mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
Cleanup of theory_axiom_reducer proof trasfomation
This commit is contained in:
parent
07ad67ebad
commit
2db38fedd6
2 changed files with 63 additions and 54 deletions
|
@ -66,89 +66,96 @@ bool is_farkas_lemma(ast_manager& m, proof* pr)
|
|||
* ====================================
|
||||
*/
|
||||
|
||||
void theory_axiom_reducer::reset()
|
||||
{
|
||||
void theory_axiom_reducer::reset() {
|
||||
m_cache.reset();
|
||||
m_pinned.reset();
|
||||
}
|
||||
|
||||
proof_ref theory_axiom_reducer::reduce(proof* pr)
|
||||
{
|
||||
// -- rewrite theory axioms into theory lemmas
|
||||
proof_ref theory_axiom_reducer::reduce(proof* pr) {
|
||||
proof_post_order pit(pr, m);
|
||||
while (pit.hasNext())
|
||||
{
|
||||
while (pit.hasNext()) {
|
||||
proof* p = pit.next();
|
||||
|
||||
if (m.get_num_parents(p) == 0 && is_arith_lemma(m, p))
|
||||
{
|
||||
if (m.get_num_parents(p) == 0 && is_arith_lemma(m, p)) {
|
||||
// we have an arith-theory-axiom and want to get rid of it
|
||||
// we need to replace the axiom with 1a) corresponding hypothesis', 1b) a theory lemma and a 1c) a lemma. Furthermore update datastructures
|
||||
app *cls_fact = to_app(m.get_fact(p));
|
||||
// we need to replace the axiom with
|
||||
// (a) corresponding hypothesis,
|
||||
// (b) a theory lemma, and
|
||||
// (c) a lemma.
|
||||
// Furthermore update data-structures
|
||||
app *fact = to_app(m.get_fact(p));
|
||||
ptr_buffer<expr> cls;
|
||||
if (m.is_or(cls_fact)) {
|
||||
for (unsigned i = 0, sz = cls_fact->get_num_args(); i < sz; ++i)
|
||||
{ cls.push_back(cls_fact->get_arg(i)); }
|
||||
} else { cls.push_back(cls_fact); }
|
||||
if (m.is_or(fact)) {
|
||||
for (unsigned i = 0, sz = fact->get_num_args(); i < sz; ++i)
|
||||
cls.push_back(fact->get_arg(i));
|
||||
}
|
||||
else
|
||||
cls.push_back(fact);
|
||||
|
||||
// 1a) create hypothesis'
|
||||
// (a) create hypothesis
|
||||
ptr_buffer<proof> hyps;
|
||||
for (unsigned i=0; i < cls.size(); ++i)
|
||||
{
|
||||
expr* hyp_fact = m.is_not(cls[i]) ? to_app(cls[i])->get_arg(0) : m.mk_not(cls[i]);
|
||||
for (unsigned i = 0, sz = cls.size(); i < sz; ++i) {
|
||||
expr *c;
|
||||
expr_ref hyp_fact(m);
|
||||
if (m.is_not(cls[i], c))
|
||||
hyp_fact = c;
|
||||
else
|
||||
hyp_fact = m.mk_not (cls[i]);
|
||||
|
||||
proof* hyp = m.mk_hypothesis(hyp_fact);
|
||||
m_pinned.push_back(hyp);
|
||||
hyps.push_back(hyp);
|
||||
}
|
||||
|
||||
// 1b) create farkas lemma: need to rebuild parameters since mk_th_lemma adds tid as first parameter
|
||||
// (b) create farkas lemma. Rebuild parameters since
|
||||
// mk_th_lemma() adds tid as first parameter
|
||||
unsigned num_params = p->get_decl()->get_num_parameters();
|
||||
parameter const* params = p->get_decl()->get_parameters();
|
||||
vector<parameter> parameters;
|
||||
for (unsigned i = 1; i < num_params; ++i) {
|
||||
parameters.push_back(params[i]);
|
||||
}
|
||||
for (unsigned i = 1; i < num_params; ++i) parameters.push_back(params[i]);
|
||||
|
||||
SASSERT(params[0].is_symbol());
|
||||
family_id tid = m.mk_family_id(params[0].get_symbol());
|
||||
SASSERT(tid != null_family_id);
|
||||
|
||||
proof* th_lemma = m.mk_th_lemma(tid, m.mk_false(),hyps.size(), hyps.c_ptr(), num_params-1, parameters.c_ptr());
|
||||
proof* th_lemma = m.mk_th_lemma(tid, m.mk_false(),
|
||||
hyps.size(), hyps.c_ptr(),
|
||||
num_params-1, parameters.c_ptr());
|
||||
m_pinned.push_back(th_lemma);
|
||||
SASSERT(is_arith_lemma(m, th_lemma));
|
||||
|
||||
// 1c) create lemma
|
||||
proof* res = m.mk_lemma(th_lemma, cls_fact);
|
||||
SASSERT(m.get_fact(res) == m.get_fact(p));
|
||||
// (c) create lemma
|
||||
proof* res = m.mk_lemma(th_lemma, fact);
|
||||
m_pinned.push_back(res);
|
||||
m_cache.insert(p, res);
|
||||
|
||||
SASSERT(m.get_fact(res) == m.get_fact(p));
|
||||
}
|
||||
else
|
||||
{
|
||||
bool dirty = false; // proof is dirty, if a subproof of one of its premises has been transformed
|
||||
else {
|
||||
// proof is dirty, if a subproof of one of its premises
|
||||
// has been transformed
|
||||
bool dirty = false;
|
||||
|
||||
ptr_buffer<expr> args;
|
||||
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i)
|
||||
{
|
||||
proof* pp = m.get_parent(p, i);
|
||||
proof* tmp;
|
||||
if (m_cache.find(pp, tmp))
|
||||
{
|
||||
args.push_back(tmp);
|
||||
dirty = dirty || pp != tmp;
|
||||
}
|
||||
else
|
||||
{
|
||||
SASSERT(false);
|
||||
}
|
||||
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) {
|
||||
proof *pp, *tmp;
|
||||
pp = m.get_parent(p, i);
|
||||
VERIFY(m_cache.find(pp, tmp));
|
||||
args.push_back(tmp);
|
||||
dirty |= (pp != tmp);
|
||||
}
|
||||
if (!dirty) // if not dirty just use the old step
|
||||
{
|
||||
m_cache.insert(p, p);
|
||||
}
|
||||
else // otherwise create new step with the corresponding proofs of the premises
|
||||
{
|
||||
if (m.has_fact(p)) { args.push_back(m.get_fact(p)); }
|
||||
// if not dirty just use the old step
|
||||
if (!dirty) m_cache.insert(p, p);
|
||||
// otherwise create new proof with the corresponding proofs
|
||||
// of the premises
|
||||
else {
|
||||
if (m.has_fact(p)) args.push_back(m.get_fact(p));
|
||||
|
||||
SASSERT(p->get_decl()->get_arity() == args.size());
|
||||
proof* res = m.mk_app(p->get_decl(), args.size(), (expr * const*)args.c_ptr());
|
||||
|
||||
proof* res = m.mk_app(p->get_decl(),
|
||||
args.size(), (expr * const*)args.c_ptr());
|
||||
m_pinned.push_back(res);
|
||||
m_cache.insert(p, res);
|
||||
}
|
||||
|
@ -157,12 +164,13 @@ proof_ref theory_axiom_reducer::reduce(proof* pr)
|
|||
|
||||
proof* res;
|
||||
VERIFY(m_cache.find(pr,res));
|
||||
DEBUG_CODE(proof_checker pc(m);
|
||||
expr_ref_vector side(m);
|
||||
SASSERT(pc.check(res, side));
|
||||
DEBUG_CODE(
|
||||
proof_checker pc(m);
|
||||
expr_ref_vector side(m);
|
||||
SASSERT(pc.check(res, side));
|
||||
);
|
||||
|
||||
return proof_ref(res,m);
|
||||
return proof_ref(res, m);
|
||||
}
|
||||
|
||||
void hypothesis_reducer::reset()
|
||||
|
|
|
@ -25,6 +25,7 @@ namespace spacer {
|
|||
bool is_arith_lemma(ast_manager& m, proof* pr);
|
||||
bool is_farkas_lemma(ast_manager& m, proof* pr);
|
||||
|
||||
/// rewrites theory axioms into theory lemmas
|
||||
class theory_axiom_reducer {
|
||||
public:
|
||||
theory_axiom_reducer(ast_manager& m) : m(m), m_pinned(m) {}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue