3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 09:05:31 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-04-03 17:26:54 -07:00
parent 83dcc7841a
commit 2df104d9f0
3 changed files with 130 additions and 66 deletions

View file

@ -45,6 +45,18 @@ namespace polysat {
return !b.is_false();
}
void solver::add_non_viable(unsigned var, rational const& val) {
bdd value = m_bdd.mk_true();
for (unsigned k = size(var); k-- > 0; )
value &= val.get_bit(k) ? m_bdd.mk_var(k) : m_bdd.mk_nvar(k);
m_viable[var] &= !value;
}
lbool solver::find_viable(unsigned var, rational & val) {
return l_false;
}
struct solver::t_del_var : public trail {
solver& s;
t_del_var(solver& s): s(s) {}
@ -55,6 +67,8 @@ namespace polysat {
solver::solver(trail_stack& s):
m_trail(s),
m_bdd(1000),
m_dep_manager(m_value_manager, m_alloc),
m_lemma_dep(nullptr, m_dep_manager),
m_free_vars(m_activity) {
}
@ -102,7 +116,8 @@ namespace polysat {
}
void solver::add_eq(pdd const& p, unsigned dep) {
constraint* c = constraint::eq(m_level, p, m_dep_manager.mk_leaf(dep));
p_dependency_ref d(m_dep_manager.mk_leaf(dep), m_dep_manager);
constraint* c = constraint::eq(m_level, p, d);
m_constraints.push_back(c);
add_watch(*c);
}
@ -135,7 +150,7 @@ namespace polysat {
void solver::assign(unsigned var, unsigned index, bool value, unsigned dep) {
m_viable[var] &= value ? m_bdd.mk_var(index) : m_bdd.mk_nvar(index);
m_trail.push(vector_value_trail<u_dependency*, false>(m_vdeps, var));
m_trail.push(vector_value_trail<p_dependency*, false>(m_vdeps, var));
m_vdeps[var] = m_dep_manager.mk_join(m_vdeps[var], m_dep_manager.mk_leaf(dep));
if (m_viable[var].is_false()) {
// TBD: set conflict
@ -357,8 +372,7 @@ namespace polysat {
m_conflict = nullptr;
pdd p = c.p();
m_lemma_level = c.level();
m_lemma_deps.reset();
m_lemma_deps.push_back(c.dep());
m_lemma_dep = c.dep();
unsigned new_lemma_level = 0;
reset_marks();
for (auto v : c.vars())
@ -442,29 +456,34 @@ namespace polysat {
auto v = m_search[i];
SASSERT(m_justification[v].is_decision());
SASSERT(m_lemma_level <= m_justification[v].level());
//
// TBD: convert m_lemma_deps into deps.
// the scope of the new constraint should be confined to
// m_lemma_level so could be below the current user scope.
// What to do in this case is TBD.
//
unsigned level = m_lemma_level;
u_dependency* deps = nullptr;
constraint* c = constraint::eq(level, p, deps);
constraint* c = constraint::eq(m_lemma_level, p, m_lemma_dep);
m_cjust[v].push_back(c);
add_lemma(c);
//
// TBD: remove current value from viable
// m_values[v]
//
// 1. undo levels until i
// 2. find a new decision if there is one,
// propagate if decision is singular,
// otherwise if there are no viable decisions, backjump
// and set a new conflict.
//
}
add_non_viable(v, m_value[v]);
// TBD conditions for when backjumping applies to be clarified.
unsigned new_level = m_justification[v].level();
backjump(new_level);
//
// find a new decision if there is one,
// propagate if decision is singular,
// otherwise if there are no viable decisions, backjump
// and set a new conflict.
//
rational value;
switch (find_viable(v, value)) {
case l_true:
// unit propagation
break;
case l_undef:
// branch
break;
case l_false:
// no viable.
break;
}
}
void solver::backjump(unsigned new_level) {
unsigned num_levels = m_level - new_level;
SASSERT(num_levels > 0);
@ -490,10 +509,6 @@ namespace polysat {
/**
* Return residue of superposing p and q with respect to v.
*
* TBD: should also collect dependencies (deps)
* and maximal level of constraints so learned lemma
* is given the appropriate level.
*/
pdd solver::resolve(unsigned v, pdd const& p, unsigned& resolve_level) {
resolve_level = 0;
@ -507,7 +522,7 @@ namespace polysat {
// add parity condition to presere falsification
degree = r.degree(v);
resolve_level = std::max(resolve_level, c->level());
m_lemma_deps.push_back(c->dep());
m_lemma_dep = m_dep_manager.mk_join(m_lemma_dep.get(), c->dep());
}
}
}
@ -538,14 +553,12 @@ namespace polysat {
void solver::push() {
push_level();
m_dep_manager.push_scope();
m_scopes.push_back(m_level);
}
void solver::pop(unsigned num_scopes) {
unsigned base_level = m_scopes[m_scopes.size() - num_scopes];
pop_levels(m_level - base_level - 1);
m_dep_manager.pop_scope(num_scopes);
}
bool solver::at_base_level() const {

View file

@ -30,6 +30,23 @@ namespace polysat {
typedef dd::pdd pdd;
typedef dd::bdd bdd;
struct dep_value_manager {
void inc_ref(unsigned) {}
void dec_ref(unsigned) {}
};
struct dep_config {
typedef dep_value_manager value_manager;
typedef unsigned value;
typedef small_object_allocator allocator;
static const bool ref_count = false;
};
typedef dependency_manager<dep_config> poly_dep_manager;
typedef poly_dep_manager::dependency p_dependency;
typedef obj_ref<p_dependency, poly_dep_manager> p_dependency_ref;
enum ckind_t { eq_t, ule_t, sle_t };
class constraint {
@ -37,20 +54,20 @@ namespace polysat {
ckind_t m_kind;
pdd m_poly;
pdd m_other;
u_dependency* m_dep;
p_dependency_ref m_dep;
unsigned_vector m_vars;
constraint(unsigned lvl, pdd const& p, pdd const& q, u_dependency* dep, ckind_t k):
constraint(unsigned lvl, pdd const& p, pdd const& q, p_dependency_ref& dep, ckind_t k):
m_level(lvl), m_kind(k), m_poly(p), m_other(q), m_dep(dep) {
m_vars.append(p.free_vars());
if (q != p)
for (auto v : q.free_vars())
m_vars.insert(v);
}
m_vars.insert(v);
}
public:
static constraint* eq(unsigned lvl, pdd const& p, u_dependency* d) {
static constraint* eq(unsigned lvl, pdd const& p, p_dependency_ref& d) {
return alloc(constraint, lvl, p, p, d, ckind_t::eq_t);
}
static constraint* ule(unsigned lvl, pdd const& p, pdd const& q, u_dependency* d) {
static constraint* ule(unsigned lvl, pdd const& p, pdd const& q, p_dependency_ref& d) {
return alloc(constraint, lvl, p, q, d, ckind_t::ule_t);
}
ckind_t kind() const { return m_kind; }
@ -58,7 +75,7 @@ namespace polysat {
pdd const & lhs() const { return m_poly; }
pdd const & rhs() const { return m_other; }
std::ostream& display(std::ostream& out) const;
u_dependency* dep() const { return m_dep; }
p_dependency* dep() const { return m_dep; }
unsigned_vector& vars() { return m_vars; }
unsigned level() const { return m_level; }
};
@ -97,7 +114,10 @@ namespace polysat {
trail_stack& m_trail;
scoped_ptr_vector<dd::pdd_manager> m_pdd;
dd::bdd_manager m_bdd;
u_dependency_manager m_dep_manager;
dep_value_manager m_value_manager;
small_object_allocator m_alloc;
poly_dep_manager m_dep_manager;
p_dependency_ref m_lemma_dep;
var_queue m_free_vars;
// Per constraint state
@ -106,7 +126,7 @@ namespace polysat {
// Per variable information
vector<bdd> m_viable; // set of viable values.
ptr_vector<u_dependency> m_vdeps; // dependencies for viable values
ptr_vector<p_dependency> m_vdeps; // dependencies for viable values
vector<rational> m_value; // assigned value
vector<justification> m_justification; // justification for variable assignment
vector<constraints> m_cjust; // constraints used for justification
@ -132,6 +152,20 @@ namespace polysat {
*/
bool is_viable(unsigned var, rational const& val);
/**
* register that val is non-viable for var.
*/
void add_non_viable(unsigned var, rational const& val);
/**
* Find a next viable value for varible.
* l_false - there are no viable values.
* l_true - there is only one viable value left.
* l_undef - there are multiple viable values, return a guess
*/
lbool find_viable(unsigned var, rational & val);
/**
* undo trail operations for backtracking.
* Each struct is a subclass of trail and implements undo().
@ -169,7 +203,6 @@ namespace polysat {
void set_mark(unsigned v) { m_marks[v] = m_clock; }
unsigned m_lemma_level { 0 };
ptr_vector<u_dependency> m_lemma_deps;
pdd isolate(unsigned v);
pdd resolve(unsigned v, pdd const& p, unsigned& resolve_level);

View file

@ -107,11 +107,8 @@ private:
}
void unmark_todo() {
typename ptr_vector<dependency>::iterator it = m_todo.begin();
typename ptr_vector<dependency>::iterator end = m_todo.end();
for (; it != end; ++it) {
(*it)->unmark();
}
for (auto* d : m_todo)
d->unmark();
m_todo.reset();
}
@ -193,30 +190,47 @@ public:
return false;
}
void linearize(dependency * d, vector<value, false> & vs) {
if (d) {
m_todo.reset();
d->mark();
m_todo.push_back(d);
unsigned qhead = 0;
while (qhead < m_todo.size()) {
d = m_todo[qhead];
qhead++;
if (d->is_leaf()) {
vs.push_back(to_leaf(d)->m_value);
}
else {
for (unsigned i = 0; i < 2; i++) {
dependency * child = to_join(d)->m_children[i];
if (!child->is_marked()) {
m_todo.push_back(child);
child->mark();
}
void linearize(vector<value, false>& vs) {
unsigned qhead = 0;
while (qhead < m_todo.size()) {
dependency * d = m_todo[qhead];
qhead++;
if (d->is_leaf()) {
vs.push_back(to_leaf(d)->m_value);
}
else {
for (unsigned i = 0; i < 2; i++) {
dependency * child = to_join(d)->m_children[i];
if (!child->is_marked()) {
m_todo.push_back(child);
child->mark();
}
}
}
unmark_todo();
}
unmark_todo();
}
void linearize(dependency * d, vector<value, false> & vs) {
if (!d)
return;
m_todo.reset();
d->mark();
m_todo.push_back(d);
linearize(vs);
}
void linearize(ptr_vector<dependency>& deps, vector<value, false> & vs) {
if (deps.empty())
return;
m_todo.reset();
for (auto* d : deps) {
if (d && !d->is_marked()) {
d->mark();
m_todo.push_back(d);
}
}
linearize(vs);
}
};
@ -303,6 +317,10 @@ public:
void linearize(dependency * d, vector<value, false> & vs) {
return m_dep_manager.linearize(d, vs);
}
void linearize(ptr_vector<dependency>& d, vector<value, false> & vs) {
return m_dep_manager.linearize(d, vs);
}
void reset() {
m_allocator.reset();