mirror of
https://github.com/Z3Prover/z3
synced 2025-04-18 14:49:01 +00:00
rm lp_primal_simplex
This commit is contained in:
parent
8989e10e71
commit
2dd30fa350
|
@ -1,35 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "math/lp/lp_primal_simplex_def.h"
|
||||
template bool lp::lp_primal_simplex<double, double>::bounds_hold(std::unordered_map<std::string, double, std::hash<std::string>, std::equal_to<std::string>, std::allocator<std::pair<std::string const, double> > > const&);
|
||||
template bool lp::lp_primal_simplex<double, double>::row_constraints_hold(std::unordered_map<std::string, double, std::hash<std::string>, std::equal_to<std::string>, std::allocator<std::pair<std::string const, double> > > const&);
|
||||
template double lp::lp_primal_simplex<double, double>::get_current_cost() const;
|
||||
template double lp::lp_primal_simplex<double, double>::get_column_value(unsigned int) const;
|
||||
template lp::lp_primal_simplex<double, double>::~lp_primal_simplex();
|
||||
template lp::lp_primal_simplex<lp::mpq, lp::mpq>::~lp_primal_simplex();
|
||||
template lp::mpq lp::lp_primal_simplex<lp::mpq, lp::mpq>::get_current_cost() const;
|
||||
template lp::mpq lp::lp_primal_simplex<lp::mpq, lp::mpq>::get_column_value(unsigned int) const;
|
||||
template void lp::lp_primal_simplex<double, double>::find_maximal_solution();
|
||||
template void lp::lp_primal_simplex<lp::mpq, lp::mpq>::find_maximal_solution();
|
|
@ -1,106 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "math/lp/lp_utils.h"
|
||||
#include "math/lp/column_info.h"
|
||||
#include "math/lp/lp_primal_core_solver.h"
|
||||
#include "math/lp/lp_solver.h"
|
||||
namespace lp {
|
||||
template <typename T, typename X>
|
||||
class lp_primal_simplex: public lp_solver<T, X> {
|
||||
lp_primal_core_solver<T, X> * m_core_solver;
|
||||
vector<X> m_lower_bounds;
|
||||
private:
|
||||
unsigned original_rows() { return this->m_external_rows_to_core_solver_rows.size(); }
|
||||
|
||||
void fill_costs_and_x_for_first_stage_solver(unsigned original_number_of_columns);
|
||||
|
||||
void init_buffer(unsigned k, vector<T> & r);
|
||||
|
||||
void refactor();
|
||||
|
||||
void set_scaled_costs();
|
||||
public:
|
||||
lp_primal_simplex(): m_core_solver(nullptr) {}
|
||||
|
||||
column_info<T> * get_or_create_column_info(unsigned column);
|
||||
|
||||
void set_status(lp_status status) {
|
||||
this->m_status = status;
|
||||
}
|
||||
|
||||
lp_status get_status() {
|
||||
return this->m_status;
|
||||
}
|
||||
|
||||
void fill_acceptable_values_for_x();
|
||||
|
||||
|
||||
void set_zero_bound(bool * bound_is_set, T * bounds, unsigned i);
|
||||
|
||||
void fill_costs_and_x_for_first_stage_solver_for_row(
|
||||
int row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial);
|
||||
|
||||
|
||||
|
||||
|
||||
void set_core_solver_bounds();
|
||||
|
||||
void find_maximal_solution() override;
|
||||
|
||||
void fill_A_x_and_basis_for_stage_one_total_inf();
|
||||
|
||||
void fill_A_x_and_basis_for_stage_one_total_inf_for_row(unsigned row);
|
||||
|
||||
void solve_with_total_inf();
|
||||
|
||||
|
||||
~lp_primal_simplex() override;
|
||||
|
||||
bool bounds_hold(std::unordered_map<std::string, T> const & solution);
|
||||
|
||||
T get_row_value(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream * out);
|
||||
|
||||
bool row_constraint_holds(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream * out);
|
||||
|
||||
bool row_constraints_hold(std::unordered_map<std::string, T> const & solution);
|
||||
|
||||
|
||||
T * get_array_from_map(std::unordered_map<std::string, T> const & solution);
|
||||
|
||||
bool solution_is_feasible(std::unordered_map<std::string, T> const & solution) {
|
||||
return bounds_hold(solution) && row_constraints_hold(solution);
|
||||
}
|
||||
|
||||
T get_column_value(unsigned column) const override {
|
||||
return this->get_column_value_with_core_solver(column, m_core_solver);
|
||||
}
|
||||
|
||||
T get_current_cost() const override;
|
||||
|
||||
|
||||
};
|
||||
}
|
|
@ -1,367 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "math/lp/lp_primal_simplex.h"
|
||||
|
||||
namespace lp {
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x_for_first_stage_solver(unsigned original_number_of_columns) {
|
||||
unsigned slack_var = original_number_of_columns;
|
||||
unsigned artificial = original_number_of_columns + this->m_slacks;
|
||||
|
||||
for (unsigned row = 0; row < this->row_count(); row++) {
|
||||
fill_costs_and_x_for_first_stage_solver_for_row(row, slack_var, artificial);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::init_buffer(unsigned k, vector<T> & r) {
|
||||
for (unsigned i = 0; i < k; i++) {
|
||||
r[i] = 0;
|
||||
}
|
||||
r[k] = 1;
|
||||
for (unsigned i = this->row_count() -1; i > k; i--) {
|
||||
r[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::refactor() {
|
||||
m_core_solver->init_lu();
|
||||
if (m_core_solver->factorization()->get_status() != LU_status::OK) {
|
||||
throw_exception("cannot refactor");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::set_scaled_costs() {
|
||||
unsigned j = this->number_of_core_structurals();
|
||||
while (j-- > 0) {
|
||||
this->set_scaled_cost(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> column_info<T> * lp_primal_simplex<T, X>::get_or_create_column_info(unsigned column) {
|
||||
auto it = this->m_columns.find(column);
|
||||
return (it == this->m_columns.end())? ( this->m_columns[column] = new column_info<T>) : it->second;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_acceptable_values_for_x() {
|
||||
for (auto t : this->m_core_solver_columns_to_external_columns) {
|
||||
this->m_x[t.first] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::set_zero_bound(bool * bound_is_set, T * bounds, unsigned i) {
|
||||
bound_is_set[i] = true;
|
||||
bounds[i] = numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x_for_first_stage_solver_for_row(
|
||||
int row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial) {
|
||||
lp_assert(row >= 0 && row < this->row_count());
|
||||
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
|
||||
// we need to bring the program to the form Ax = b
|
||||
T rs = this->m_b[row];
|
||||
T artificial_cost = - numeric_traits<T>::one();
|
||||
switch (constraint.m_relation) {
|
||||
case Equal: // no slack variable here
|
||||
this->m_column_types[artificial] = column_type::lower_bound;
|
||||
this->m_costs[artificial] = artificial_cost; // we are maximizing, so the artificial, which is non-negatiive, will be pushed to zero
|
||||
this->m_basis[row] = artificial;
|
||||
if (rs >= 0) {
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
this->m_x[artificial] = rs;
|
||||
} else {
|
||||
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
||||
this->m_x[artificial] = - rs;
|
||||
}
|
||||
artificial++;
|
||||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
this->m_column_types[slack_var] = column_type::lower_bound;
|
||||
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
|
||||
|
||||
if (rs > 0) {
|
||||
lp_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
// adding one artificial
|
||||
this->m_column_types[artificial] = column_type::lower_bound;
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
this->m_costs[artificial] = artificial_cost;
|
||||
this->m_basis[row] = artificial;
|
||||
this->m_x[artificial] = rs;
|
||||
artificial++;
|
||||
} else {
|
||||
// we can put a slack_var into the basis, and atemplate <typename T, typename X> void lp_primal_simplex<T, X>::adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_x[slack_var] = - rs;
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
case Less_or_equal:
|
||||
// introduce a non-negative slack variable
|
||||
this->m_column_types[slack_var] = column_type::lower_bound;
|
||||
(*this->m_A)(row, slack_var) = numeric_traits<T>::one();
|
||||
|
||||
if (rs < 0) {
|
||||
// adding one artificial
|
||||
lp_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
this->m_column_types[artificial] = column_type::lower_bound;
|
||||
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
||||
this->m_costs[artificial] = artificial_cost;
|
||||
this->m_x[artificial] = - rs;
|
||||
this->m_basis[row] = artificial++;
|
||||
} else {
|
||||
// we can put slack_var into the basis, and atemplate <typename T, typename X> void lp_primal_simplex<T, X>::adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_x[slack_var] = rs;
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::set_core_solver_bounds() {
|
||||
unsigned total_vars = this->m_A->column_count() + this->m_slacks + this->m_artificials;
|
||||
this->m_column_types.resize(total_vars);
|
||||
this->m_upper_bounds.resize(total_vars);
|
||||
for (auto cit : this->m_map_from_var_index_to_column_info) {
|
||||
column_info<T> * ci = cit.second;
|
||||
unsigned j = ci->get_column_index();
|
||||
if (!is_valid(j))
|
||||
continue; // the variable is not mapped to a column
|
||||
switch (this->m_column_types[j] = ci->get_column_type()){
|
||||
case column_type::fixed:
|
||||
this->m_upper_bounds[j] = numeric_traits<T>::zero();
|
||||
break;
|
||||
case column_type::boxed:
|
||||
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
|
||||
break;
|
||||
|
||||
default: break; // do nothing
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::find_maximal_solution() {
|
||||
if (this->problem_is_empty()) {
|
||||
this->m_status = lp_status::EMPTY;
|
||||
return;
|
||||
}
|
||||
|
||||
this->cleanup();
|
||||
this->fill_matrix_A_and_init_right_side();
|
||||
if (this->m_status == lp_status::INFEASIBLE) {
|
||||
return;
|
||||
}
|
||||
this->m_x.resize(this->m_A->column_count());
|
||||
this->fill_m_b();
|
||||
this->scale();
|
||||
fill_acceptable_values_for_x();
|
||||
this->count_slacks_and_artificials();
|
||||
set_core_solver_bounds();
|
||||
solve_with_total_inf();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_basis_for_stage_one_total_inf() {
|
||||
for (unsigned row = 0; row < this->row_count(); row++)
|
||||
fill_A_x_and_basis_for_stage_one_total_inf_for_row(row);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_basis_for_stage_one_total_inf_for_row(unsigned row) {
|
||||
lp_assert(row < this->row_count());
|
||||
auto ext_row_it = this->m_core_solver_rows_to_external_rows.find(row);
|
||||
lp_assert(ext_row_it != this->m_core_solver_rows_to_external_rows.end());
|
||||
unsigned ext_row = ext_row_it->second;
|
||||
auto constr_it = this->m_constraints.find(ext_row);
|
||||
lp_assert(constr_it != this->m_constraints.end());
|
||||
auto & constraint = constr_it->second;
|
||||
unsigned j = this->m_A->column_count(); // j is a slack variable
|
||||
this->m_A->add_column();
|
||||
// we need to bring the program to the form Ax = b
|
||||
this->m_basis[row] = j;
|
||||
switch (constraint.m_relation) {
|
||||
case Equal:
|
||||
this->m_x[j] = this->m_b[row];
|
||||
(*this->m_A)(row, j) = numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::fixed;
|
||||
this->m_upper_bounds[j] = m_lower_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
this->m_x[j] = - this->m_b[row];
|
||||
(*this->m_A)(row, j) = - numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::lower_bound;
|
||||
this->m_upper_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
case Less_or_equal:
|
||||
this->m_x[j] = this->m_b[row];
|
||||
(*this->m_A)(row, j) = numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::lower_bound;
|
||||
this->m_upper_bounds[j] = m_lower_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
default:
|
||||
lp_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::solve_with_total_inf() {
|
||||
int total_vars = this->m_A->column_count() + this->row_count();
|
||||
if (total_vars == 0) {
|
||||
this->m_status = lp_status::OPTIMAL;
|
||||
return;
|
||||
}
|
||||
m_lower_bounds.clear();
|
||||
m_lower_bounds.resize(total_vars, zero_of_type<X>()); // low bounds are shifted ot zero
|
||||
this->m_x.resize(total_vars, numeric_traits<T>::zero());
|
||||
this->m_basis.resize(this->row_count());
|
||||
this->m_costs.clear();
|
||||
this->m_costs.resize(total_vars, zero_of_type<T>());
|
||||
fill_A_x_and_basis_for_stage_one_total_inf();
|
||||
if (this->m_settings.get_message_ostream() != nullptr)
|
||||
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
|
||||
set_scaled_costs();
|
||||
|
||||
m_core_solver = new lp_primal_core_solver<T, X>(*this->m_A,
|
||||
this->m_b,
|
||||
this->m_x,
|
||||
this->m_basis,
|
||||
this->m_nbasis,
|
||||
this->m_heading,
|
||||
this->m_costs,
|
||||
this->m_column_types,
|
||||
m_lower_bounds,
|
||||
this->m_upper_bounds,
|
||||
this->m_settings, *this);
|
||||
m_core_solver->solve();
|
||||
this->set_status(m_core_solver->get_status());
|
||||
this->m_total_iterations = m_core_solver->total_iterations();
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> lp_primal_simplex<T, X>::~lp_primal_simplex() {
|
||||
delete m_core_solver;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_simplex<T, X>::bounds_hold(std::unordered_map<std::string, T> const & solution) {
|
||||
for (auto it : this->m_map_from_var_index_to_column_info) {
|
||||
auto sol_it = solution.find(it.second->get_name());
|
||||
if (sol_it == solution.end()) {
|
||||
std::stringstream s;
|
||||
s << "cannot find column " << it.first << " in solution";
|
||||
throw_exception(s.str() );
|
||||
}
|
||||
|
||||
if (!it.second->bounds_hold(sol_it->second)) {
|
||||
it.second->bounds_hold(sol_it->second);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_primal_simplex<T, X>::get_row_value(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream * out) {
|
||||
auto it = this->m_A_values.find(i);
|
||||
if (it == this->m_A_values.end()) {
|
||||
std::stringstream s;
|
||||
s << "cannot find row " << i;
|
||||
throw_exception(s.str() );
|
||||
}
|
||||
T ret = numeric_traits<T>::zero();
|
||||
for (auto & pair : it->second) {
|
||||
auto cit = this->m_map_from_var_index_to_column_info.find(pair.first);
|
||||
lp_assert(cit != this->m_map_from_var_index_to_column_info.end());
|
||||
column_info<T> * ci = cit->second;
|
||||
auto sol_it = solution.find(ci->get_name());
|
||||
lp_assert(sol_it != solution.end());
|
||||
T column_val = sol_it->second;
|
||||
if (out != nullptr) {
|
||||
(*out) << pair.second << "(" << ci->get_name() << "=" << column_val << ") ";
|
||||
}
|
||||
ret += pair.second * column_val;
|
||||
}
|
||||
if (out != nullptr) {
|
||||
(*out) << " = " << ret << std::endl;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_simplex<T, X>::row_constraint_holds(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream *out) {
|
||||
T row_val = get_row_value(i, solution, out);
|
||||
auto & constraint = this->m_constraints[i];
|
||||
T rs = constraint.m_rs;
|
||||
bool print = out != nullptr;
|
||||
switch (constraint.m_relation) {
|
||||
case Equal:
|
||||
if (fabs(numeric_traits<T>::get_double(row_val - rs)) > 0.00001) {
|
||||
if (print) {
|
||||
(*out) << "should be = " << rs << std::endl;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
case Greater_or_equal:
|
||||
if (numeric_traits<T>::get_double(row_val - rs) < -0.00001) {
|
||||
if (print) {
|
||||
(*out) << "should be >= " << rs << std::endl;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;;
|
||||
|
||||
case Less_or_equal:
|
||||
if (numeric_traits<T>::get_double(row_val - rs) > 0.00001) {
|
||||
if (print) {
|
||||
(*out) << "should be <= " << rs << std::endl;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;;
|
||||
}
|
||||
lp_unreachable();
|
||||
return false; // it is unreachable
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_simplex<T, X>::row_constraints_hold(std::unordered_map<std::string, T> const & solution) {
|
||||
for (auto it : this->m_A_values) {
|
||||
if (!row_constraint_holds(it.first, solution, nullptr)) {
|
||||
row_constraint_holds(it.first, solution, nullptr);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_primal_simplex<T, X>::get_current_cost() const {
|
||||
T ret = numeric_traits<T>::zero();
|
||||
for (auto it : this->m_map_from_var_index_to_column_info) {
|
||||
ret += this->get_column_cost_value(it.first, it.second);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
|
@ -20,7 +20,6 @@ Author:
|
|||
#include "ast/ast_trail.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "math/lp/lp_solver.h"
|
||||
#include "math/lp/lp_primal_simplex.h"
|
||||
#include "math/lp/indexed_value.h"
|
||||
#include "math/lp/lar_solver.h"
|
||||
#include "math/lp/nla_solver.h"
|
||||
|
|
|
@ -20,7 +20,6 @@ Author:
|
|||
#include "ast/ast_trail.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "math/lp/lp_solver.h"
|
||||
#include "math/lp/lp_primal_simplex.h"
|
||||
#include "math/lp/indexed_value.h"
|
||||
#include "math/lp/lar_solver.h"
|
||||
#include "math/lp/nla_solver.h"
|
||||
|
|
|
@ -20,7 +20,6 @@
|
|||
--*/
|
||||
#include "util/stopwatch.h"
|
||||
#include "math/lp/lp_solver.h"
|
||||
#include "math/lp/lp_primal_simplex.h"
|
||||
#include "math/lp/indexed_value.h"
|
||||
#include "math/lp/lar_solver.h"
|
||||
#include "math/lp/nla_solver.h"
|
||||
|
|
|
@ -33,7 +33,6 @@
|
|||
#include <stdlib.h>
|
||||
#include <utility>
|
||||
#include "math/lp/lp_utils.h"
|
||||
#include "math/lp/lp_primal_simplex.h"
|
||||
#include "test/lp/smt_reader.h"
|
||||
#include "math/lp/binary_heap_priority_queue.h"
|
||||
#include "test/lp/argument_parser.h"
|
||||
|
|
|
@ -23,7 +23,6 @@ Revision History:
|
|||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include "math/lp/lp_primal_simplex.h"
|
||||
#include "math/lp/lar_solver.h"
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
|
Loading…
Reference in a new issue