3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-06 22:23:22 +00:00

Cleanup of theory_axiom_reducer proof trasfomation

This commit is contained in:
Arie Gurfinkel 2018-05-16 13:58:13 -07:00
parent 07ad67ebad
commit 2db38fedd6
2 changed files with 63 additions and 54 deletions

View file

@ -66,89 +66,96 @@ bool is_farkas_lemma(ast_manager& m, proof* pr)
* ==================================== * ====================================
*/ */
void theory_axiom_reducer::reset() void theory_axiom_reducer::reset() {
{
m_cache.reset(); m_cache.reset();
m_pinned.reset(); m_pinned.reset();
} }
proof_ref theory_axiom_reducer::reduce(proof* pr) // -- rewrite theory axioms into theory lemmas
{ proof_ref theory_axiom_reducer::reduce(proof* pr) {
proof_post_order pit(pr, m); proof_post_order pit(pr, m);
while (pit.hasNext()) while (pit.hasNext()) {
{
proof* p = pit.next(); proof* p = pit.next();
if (m.get_num_parents(p) == 0 && is_arith_lemma(m, p)) if (m.get_num_parents(p) == 0 && is_arith_lemma(m, p)) {
{
// we have an arith-theory-axiom and want to get rid of it // we have an arith-theory-axiom and want to get rid of it
// we need to replace the axiom with 1a) corresponding hypothesis', 1b) a theory lemma and a 1c) a lemma. Furthermore update datastructures // we need to replace the axiom with
app *cls_fact = to_app(m.get_fact(p)); // (a) corresponding hypothesis,
// (b) a theory lemma, and
// (c) a lemma.
// Furthermore update data-structures
app *fact = to_app(m.get_fact(p));
ptr_buffer<expr> cls; ptr_buffer<expr> cls;
if (m.is_or(cls_fact)) { if (m.is_or(fact)) {
for (unsigned i = 0, sz = cls_fact->get_num_args(); i < sz; ++i) for (unsigned i = 0, sz = fact->get_num_args(); i < sz; ++i)
{ cls.push_back(cls_fact->get_arg(i)); } cls.push_back(fact->get_arg(i));
} else { cls.push_back(cls_fact); } }
else
cls.push_back(fact);
// 1a) create hypothesis' // (a) create hypothesis
ptr_buffer<proof> hyps; ptr_buffer<proof> hyps;
for (unsigned i=0; i < cls.size(); ++i) for (unsigned i = 0, sz = cls.size(); i < sz; ++i) {
{ expr *c;
expr* hyp_fact = m.is_not(cls[i]) ? to_app(cls[i])->get_arg(0) : m.mk_not(cls[i]); expr_ref hyp_fact(m);
if (m.is_not(cls[i], c))
hyp_fact = c;
else
hyp_fact = m.mk_not (cls[i]);
proof* hyp = m.mk_hypothesis(hyp_fact); proof* hyp = m.mk_hypothesis(hyp_fact);
m_pinned.push_back(hyp); m_pinned.push_back(hyp);
hyps.push_back(hyp); hyps.push_back(hyp);
} }
// 1b) create farkas lemma: need to rebuild parameters since mk_th_lemma adds tid as first parameter // (b) create farkas lemma. Rebuild parameters since
// mk_th_lemma() adds tid as first parameter
unsigned num_params = p->get_decl()->get_num_parameters(); unsigned num_params = p->get_decl()->get_num_parameters();
parameter const* params = p->get_decl()->get_parameters(); parameter const* params = p->get_decl()->get_parameters();
vector<parameter> parameters; vector<parameter> parameters;
for (unsigned i = 1; i < num_params; ++i) { for (unsigned i = 1; i < num_params; ++i) parameters.push_back(params[i]);
parameters.push_back(params[i]);
}
SASSERT(params[0].is_symbol()); SASSERT(params[0].is_symbol());
family_id tid = m.mk_family_id(params[0].get_symbol()); family_id tid = m.mk_family_id(params[0].get_symbol());
SASSERT(tid != null_family_id); SASSERT(tid != null_family_id);
proof* th_lemma = m.mk_th_lemma(tid, m.mk_false(),hyps.size(), hyps.c_ptr(), num_params-1, parameters.c_ptr()); proof* th_lemma = m.mk_th_lemma(tid, m.mk_false(),
hyps.size(), hyps.c_ptr(),
num_params-1, parameters.c_ptr());
m_pinned.push_back(th_lemma);
SASSERT(is_arith_lemma(m, th_lemma)); SASSERT(is_arith_lemma(m, th_lemma));
// 1c) create lemma // (c) create lemma
proof* res = m.mk_lemma(th_lemma, cls_fact); proof* res = m.mk_lemma(th_lemma, fact);
SASSERT(m.get_fact(res) == m.get_fact(p));
m_pinned.push_back(res); m_pinned.push_back(res);
m_cache.insert(p, res); m_cache.insert(p, res);
SASSERT(m.get_fact(res) == m.get_fact(p));
} }
else else {
{ // proof is dirty, if a subproof of one of its premises
bool dirty = false; // proof is dirty, if a subproof of one of its premises has been transformed // has been transformed
bool dirty = false;
ptr_buffer<expr> args; ptr_buffer<expr> args;
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) {
{ proof *pp, *tmp;
proof* pp = m.get_parent(p, i); pp = m.get_parent(p, i);
proof* tmp; VERIFY(m_cache.find(pp, tmp));
if (m_cache.find(pp, tmp))
{
args.push_back(tmp); args.push_back(tmp);
dirty = dirty || pp != tmp; dirty |= (pp != tmp);
} }
else // if not dirty just use the old step
{ if (!dirty) m_cache.insert(p, p);
SASSERT(false); // otherwise create new proof with the corresponding proofs
} // of the premises
} else {
if (!dirty) // if not dirty just use the old step if (m.has_fact(p)) args.push_back(m.get_fact(p));
{
m_cache.insert(p, p);
}
else // otherwise create new step with the corresponding proofs of the premises
{
if (m.has_fact(p)) { args.push_back(m.get_fact(p)); }
SASSERT(p->get_decl()->get_arity() == args.size()); SASSERT(p->get_decl()->get_arity() == args.size());
proof* res = m.mk_app(p->get_decl(), args.size(), (expr * const*)args.c_ptr());
proof* res = m.mk_app(p->get_decl(),
args.size(), (expr * const*)args.c_ptr());
m_pinned.push_back(res); m_pinned.push_back(res);
m_cache.insert(p, res); m_cache.insert(p, res);
} }
@ -157,12 +164,13 @@ proof_ref theory_axiom_reducer::reduce(proof* pr)
proof* res; proof* res;
VERIFY(m_cache.find(pr,res)); VERIFY(m_cache.find(pr,res));
DEBUG_CODE(proof_checker pc(m); DEBUG_CODE(
proof_checker pc(m);
expr_ref_vector side(m); expr_ref_vector side(m);
SASSERT(pc.check(res, side)); SASSERT(pc.check(res, side));
); );
return proof_ref(res,m); return proof_ref(res, m);
} }
void hypothesis_reducer::reset() void hypothesis_reducer::reset()

View file

@ -25,6 +25,7 @@ namespace spacer {
bool is_arith_lemma(ast_manager& m, proof* pr); bool is_arith_lemma(ast_manager& m, proof* pr);
bool is_farkas_lemma(ast_manager& m, proof* pr); bool is_farkas_lemma(ast_manager& m, proof* pr);
/// rewrites theory axioms into theory lemmas
class theory_axiom_reducer { class theory_axiom_reducer {
public: public:
theory_axiom_reducer(ast_manager& m) : m(m), m_pinned(m) {} theory_axiom_reducer(ast_manager& m) : m(m), m_pinned(m) {}