3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-25 01:55:32 +00:00

more scaffolding

This commit is contained in:
Nikolaj Bjorner 2021-03-21 11:31:14 -07:00
parent a1f484fa35
commit 2fef6dc502
16 changed files with 476 additions and 152 deletions

View file

@ -23,7 +23,7 @@ Revision History:
namespace dd {
pdd_manager::pdd_manager(unsigned num_vars, semantics s) {
pdd_manager::pdd_manager(unsigned num_vars, semantics s, unsigned power_of_2) {
m_spare_entry = nullptr;
m_max_num_nodes = 1 << 24; // up to 16M nodes
m_mark_level = 0;
@ -31,6 +31,8 @@ namespace dd {
m_disable_gc = false;
m_is_new_node = false;
m_semantics = s;
m_mod2N = rational::power_of_two(power_of_2);
m_power_of_2 = power_of_2;
unsigned_vector l2v;
for (unsigned i = 0; i < num_vars; ++i) l2v.push_back(i);
init_nodes(l2v);
@ -109,6 +111,56 @@ namespace dd {
pdd pdd_manager::mk_xor(pdd const& p, unsigned x) { pdd q(mk_val(x)); if (m_semantics == mod2_e) return p + q; return (p*q*2) - p - q; }
pdd pdd_manager::mk_not(pdd const& p) { return 1 - p; }
pdd pdd_manager::subst_val(pdd const& p, unsigned v, rational const& val) {
pdd r = mk_var(v) + val;
return pdd(apply(p.root, r.root, pdd_subst_val_op), this);
}
/**
* A polynomial is non-zero if the constant coefficient
* is a power of two such that none of the coefficients to
* non-constant monomials divide it.
* Example: 2^4*x + 2 is non-zero for every x.
*/
bool pdd_manager::is_non_zero(PDD p) {
if (is_val(p))
return !is_zero(p);
if (m_semantics != mod2N_e)
return false;
PDD q = p;
while (!is_val(q))
q = lo(q);
auto const& v = val(q);
if (v.is_zero())
return false;
unsigned p2 = v.trailing_zeros();
init_mark();
SASSERT(m_todo.empty());
m_todo.push_back(hi(p));
while (!is_val(lo(p))) {
p = lo(p);
m_todo.push_back(hi(p));
}
while (!m_todo.empty()) {
PDD r = m_todo.back();
m_todo.pop_back();
if (is_marked(r))
continue;
set_mark(r);
if (!is_val(r)) {
m_todo.push_back(lo(r));
m_todo.push_back(hi(r));
}
else if (val(r).trailing_zeros() <= p2) {
m_todo.reset();
return false;
}
}
return true;
}
pdd pdd_manager::subst_val(pdd const& p, vector<std::pair<unsigned, rational>> const& _s) {
typedef std::pair<unsigned, rational> pr;
vector<pr> s(_s);
@ -116,9 +168,8 @@ namespace dd {
[&](pr const& a, pr const& b) { return m_var2level[a.first] < m_var2level[b.first]; };
std::sort(s.begin(), s.end(), compare_level);
pdd r(one());
for (auto const& q : s) {
for (auto const& q : s)
r = (r*mk_var(q.first)) + q.second;
}
return pdd(apply(p.root, r.root, pdd_subst_val_op), this);
}
@ -256,7 +307,7 @@ namespace dd {
r = make_node(level_p, read(2), read(1));
}
else if (level_p == level_q) {
if (m_semantics != free_e) {
if (m_semantics != free_e && m_semantics != mod2N_e) {
//
// (xa+b)*(xc+d) == x(ac+bc+ad) + bd
// == x((a+b)(c+d)-bd) + bd
@ -334,9 +385,9 @@ namespace dd {
case pdd_subst_val_op:
SASSERT(!is_val(p));
SASSERT(!is_val(q));
SASSERT(level_p = level_q);
push(apply_rec(lo(p), hi(q), pdd_subst_val_op)); // lo := subst(lo(p), s)
push(apply_rec(hi(p), hi(q), pdd_subst_val_op)); // hi := subst(hi(p), s)
SASSERT(level_p == level_q);
push(apply_rec(lo(p), q, pdd_subst_val_op)); // lo := subst(lo(p), s)
push(apply_rec(hi(p), q, pdd_subst_val_op)); // hi := subst(hi(p), s)
push(apply_rec(lo(q), read(1), pdd_mul_op)); // hi := hi*s[var(p)]
r = apply_rec(read(1), read(3), pdd_add_op); // r := hi + lo := subst(lo(p),s) + s[var(p)]*subst(hi(p),s)
npop = 3;
@ -721,9 +772,14 @@ namespace dd {
}
pdd_manager::PDD pdd_manager::imk_val(rational const& r) {
if (r.is_zero()) return zero_pdd;
if (r.is_one()) return one_pdd;
if (m_semantics == mod2_e) return imk_val(mod(r, rational(2)));
if (r.is_zero())
return zero_pdd;
if (r.is_one())
return one_pdd;
if (m_semantics == mod2_e)
return imk_val(mod(r, rational(2)));
if (m_semantics == mod2N_e && (r < 0 || r >= m_mod2N))
return imk_val(mod(r, m_mod2N));
const_info info;
if (!m_mpq_table.find(r, info)) {
init_value(info, r);
@ -1073,13 +1129,12 @@ namespace dd {
auto mons = to_monomials(b);
bool first = true;
for (auto& m : mons) {
if (!first) {
if (m.first.is_neg()) out << " - ";
else out << " + ";
}
else {
if (m.first.is_neg()) out << "- ";
}
if (!first)
out << " ";
if (m.first.is_neg())
out << "- ";
else if (!first)
out << "+ ";
first = false;
rational c = abs(m.first);
m.second.reverse();

View file

@ -43,7 +43,7 @@ namespace dd {
class pdd_manager {
public:
enum semantics { free_e, mod2_e, zero_one_vars_e };
enum semantics { free_e, mod2_e, zero_one_vars_e, mod2N_e };
private:
friend test;
friend pdd;
@ -140,7 +140,7 @@ namespace dd {
typedef ptr_hashtable<op_entry, hash_entry, eq_entry> op_table;
svector<node> m_nodes;
svector<node> m_nodes;
vector<rational> m_values;
op_table m_op_cache;
node_table m_node_table;
@ -163,6 +163,8 @@ namespace dd {
unsigned_vector m_free_vars;
unsigned_vector m_free_values;
rational m_freeze_value;
rational m_mod2N;
unsigned m_power_of_2 { 0 };
void reset_op_cache();
void init_nodes(unsigned_vector const& l2v);
@ -204,6 +206,7 @@ namespace dd {
inline bool is_one(PDD p) const { return p == one_pdd; }
inline bool is_val(PDD p) const { return m_nodes[p].is_val(); }
inline bool is_internal(PDD p) const { return m_nodes[p].is_internal(); }
bool is_non_zero(PDD p);
inline unsigned level(PDD p) const { return m_nodes[p].m_level; }
inline unsigned var(PDD p) const { return m_level2var[level(p)]; }
inline PDD lo(PDD p) const { return m_nodes[p].m_lo; }
@ -252,7 +255,7 @@ namespace dd {
struct mem_out {};
pdd_manager(unsigned nodes, semantics s = free_e);
pdd_manager(unsigned nodes, semantics s = free_e, unsigned power_of_2 = 0);
~pdd_manager();
semantics get_semantics() const { return m_semantics; }
@ -278,6 +281,7 @@ namespace dd {
pdd mk_not(pdd const& p);
pdd reduce(pdd const& a, pdd const& b);
pdd subst_val(pdd const& a, vector<std::pair<unsigned, rational>> const& s);
pdd subst_val(pdd const& a, unsigned v, rational const& val);
bool is_linear(PDD p) { return degree(p) == 1; }
bool is_linear(pdd const& p);
@ -300,6 +304,8 @@ namespace dd {
double tree_size(pdd const& p);
unsigned num_vars() const { return m_var2pdd.size(); }
unsigned power_of_2() const { return m_power_of_2; }
unsigned_vector const& free_vars(pdd const& p);
std::ostream& display(std::ostream& out);
@ -334,6 +340,7 @@ namespace dd {
bool is_unary() const { return !is_val() && lo().is_zero() && hi().is_val(); }
bool is_binary() const { return m.is_binary(root); }
bool is_monomial() const { return m.is_monomial(root); }
bool is_non_zero() const { return m.is_non_zero(root); }
bool var_is_leaf(unsigned v) const { return m.var_is_leaf(root, v); }
pdd operator-() const { return m.minus(*this); }
@ -353,11 +360,14 @@ namespace dd {
bool different_leading_term(pdd const& other) const { return m.different_leading_term(*this, other); }
pdd subst_val(vector<std::pair<unsigned, rational>> const& s) const { return m.subst_val(*this, s); }
pdd subst_val(unsigned v, rational const& val) const { return m.subst_val(*this, v, val); }
std::ostream& display(std::ostream& out) const { return m.display(out, *this); }
bool operator==(pdd const& other) const { return root == other.root; }
bool operator!=(pdd const& other) const { return root != other.root; }
unsigned power_of_2() const { return m.power_of_2(); }
unsigned dag_size() const { return m.dag_size(*this); }
double tree_size() const { return m.tree_size(*this); }
unsigned degree() const { return m.degree(*this); }

View file

@ -19,28 +19,30 @@ Author:
namespace polysat {
std::ostream& poly::display(std::ostream& out) const {
return out;
}
std::ostream& constraint::display(std::ostream& out) const {
return out;
return out << "constraint";
}
std::ostream& linear::display(std::ostream& out) const {
return out;
return out << "linear";
}
std::ostream& mono::display(std::ostream& out) const {
return out;
return out << "mono";
}
unsigned solver::poly2size(poly const& p) const {
return 0;
dd::pdd_manager& solver::sz2pdd(unsigned sz) {
m_pdd.reserve(sz + 1);
if (!m_pdd[sz])
m_pdd.set(sz, alloc(dd::pdd_manager, 1000));
return *m_pdd[sz];
}
bool solver::is_viable(unsigned var, rational const& val) const {
return false;
bool solver::is_viable(unsigned var, rational const& val) {
bdd b = m_viable[var];
for (unsigned k = size(var); k-- > 0 && !b.is_false(); )
b &= val.get_bit(k) ? m_bdd.mk_var(k) : m_bdd.mk_nvar(k);
return !b.is_false();
}
struct solver::del_var : public trail {
@ -60,11 +62,10 @@ namespace polysat {
var_unassign(solver& s): s(s) {}
void undo() override { s.do_var_unassign(); }
};
solver::solver(trail_stack& s):
m_trail(s),
m_region(s.get_region()),
m_pdd(1000),
m_bdd(1000),
m_free_vars(m_activity) {
}
@ -77,20 +78,21 @@ namespace polysat {
unsigned solver::add_var(unsigned sz) {
unsigned v = m_viable.size();
// TODO: set var size sz into m_pdd.
m_value.push_back(rational::zero());
m_justification.push_back(justification::unassigned());
m_viable.push_back(m_bdd.mk_true());
m_vdeps.push_back(m_dep_manager.mk_empty());
m_pdeps.push_back(vector<poly>());
m_watch.push_back(unsigned_vector());
m_pdeps.push_back(vector<pdd>());
m_watch.push_back(ptr_vector<constraint>());
m_activity.push_back(0);
m_vars.push_back(m_pdd.mk_var(v));
m_vars.push_back(sz2pdd(sz).mk_var(v));
m_size.push_back(sz);
m_trail.push(del_var(*this));
return v;
}
void solver::do_del_var() {
// TODO also remove v from all learned constraints.
unsigned v = m_viable.size() - 1;
m_free_vars.del_var_eh(v);
m_viable.pop_back();
@ -101,34 +103,42 @@ namespace polysat {
m_watch.pop_back();
m_activity.pop_back();
m_vars.pop_back();
m_size.pop_back();
}
void solver::do_del_constraint() {
// TODO remove variables from watch lists
// TODO rewrite to allow for learned constraints
// so have to gc these.
constraint& c = *m_constraints.back();
if (c.vars().size() > 0)
erase_watch(c.vars()[0], c);
if (c.vars().size() > 1)
erase_watch(c.vars()[1], c);
m_constraints.pop_back();
m_cdeps.pop_back();
}
void solver::do_var_unassign() {
unsigned v = m_search.back();
m_justification[v] = justification::unassigned();
m_free_vars.unassign_var_eh(v);
}
poly solver::var(unsigned v) {
return poly(*this, m_vars[v]);
}
vector<mono> solver::poly2monos(poly const& p) const {
return vector<mono>();
}
void solver::add_eq(poly const& p, unsigned dep) {
m_constraints.push_back(constraint::eq(p));
m_cdeps.push_back(m_dep_manager.mk_leaf(dep));
// TODO init watch list
void solver::add_eq(pdd const& p, unsigned dep) {
//
// TODO reduce p using assignment (at current level,
// assuming constraint is removed also at current level).
//
constraint* c = constraint::eq(p, m_dep_manager.mk_leaf(dep));
m_constraints.push_back(c);
auto const& vars = c->vars();
if (vars.size() > 0)
m_watch[vars[0]].push_back(c);
if (vars.size() > 1)
m_watch[vars[1]].push_back(c);
m_trail.push(del_constraint(*this));
}
void solver::add_diseq(poly const& p, unsigned dep) {
void solver::add_diseq(pdd const& p, unsigned dep) {
#if 0
// Basically:
auto slack = add_var(p.size());
@ -138,40 +148,175 @@ namespace polysat {
#endif
}
void solver::add_ule(poly const& p, poly const& q, unsigned dep) {
void solver::add_ule(pdd const& p, pdd const& q, unsigned dep) {
// save for later
}
void solver::add_sle(poly const& p, poly const& q, unsigned dep) {
void solver::add_sle(pdd const& p, pdd const& q, unsigned dep) {
// save for later
}
void solver::assign(unsigned var, unsigned index, bool value, unsigned dep) {
m_viable[var] &= value ? m_bdd.mk_var(index) : m_bdd.mk_nvar(index);
m_trail.push(vector_value_trail<u_dependency*, false>(m_vdeps, var));
m_vdeps[var] = m_dep_manager.mk_join(m_vdeps[var], m_dep_manager.mk_leaf(dep));
if (m_viable[var].is_false()) {
// TBD: set conflict
}
}
bool solver::can_propagate() {
bool solver::can_propagate() {
return m_qhead < m_search.size() && !is_conflict();
}
void solver::propagate() {
m_trail.push(value_trail(m_qhead));
while (can_propagate())
propagate(m_search[m_qhead++]);
}
void solver::propagate(unsigned v) {
auto& wlist = m_watch[v];
unsigned i = 0, j = 0, sz = wlist.size();
for (; i < sz && !is_conflict(); ++i)
if (!propagate(v, *wlist[i]))
wlist[j++] = wlist[i];
for (; i < sz; ++i)
wlist[j++] = wlist[i];
wlist.shrink(j);
}
bool solver::propagate(unsigned v, constraint& c) {
switch (c.kind()) {
case ckind_t::eq_t:
return propagate_eq(v, c);
case ckind_t::ule_t:
case ckind_t::sle_t:
NOT_IMPLEMENTED_YET();
return false;
}
UNREACHABLE();
return false;
}
lbool solver::propagate() {
return l_false;
bool solver::propagate_eq(unsigned v, constraint& c) {
SASSERT(c.kind() == ckind_t::eq_t);
SSSERT(!c.vars().empty());
auto var = m_vars[v].var();
auto& vars = c.vars();
unsigned idx = 0;
if (vars[idx] != v)
idx = 1;
SASSERT(v == vars[idx]);
// find other watch variable.
for (unsigned i = var.size(); i-- > 2; ) {
if (!is_assigned(vars[i])) {
std::swap(vars[idx], vars[i]);
return true;
}
}
vector<std::pair<unsigned, rational>> sub;
for (auto w : vars)
if (is_assigned(w))
sub.push_back(std::make_pair(w, m_value[w]));
auto p = c.p().subst_val(sub);
if (p.is_zero())
return false;
if (p.is_non_zero()) {
// we could tag constraint to allow early substitution before
// swapping watch variable in case we can detect conflict earlier.
set_conflict(v, c);
return false;
}
// one variable remains unassigned.
auto other_var = vars[1 - idx];
SASSERT(!is_assigned(other_var));
// Detect and apply unit propagation.
if (!p.is_linear())
return false;
// a*x + b == 0
rational a = p.hi().val();
rational b = p.lo().val();
rational inv_a;
if (p.lo().val().is_odd()) {
// v1 = -b * inverse(a)
unsigned sz = p.power_of_2();
VERIFY(a.mult_inverse(sz, inv_a));
rational val = mod(inv_a * -b, rational::power_of_two(sz));
assign(other_var, val, justification::propagation(m_level, &c));
return false;
}
// TBD
// constrain viable using condition on x
// 2*x + 2 == 0 mod 4 => x is odd
return false;
}
void solver::inc_level() {
m_trail.push(value_trail(m_level));
++m_level;
}
void solver::erase_watch(unsigned v, constraint& c) {
if (v == UINT_MAX)
return;
auto& wlist = m_watch[v];
unsigned sz = wlist.size();
for (unsigned i = 0; i < sz; ++i) {
if (&c == wlist[i]) {
wlist[i] = wlist.back();
wlist.pop_back();
return;
}
}
}
bool solver::can_decide() {
return false;
return !m_free_vars.empty();
}
void solver::decide(rational & val, unsigned& var) {
SASSERT(can_decide());
inc_level();
var = m_free_vars.next_var();
auto viable = m_viable[var];
SASSERT(!viable.is_false());
// TBD, choose some value from viable and construct val.
assign_core(var, val, justification::decision(m_level));
}
void solver::assign(unsigned var, rational const& val) {
void solver::assign(unsigned var, rational const& val, justification const& j) {
if (is_viable(var, val))
assign_core(var, val, j);
else {
SASSERT(!j.is_decision());
// TBD: set conflict, assumes justification is a propagation.
}
}
void solver::assign_core(unsigned var, rational const& val, justification const& j) {
SASSERT(is_viable(var, val));
m_trail.push(var_unassign(*this));
m_search.push_back(var);
m_value[var] = val;
m_justification[var] = j;
}
bool solver::is_conflict() {
return false;
return m_conflict != nullptr;
}
void solver::set_conflict(unsigned v, constraint& c) {
m_conflict = &c;
m_conflict_var = v;
}
unsigned resolve_conflict(unsigned_vector& deps) {

View file

@ -19,6 +19,7 @@ Author:
#include "util/dependency.h"
#include "util/trail.h"
#include "util/lbool.h"
#include "util/scoped_ptr_vector.h"
#include "util/var_queue.h"
#include "math/dd/dd_pdd.h"
#include "math/dd/dd_bdd.h"
@ -29,38 +30,33 @@ namespace polysat {
typedef dd::pdd pdd;
typedef dd::bdd bdd;
class poly {
friend class solver;
solver& s;
pdd m_pdd;
public:
poly(solver& s, pdd const& p): s(s), m_pdd(p) {}
poly(solver& s, rational const& r, unsigned sz);
std::ostream& display(std::ostream& out) const;
unsigned size() const { throw default_exception("nyi query pdd for size"); }
poly operator*(rational const& r);
poly operator+(poly const& other) { return poly(s, m_pdd + other.m_pdd); }
poly operator*(poly const& other) { return poly(s, m_pdd * other.m_pdd); }
};
inline std::ostream& operator<<(std::ostream& out, poly const& p) { return p.display(out); }
enum ckind_t { eq_t, ule_t, sle_t };
class constraint {
ckind_t m_kind;
poly m_poly;
poly m_other;
constraint(poly const& p, poly const& q, ckind_t k): m_kind(k), m_poly(p), m_other(q) {}
unsigned m_v1, m_v2;
pdd m_poly;
pdd m_other;
u_dependency* m_dep;
unsigned_vector m_vars;
constraint(pdd const& p, pdd const& q, u_dependency* dep, ckind_t k):
m_kind(k), m_v1(UINT_MAX), m_v2(UINT_MAX), m_poly(p), m_other(q), m_dep(dep) {
m_vars.append(p.free_vars());
if (q != p)
for (auto v : q.free_vars())
m_vars.insert(v);
}
public:
static constraint eq(poly const& p) { return constraint(p, p, ckind_t::eq_t); }
static constraint ule(poly const& p, poly const& q) { return constraint(p, q, ckind_t::ule_t); }
static constraint* eq(pdd const& p, u_dependency* d) { return alloc(constraint, p, p, d, ckind_t::eq_t); }
static constraint* ule(pdd const& p, pdd const& q, u_dependency* d) { return alloc(constraint, p, q, d, ckind_t::ule_t); }
ckind_t kind() const { return m_kind; }
poly const & p() const { return m_poly; }
poly const & lhs() const { return m_poly; }
poly const & rhs() const { return m_other; }
pdd const & p() const { return m_poly; }
pdd const & lhs() const { return m_poly; }
pdd const & rhs() const { return m_other; }
std::ostream& display(std::ostream& out) const;
void set_poly(pdd const& p) { m_poly = p; }
u_dependency* dep() const { return m_dep; }
unsigned_vector& vars() { return m_vars; }
};
inline std::ostream& operator<<(std::ostream& out, constraint const& c) { return c.display(out); }
@ -98,63 +94,61 @@ namespace polysat {
class justification {
justification_k m_kind;
unsigned m_idx;
justification(justification_k k, unsigned constraint_idx): m_kind(k), m_idx(constraint_idx) {}
constraint* m_c { nullptr };
unsigned m_level;
justification(justification_k k, unsigned lvl, constraint* c): m_kind(k), m_c(c), m_level(lvl) {}
public:
justification(): m_kind(justification_k::unassigned), m_idx(0) {}
static justification unassigned() { return justification(justification_k::unassigned, 0); }
static justification decision() { return justification(justification_k::decision, 0); }
static justification propagation(unsigned idx) { return justification(justification_k::propagation, idx); }
justification(): m_kind(justification_k::unassigned), m_c(nullptr) {}
static justification unassigned() { return justification(justification_k::unassigned, 0, nullptr); }
static justification decision(unsigned lvl) { return justification(justification_k::decision, lvl, nullptr); }
static justification propagation(unsigned lvl, constraint* c) { return justification(justification_k::propagation, lvl, c); }
bool is_decision() const { return m_kind == justification_k::decision; }
bool is_unassigned() const { return m_kind == justification_k::unassigned; }
justification_k kind() const { return m_kind; }
unsigned constraint_index() const { return m_idx; }
constraint& get_constraint() const { return *m_c; }
unsigned level() const { return m_level; }
std::ostream& display(std::ostream& out) const;
};
inline std::ostream& operator<<(std::ostream& out, justification const& j) { return j.display(out); }
class solver {
friend class poly;
trail_stack& m_trail;
region& m_region;
dd::pdd_manager m_pdd;
scoped_ptr_vector<dd::pdd_manager> m_pdd;
dd::bdd_manager m_bdd;
u_dependency_manager m_dep_manager;
var_queue m_free_vars;
/**
* store of linear polynomials. The l_idx points to linear monomials.
* could also just use pdds.
*/
vector<linear> m_linear;
// Per constraint state
ptr_vector<u_dependency> m_cdeps; // each constraint has set of dependencies
vector<constraint> m_constraints;
scoped_ptr_vector<constraint> m_constraints;
// TODO: vector<constraint> m_redundant; // learned constraints
// Per variable information
vector<bdd> m_viable; // set of viable values.
ptr_vector<u_dependency> m_vdeps; // dependencies for viable values
vector<vector<poly>> m_pdeps; // dependencies in polynomial form
vector<vector<pdd>> m_pdeps; // dependencies in polynomial form
vector<rational> m_value; // assigned value
vector<justification> m_justification; // justification for variable assignment
vector<unsigned_vector> m_watch; // watch list datastructure into constraints.
vector<ptr_vector<constraint>> m_watch; // watch list datastructure into constraints.
unsigned_vector m_activity;
vector<pdd> m_vars;
unsigned_vector m_size; // store size of variables.
// search state that lists assigned variables
unsigned_vector m_search;
unsigned m_qhead { 0 };
unsigned m_level { 0 };
/**
* retrieve bit-size associated with polynomial.
*/
unsigned poly2size(poly const& p) const;
// conflict state
unsigned m_conflict_var { UINT_MAX };
constraint* m_conflict { nullptr };
unsigned size(unsigned var) const { return m_size[var]; }
/**
* check if value is viable according to m_viable.
*/
bool is_viable(unsigned var, rational const& val) const;
bool is_viable(unsigned var, rational const& val);
/**
* undo trail operations for backtracking.
@ -168,6 +162,23 @@ namespace polysat {
void do_del_constraint();
void do_var_unassign();
dd::pdd_manager& sz2pdd(unsigned sz);
void inc_level();
void assign(unsigned var, rational const& val, justification const& j);
void assign_core(unsigned var, rational const& val, justification const& j);
bool is_assigned(unsigned var) const { return !m_justification[var].is_unassigned(); }
void propagate(unsigned v);
bool propagate(unsigned v, constraint& c);
bool propagate_eq(unsigned v, constraint& c);
void erase_watch(unsigned v, constraint& c);
void set_conflict(unsigned v, constraint& c);
void clear_conflict() { m_conflict = nullptr; m_conflict_var = UINT_MAX; }
/**
* push / pop are used only in self-contained mode from check_sat.
*/
@ -198,33 +209,33 @@ namespace polysat {
/**
* Create polynomial terms
*/
poly var(unsigned v);
pdd var(unsigned v) { return m_vars[v]; }
/**
* deconstruct polynomials into sum of monomials.
*/
vector<mono> poly2monos(poly const& p) const;
/**
* Add polynomial constraints
* Each constraint is tracked by a dependency.
* assign sets the 'index'th bit of var.
*/
void add_eq(poly const& p, unsigned dep);
void add_diseq(poly const& p, unsigned dep);
void add_ule(poly const& p, poly const& q, unsigned dep);
void add_sle(poly const& p, poly const& q, unsigned dep);
void add_eq(pdd const& p, unsigned dep);
void add_diseq(pdd const& p, unsigned dep);
void add_ule(pdd const& p, pdd const& q, unsigned dep);
void add_sle(pdd const& p, pdd const& q, unsigned dep);
void assign(unsigned var, unsigned index, bool value, unsigned dep);
/**
* main state transitions.
*/
bool can_propagate();
lbool propagate();
bool can_propagate();
void propagate();
bool can_decide();
void decide(rational & val, unsigned& var);
void assign(unsigned var, rational const& val);
/**
* external decision
*/
void assign(unsigned var, rational const& val) { inc_level(); assign(var, val, justification::decision(m_level)); }
bool is_conflict();
/**