_monomimal(m, large, small);
|
||||||
|
|
||||||
// if abs(m.m_vs[j]) is 1, then ones_of_mon[j] = sign, where sign is 1 in case of m.m_vs[j] = 1, or -1 otherwise.
|
// if abs(m.m_vs[j]) is 1, then ones_of_mon[j] = sign, where sign is 1 in case of m.m_vs[j] = 1, or -1 otherwise.
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue