mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
move bounded division lemmas to nla solver/ nla_divisions.
This commit is contained in:
parent
03ca330926
commit
304b316314
|
@ -985,6 +985,9 @@ bool core::rm_check(const monic& rm) const {
|
|||
return check_monic(m_emons[rm.var()]);
|
||||
}
|
||||
|
||||
bool core::has_relevant_monomial() const {
|
||||
return any_of(emons(), [&](auto const& m) { return is_relevant(m.var()); });
|
||||
}
|
||||
|
||||
bool core::find_bfc_to_refine_on_monic(const monic& m, factorization & bf) {
|
||||
for (auto f : factorization_factory_imp(m, *this)) {
|
||||
|
@ -1489,6 +1492,11 @@ lbool core::check_power(lpvar r, lpvar x, lpvar y, vector<lemma>& l_vec) {
|
|||
return m_powers.check(r, x, y, l_vec);
|
||||
}
|
||||
|
||||
void core::check_bounded_divisions(vector<lemma>& l_vec) {
|
||||
m_lemma_vec = &l_vec;
|
||||
m_divisions.check_bounded_divisions();
|
||||
}
|
||||
|
||||
lbool core::check(vector<lemma>& l_vec) {
|
||||
lp_settings().stats().m_nla_calls++;
|
||||
TRACE("nla_solver", tout << "calls = " << lp_settings().stats().m_nla_calls << "\n";);
|
||||
|
@ -1527,7 +1535,7 @@ lbool core::check(vector<lemma>& l_vec) {
|
|||
m_basics.basic_lemma(false);
|
||||
|
||||
if (l_vec.empty() && !done())
|
||||
m_divisions.check(l_vec);
|
||||
m_divisions.check();
|
||||
|
||||
#if 0
|
||||
if (l_vec.empty() && !done() && !run_horner)
|
||||
|
|
|
@ -112,6 +112,9 @@ class core {
|
|||
void check_weighted(unsigned sz, std::pair<unsigned, std::function<void(void)>>* checks);
|
||||
|
||||
public:
|
||||
// constructor
|
||||
core(lp::lar_solver& s, reslimit&);
|
||||
|
||||
void insert_to_refine(lpvar j);
|
||||
void erase_from_to_refine(lpvar j);
|
||||
|
||||
|
@ -120,9 +123,7 @@ public:
|
|||
|
||||
void insert_to_active_var_set(unsigned j) const { m_active_var_set.insert(j); }
|
||||
|
||||
void clear_active_var_set() const {
|
||||
m_active_var_set.clear();
|
||||
}
|
||||
void clear_active_var_set() const { m_active_var_set.clear(); }
|
||||
|
||||
void clear_and_resize_active_var_set() const {
|
||||
m_active_var_set.clear();
|
||||
|
@ -134,8 +135,8 @@ public:
|
|||
reslimit& reslim() { return m_reslim; }
|
||||
emonics& emons() { return m_emons; }
|
||||
const emonics& emons() const { return m_emons; }
|
||||
// constructor
|
||||
core(lp::lar_solver& s, reslimit &);
|
||||
|
||||
bool has_relevant_monomial() const;
|
||||
|
||||
bool compare_holds(const rational& ls, llc cmp, const rational& rs) const;
|
||||
|
||||
|
@ -202,8 +203,9 @@ public:
|
|||
void deregister_monic_from_tables(const monic & m, unsigned i);
|
||||
|
||||
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
|
||||
void add_idivision(lpvar r, lpvar x, lpvar y) { m_divisions.add_idivision(r, x, y); }
|
||||
void add_rdivision(lpvar r, lpvar x, lpvar y) { m_divisions.add_rdivision(r, x, y); }
|
||||
void add_idivision(lpvar q, lpvar x, lpvar y) { m_divisions.add_idivision(q, x, y); }
|
||||
void add_rdivision(lpvar q, lpvar x, lpvar y) { m_divisions.add_rdivision(q, x, y); }
|
||||
void add_bounded_division(lpvar q, lpvar x, lpvar y) { m_divisions.add_bounded_division(q, x, y); }
|
||||
|
||||
void set_relevant(std::function<bool(lpvar)>& is_relevant) { m_relevant = is_relevant; }
|
||||
bool is_relevant(lpvar v) const { return !m_relevant || m_relevant(v); }
|
||||
|
@ -381,6 +383,7 @@ public:
|
|||
|
||||
lbool check(vector<lemma>& l_vec);
|
||||
lbool check_power(lpvar r, lpvar x, lpvar y, vector<lemma>& l_vec);
|
||||
void check_bounded_divisions(vector<lemma>&);
|
||||
|
||||
bool no_lemmas_hold() const;
|
||||
|
||||
|
|
|
@ -36,13 +36,22 @@ namespace nla {
|
|||
m_core.trail().push(push_back_vector(m_rdivisions));
|
||||
}
|
||||
|
||||
void divisions::add_bounded_division(lpvar q, lpvar x, lpvar y) {
|
||||
if (x == null_lpvar || y == null_lpvar || q == null_lpvar)
|
||||
return;
|
||||
if (lp::tv::is_term(x) || lp::tv::is_term(y) || lp::tv::is_term(q))
|
||||
return;
|
||||
m_bounded_divisions.push_back({ q, x, y });
|
||||
m_core.trail().push(push_back_vector(m_bounded_divisions));
|
||||
}
|
||||
|
||||
typedef lp::lar_term term;
|
||||
|
||||
// y1 >= y2 > 0 & x1 <= x2 => x1/y1 <= x2/y2
|
||||
// y2 <= y1 < 0 & x1 >= x2 >= 0 => x1/y1 <= x2/y2
|
||||
// y2 <= y1 < 0 & x1 <= x2 <= 0 => x1/y1 >= x2/y2
|
||||
|
||||
void divisions::check(vector<lemma>& lemmas) {
|
||||
void divisions::check() {
|
||||
core& c = m_core;
|
||||
if (c.use_nra_model())
|
||||
return;
|
||||
|
@ -155,99 +164,45 @@ namespace nla {
|
|||
// p <= q * div(r, q) + q - 1 => div(p, q) <= div(r, q)
|
||||
// p >= q * div(r, q) => div(r, q) <= div(p, q)
|
||||
|
||||
#if 0
|
||||
bool check_idiv_bounds() {
|
||||
if (m_idiv_terms.empty()) {
|
||||
return true;
|
||||
}
|
||||
bool all_divs_valid = true;
|
||||
unsigned count = 0;
|
||||
unsigned offset = ctx().get_random_value();
|
||||
for (unsigned j = 0; j < m_idiv_terms.size(); ++j) {
|
||||
unsigned i = (offset + j) % m_idiv_terms.size();
|
||||
expr* n = m_idiv_terms[i];
|
||||
if (!ctx().is_relevant(n))
|
||||
continue;
|
||||
expr* p = nullptr, * q = nullptr;
|
||||
VERIFY(a.is_idiv(n, p, q));
|
||||
theory_var v = internalize_def(to_app(n));
|
||||
theory_var v1 = internalize_def(to_app(p));
|
||||
void divisions::check_bounded_divisions() {
|
||||
core& c = m_core;
|
||||
unsigned offset = c.random(), sz = m_bounded_divisions.size();
|
||||
|
||||
if (!is_registered_var(v1))
|
||||
for (unsigned j = 0; j < sz; ++j) {
|
||||
unsigned i = (offset + j) % sz;
|
||||
auto [q, x, y] = m_bounded_divisions[i];
|
||||
if (!c.is_relevant(q))
|
||||
continue;
|
||||
lp::impq q1 = get_ivalue(v1);
|
||||
rational q2;
|
||||
|
||||
if (!q1.x.is_int() || q1.x.is_neg() || !q1.y.is_zero()) {
|
||||
// TBD
|
||||
// q1 = 223/4, q2 = 2, r = 219/8
|
||||
// take ceil(q1), floor(q1), ceil(q2), floor(q2), for floor(q2) > 0
|
||||
// then
|
||||
// p/q <= ceil(q1)/floor(q2) => n <= div(ceil(q1), floor(q2))
|
||||
// p/q >= floor(q1)/ceil(q2) => n >= div(floor(q1), ceil(q2))
|
||||
auto xv = c.val(x);
|
||||
auto yv = c.val(y);
|
||||
auto qv = c.val(q);
|
||||
if (xv < 0 || !xv.is_int())
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
if (a.is_numeral(q, q2) && q2.is_pos()) {
|
||||
if (!a.is_bounded(n)) {
|
||||
TRACE("arith", tout << "unbounded " << expr_ref(n, m) << "\n";);
|
||||
if (yv <= 0 || !yv.is_int())
|
||||
continue;
|
||||
}
|
||||
if (!is_registered_var(v))
|
||||
continue;
|
||||
lp::impq val_v = get_ivalue(v);
|
||||
if (val_v.y.is_zero() && val_v.x == div(q1.x, q2))
|
||||
if (qv == div(xv, yv))
|
||||
continue;
|
||||
|
||||
TRACE("arith", tout << get_value(v) << " != " << q1 << " div " << q2 << "\n";);
|
||||
rational div_r = div(q1.x, q2);
|
||||
// p <= q * div(q1, q) + q - 1 => div(p, q) <= div(q1, q2)
|
||||
// p >= q * div(q1, q) => div(q1, q) <= div(p, q)
|
||||
rational div_v = div(xv, yv);
|
||||
// y = yv & x <= yv * div(xv, yv) + yv - 1 => div(x, y) <= div(xv, yv)
|
||||
// y = yv & x >= y * div(xv, yv) => div(xv, yv) <= div(x, y)
|
||||
rational mul(1);
|
||||
rational hi = q2 * div_r + q2 - 1;
|
||||
rational lo = q2 * div_r;
|
||||
|
||||
// used to normalize inequalities so they
|
||||
// don't appear as 8*x >= 15, but x >= 2
|
||||
expr* n1 = nullptr, * n2 = nullptr;
|
||||
if (a.is_mul(p, n1, n2) && a.is_extended_numeral(n1, mul) && mul.is_pos()) {
|
||||
p = n2;
|
||||
hi = floor(hi / mul);
|
||||
lo = ceil(lo / mul);
|
||||
rational hi = yv * div_v + yv - 1;
|
||||
rational lo = yv * div_v;
|
||||
if (xv > hi) {
|
||||
new_lemma lemma(c, "y = yv & x <= yv * div(xv, yv) + yv - 1 => div(p, y) <= div(xv, yv)");
|
||||
lemma |= ineq(y, llc::NE, yv);
|
||||
lemma |= ineq(x, llc::GT, hi);
|
||||
lemma |= ineq(q, llc::LE, div_v);
|
||||
return;
|
||||
}
|
||||
literal p_le_q1 = mk_literal(a.mk_le(p, a.mk_numeral(hi, true)));
|
||||
literal p_ge_q1 = mk_literal(a.mk_ge(p, a.mk_numeral(lo, true)));
|
||||
literal n_le_div = mk_literal(a.mk_le(n, a.mk_numeral(div_r, true)));
|
||||
literal n_ge_div = mk_literal(a.mk_ge(n, a.mk_numeral(div_r, true)));
|
||||
{
|
||||
scoped_trace_stream _sts(th, ~p_le_q1, n_le_div);
|
||||
mk_axiom(~p_le_q1, n_le_div);
|
||||
}
|
||||
{
|
||||
scoped_trace_stream _sts(th, ~p_ge_q1, n_ge_div);
|
||||
mk_axiom(~p_ge_q1, n_ge_div);
|
||||
}
|
||||
|
||||
all_divs_valid = false;
|
||||
++count;
|
||||
|
||||
|
||||
TRACE("arith",
|
||||
tout << q1 << " div " << q2 << "\n";
|
||||
literal_vector lits;
|
||||
lits.push_back(~p_le_q1);
|
||||
lits.push_back(n_le_div);
|
||||
ctx().display_literals_verbose(tout, lits) << "\n\n";
|
||||
lits[0] = ~p_ge_q1;
|
||||
lits[1] = n_ge_div;
|
||||
ctx().display_literals_verbose(tout, lits) << "\n";);
|
||||
continue;
|
||||
if (xv < lo) {
|
||||
new_lemma lemma(c, "y = yv & x >= yv * div(xv, yv) => div(xv, yv) <= div(x, y)");
|
||||
lemma |= ineq(y, llc::NE, yv);
|
||||
lemma |= ineq(x, llc::LT, lo);
|
||||
lemma |= ineq(q, llc::GE, div_v);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
return all_divs_valid;
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
|
|
@ -24,12 +24,14 @@ namespace nla {
|
|||
core& m_core;
|
||||
vector<std::tuple<lpvar, lpvar, lpvar>> m_idivisions;
|
||||
vector<std::tuple<lpvar, lpvar, lpvar>> m_rdivisions;
|
||||
vector<std::tuple<lpvar, lpvar, lpvar, lpvar>> m_bounded_divisions;
|
||||
vector<std::tuple<lpvar, lpvar, lpvar>> m_bounded_divisions;
|
||||
|
||||
public:
|
||||
divisions(core& c):m_core(c) {}
|
||||
void add_idivision(lpvar q, lpvar x, lpvar y);
|
||||
void add_rdivision(lpvar q, lpvar x, lpvar y);
|
||||
void add_bounded_division(lpvar q, lpvar r, lpvar x, lpvar y);
|
||||
void check(vector<lemma>&);
|
||||
void add_bounded_division(lpvar q, lpvar x, lpvar y);
|
||||
void check();
|
||||
void check_bounded_divisions();
|
||||
};
|
||||
}
|
||||
|
|
|
@ -23,12 +23,16 @@ namespace nla {
|
|||
m_core->add_monic(v, sz, vs);
|
||||
}
|
||||
|
||||
void solver::add_idivision(lpvar r, lpvar x, lpvar y) {
|
||||
m_core->add_idivision(r, x, y);
|
||||
void solver::add_idivision(lpvar q, lpvar x, lpvar y) {
|
||||
m_core->add_idivision(q, x, y);
|
||||
}
|
||||
|
||||
void solver::add_rdivision(lpvar r, lpvar x, lpvar y) {
|
||||
m_core->add_rdivision(r, x, y);
|
||||
void solver::add_rdivision(lpvar q, lpvar x, lpvar y) {
|
||||
m_core->add_rdivision(q, x, y);
|
||||
}
|
||||
|
||||
void solver::add_bounded_division(lpvar q, lpvar x, lpvar y) {
|
||||
m_core->add_bounded_division(q, x, y);
|
||||
}
|
||||
|
||||
void solver::set_relevant(std::function<bool(lpvar)>& is_relevant) {
|
||||
|
@ -39,7 +43,7 @@ namespace nla {
|
|||
return m_core->is_monic_var(v);
|
||||
}
|
||||
|
||||
bool solver::need_check() { return true; }
|
||||
bool solver::need_check() { return m_core->has_relevant_monomial(); }
|
||||
|
||||
lbool solver::check(vector<lemma>& l) {
|
||||
return m_core->check(l);
|
||||
|
@ -92,4 +96,8 @@ namespace nla {
|
|||
return m_core->check_power(r, x, y, lemmas);
|
||||
}
|
||||
|
||||
void solver::check_bounded_divisions(vector<lemma>& lemmas) {
|
||||
m_core->check_bounded_divisions(lemmas);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -29,8 +29,10 @@ namespace nla {
|
|||
~solver();
|
||||
|
||||
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
|
||||
void add_idivision(lpvar r, lpvar x, lpvar y);
|
||||
void add_rdivision(lpvar r, lpvar x, lpvar y);
|
||||
void add_idivision(lpvar q, lpvar x, lpvar y);
|
||||
void add_rdivision(lpvar q, lpvar x, lpvar y);
|
||||
void add_bounded_division(lpvar q, lpvar x, lpvar y);
|
||||
void check_bounded_divisions(vector<lemma>&);
|
||||
void set_relevant(std::function<bool(lpvar)>& is_relevant);
|
||||
nla_settings& settings();
|
||||
void push();
|
||||
|
|
|
@ -62,7 +62,6 @@ class theory_lra::imp {
|
|||
|
||||
struct scope {
|
||||
unsigned m_bounds_lim;
|
||||
unsigned m_idiv_lim;
|
||||
unsigned m_asserted_qhead;
|
||||
unsigned m_asserted_atoms_lim;
|
||||
};
|
||||
|
@ -161,7 +160,6 @@ class theory_lra::imp {
|
|||
svector<delayed_atom> m_asserted_atoms;
|
||||
ptr_vector<expr> m_not_handled;
|
||||
ptr_vector<app> m_underspecified;
|
||||
ptr_vector<expr> m_idiv_terms;
|
||||
vector<ptr_vector<api_bound> > m_use_list; // bounds where variables are used.
|
||||
|
||||
// attributes for incremental version:
|
||||
|
@ -436,19 +434,23 @@ class theory_lra::imp {
|
|||
}
|
||||
else if (a.is_idiv(n, n1, n2)) {
|
||||
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
|
||||
m_idiv_terms.push_back(n);
|
||||
app_ref mod(a.mk_mod(n1, n2), m);
|
||||
ctx().internalize(mod, false);
|
||||
if (ctx().relevancy()) ctx().add_relevancy_dependency(n, mod);
|
||||
#if 1
|
||||
if (m_nla && !a.is_numeral(n2)) {
|
||||
// shortcut to create non-linear division axioms.
|
||||
theory_var r = mk_var(n);
|
||||
theory_var q = mk_var(n);
|
||||
theory_var x = mk_var(n1);
|
||||
theory_var y = mk_var(n2);
|
||||
m_nla->add_idivision(get_lpvar(n), get_lpvar(n1), get_lpvar(n2));
|
||||
m_nla->add_idivision(register_theory_var_in_lar_solver(q), register_theory_var_in_lar_solver(x), register_theory_var_in_lar_solver(y));
|
||||
}
|
||||
if (a.is_numeral(n2) && a.is_bounded(n1)) {
|
||||
ensure_nla();
|
||||
theory_var q = mk_var(n);
|
||||
theory_var x = mk_var(n1);
|
||||
theory_var y = mk_var(n2);
|
||||
m_nla->add_bounded_division(register_theory_var_in_lar_solver(q), register_theory_var_in_lar_solver(x), register_theory_var_in_lar_solver(y));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else if (a.is_mod(n, n1, n2)) {
|
||||
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
|
||||
|
@ -1077,7 +1079,6 @@ public:
|
|||
scope& sc = m_scopes.back();
|
||||
sc.m_bounds_lim = m_bounds_trail.size();
|
||||
sc.m_asserted_qhead = m_asserted_qhead;
|
||||
sc.m_idiv_lim = m_idiv_terms.size();
|
||||
sc.m_asserted_atoms_lim = m_asserted_atoms.size();
|
||||
lp().push();
|
||||
if (m_nla)
|
||||
|
@ -1092,7 +1093,6 @@ public:
|
|||
}
|
||||
unsigned old_size = m_scopes.size() - num_scopes;
|
||||
del_bounds(m_scopes[old_size].m_bounds_lim);
|
||||
m_idiv_terms.shrink(m_scopes[old_size].m_idiv_lim);
|
||||
m_asserted_atoms.shrink(m_scopes[old_size].m_asserted_atoms_lim);
|
||||
m_asserted_qhead = m_scopes[old_size].m_asserted_qhead;
|
||||
m_scopes.resize(old_size);
|
||||
|
@ -1480,7 +1480,7 @@ public:
|
|||
}
|
||||
|
||||
void random_update() {
|
||||
if (m_nla)
|
||||
if (m_nla && m_nla->need_check())
|
||||
return;
|
||||
m_tmp_var_set.clear();
|
||||
m_tmp_var_set.resize(th.get_num_vars());
|
||||
|
@ -1799,96 +1799,13 @@ public:
|
|||
*/
|
||||
|
||||
bool check_idiv_bounds() {
|
||||
if (m_idiv_terms.empty()) {
|
||||
if (!m_nla)
|
||||
return true;
|
||||
}
|
||||
bool all_divs_valid = true;
|
||||
unsigned count = 0;
|
||||
unsigned offset = ctx().get_random_value();
|
||||
for (unsigned j = 0; j < m_idiv_terms.size(); ++j) {
|
||||
unsigned i = (offset + j) % m_idiv_terms.size();
|
||||
expr* n = m_idiv_terms[i];
|
||||
if (false && !ctx().is_relevant(n))
|
||||
continue;
|
||||
expr* p = nullptr, *q = nullptr;
|
||||
VERIFY(a.is_idiv(n, p, q));
|
||||
theory_var v = internalize_def(to_app(n));
|
||||
theory_var v1 = internalize_def(to_app(p));
|
||||
|
||||
if (!is_registered_var(v1))
|
||||
continue;
|
||||
lp::impq r1 = get_ivalue(v1);
|
||||
rational r2;
|
||||
|
||||
if (!r1.x.is_int() || r1.x.is_neg() || !r1.y.is_zero()) {
|
||||
// TBD
|
||||
// r1 = 223/4, r2 = 2, r = 219/8
|
||||
// take ceil(r1), floor(r1), ceil(r2), floor(r2), for floor(r2) > 0
|
||||
// then
|
||||
// p/q <= ceil(r1)/floor(r2) => n <= div(ceil(r1), floor(r2))
|
||||
// p/q >= floor(r1)/ceil(r2) => n >= div(floor(r1), ceil(r2))
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
if (a.is_numeral(q, r2) && r2.is_pos()) {
|
||||
if (!a.is_bounded(n)) {
|
||||
TRACE("arith", tout << "unbounded " << expr_ref(n, m) << "\n";);
|
||||
continue;
|
||||
}
|
||||
if (!is_registered_var(v))
|
||||
continue;
|
||||
lp::impq val_v = get_ivalue(v);
|
||||
if (val_v.y.is_zero() && val_v.x == div(r1.x, r2))
|
||||
continue;
|
||||
|
||||
TRACE("arith", tout << get_value(v) << " != " << r1 << " div " << r2 << "\n";);
|
||||
rational div_r = div(r1.x, r2);
|
||||
// p <= q * div(r1, q) + q - 1 => div(p, q) <= div(r1, r2)
|
||||
// p >= q * div(r1, q) => div(r1, q) <= div(p, q)
|
||||
rational mul(1);
|
||||
rational hi = r2 * div_r + r2 - 1;
|
||||
rational lo = r2 * div_r;
|
||||
|
||||
// used to normalize inequalities so they
|
||||
// don't appear as 8*x >= 15, but x >= 2
|
||||
expr *n1 = nullptr, *n2 = nullptr;
|
||||
if (a.is_mul(p, n1, n2) && a.is_extended_numeral(n1, mul) && mul.is_pos()) {
|
||||
p = n2;
|
||||
hi = floor(hi/mul);
|
||||
lo = ceil(lo/mul);
|
||||
}
|
||||
literal p_le_r1 = mk_literal(a.mk_le(p, a.mk_numeral(hi, true)));
|
||||
literal p_ge_r1 = mk_literal(a.mk_ge(p, a.mk_numeral(lo, true)));
|
||||
literal n_le_div = mk_literal(a.mk_le(n, a.mk_numeral(div_r, true)));
|
||||
literal n_ge_div = mk_literal(a.mk_ge(n, a.mk_numeral(div_r, true)));
|
||||
{
|
||||
scoped_trace_stream _sts(th, ~p_le_r1, n_le_div);
|
||||
mk_axiom(~p_le_r1, n_le_div);
|
||||
}
|
||||
{
|
||||
scoped_trace_stream _sts(th, ~p_ge_r1, n_ge_div);
|
||||
mk_axiom(~p_ge_r1, n_ge_div);
|
||||
}
|
||||
|
||||
all_divs_valid = false;
|
||||
++count;
|
||||
|
||||
|
||||
TRACE("arith",
|
||||
tout << r1 << " div " << r2 << "\n";
|
||||
literal_vector lits;
|
||||
lits.push_back(~p_le_r1);
|
||||
lits.push_back(n_le_div);
|
||||
ctx().display_literals_verbose(tout, lits) << "\n\n";
|
||||
lits[0] = ~p_ge_r1;
|
||||
lits[1] = n_ge_div;
|
||||
ctx().display_literals_verbose(tout, lits) << "\n";);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
return all_divs_valid;
|
||||
m_nla_lemma_vector.reset();
|
||||
m_nla->check_bounded_divisions(m_nla_lemma_vector);
|
||||
for (auto & lemma : m_nla_lemma_vector)
|
||||
false_case_of_check_nla(lemma);
|
||||
return m_nla_lemma_vector.empty();
|
||||
}
|
||||
|
||||
expr_ref var2expr(lpvar v) {
|
||||
|
@ -2105,9 +2022,8 @@ public:
|
|||
lbool r = m_nla->check(m_nla_lemma_vector);
|
||||
switch (r) {
|
||||
case l_false: {
|
||||
for (const nla::lemma & l : m_nla_lemma_vector) {
|
||||
for (const nla::lemma & l : m_nla_lemma_vector)
|
||||
false_case_of_check_nla(l);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case l_true:
|
||||
|
@ -2126,11 +2042,11 @@ public:
|
|||
TRACE("arith", tout << "canceled\n";);
|
||||
return l_undef;
|
||||
}
|
||||
if (!m_nla) {
|
||||
TRACE("arith", tout << "no nla\n";);
|
||||
CTRACE("arith",!m_nla, tout << "no nla\n";);
|
||||
if (!m_nla)
|
||||
return l_true;
|
||||
if (!m_nla->need_check())
|
||||
return l_true;
|
||||
}
|
||||
if (!m_nla->need_check()) return l_true;
|
||||
return check_nla_continue();
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue