3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-26 13:06:05 +00:00

set up worker thread batch manager for multithreaded batch cubes paradigm, need to debug as I am getting segfault still

This commit is contained in:
Ilana Shapiro 2025-07-29 16:45:38 -07:00
parent 36fbee3a2d
commit 2c188a525e
2 changed files with 132 additions and 20 deletions

View file

@ -102,8 +102,8 @@ namespace smt {
}
};
auto cube_batch_pq = [&](context& ctx, expr_ref_vector& lasms, expr_ref& c) {
unsigned k = 4; // Number of top literals you want
auto cube_pq = [&](context& ctx, expr_ref_vector& lasms, expr_ref& c) {
unsigned k = 3; // Number of top literals you want
ast_manager& m = ctx.get_manager();
// Get the entire fixed-size priority queue (it's not that big)
@ -132,7 +132,7 @@ namespace smt {
lasms.push_back(c);
};
auto cube_batch = [&](context& ctx, expr_ref_vector& lasms, expr_ref& c) {
auto cube_score = [&](context& ctx, expr_ref_vector& lasms, expr_ref& c) {
std::vector<std::pair<expr_ref, double>> candidates;
unsigned k = 4; // Get top-k scoring literals
ast_manager& m = ctx.get_manager();
@ -201,7 +201,7 @@ namespace smt {
for (unsigned j = unit_lim[i]; j < sz; ++j) {
expr_ref src(ctx.m), dst(pctx.m);
dst = tr(unit_trail.get(j));
pctx.assert_expr(dst);
pctx.assert_expr(dst); // Assert that the conjunction of the assumptions in this unsat core is not satisfiable — prune it from future search
}
unit_lim[i] = pctx.assigned_literals().size();
}
@ -211,43 +211,47 @@ namespace smt {
std::mutex mux;
// Lambda defining the work each SMT thread performs
auto worker_thread = [&](int i) {
auto worker_thread = [&](int i, expr_ref_vector cube_batch) {
try {
std::cout << "Starting thread " << i <<"\n";
// Get thread-specific context and AST manager
context& pctx = *pctxs[i];
ast_manager& pm = *pms[i];
// Initialize local assumptions and cube
expr_ref_vector lasms(pasms[i]);
expr_ref c(pm);
expr_ref c(mk_or(cube_batch), pm);
lasms.push_back(c); // <-- add cube to assumptions
// Set the max conflict limit for this thread
pctx.get_fparams().m_max_conflicts = std::min(thread_max_conflicts, max_conflicts);
// Periodically generate cubes based on frequency
if (num_rounds > 0 && (num_rounds % pctx.get_fparams().m_threads_cube_frequency) == 0)
cube_batch(pctx, lasms, c);
// Optional verbose logging
IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i;
if (num_rounds > 0) verbose_stream() << " :round " << num_rounds;
if (c) verbose_stream() << " :cube " << mk_bounded_pp(c, pm, 3);
verbose_stream() << ")\n";);
// Check satisfiability of assumptions
auto intersects = [&](const expr_ref_vector &a, const expr_ref_vector &b) {
for (expr *e : a) {
if (b.contains(e)) return true;
}
return false;
};
lbool r = pctx.check(lasms.size(), lasms.data());
// Handle results based on outcome and conflict count
if (r == l_undef && pctx.m_num_conflicts >= max_conflicts)
; // no-op, allow loop to continue
else if (r == l_undef && pctx.m_num_conflicts >= thread_max_conflicts)
return; // quit thread early
// If cube was unsat and it's in the core, learn from it
else if (r == l_false && pctx.unsat_core().contains(c)) {
return r; // quit thread early
// If cube was unsat and it's in the core, learn from it. i.e. a thread can be UNSAT because the cube c contradicted F. In this case learn the negation of the cube ¬c
// TAKE THE INTERSECTION INSTEAD OF CHECKING MEMBERSHIP, SEE WHITEBOARD NOTES
else if (r == l_false && intersects(cube_batch, pctx.unsat_core())) { // pctx.unsat_core().contains(c)) { THIS IS THE VERSION FOR SINGLE LITERAL CUBES
IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i << " :learn " << mk_bounded_pp(c, pm, 3) << ")");
pctx.assert_expr(mk_not(mk_and(pctx.unsat_core())));
return;
return r;
}
// Begin thread-safe update of shared result state
@ -264,7 +268,7 @@ namespace smt {
finished_id = i;
result = r;
}
else if (!first) return; // nothing new to contribute
else if (!first) return r; // nothing new to contribute
}
// Cancel limits on other threads now that a result is known
@ -272,6 +276,7 @@ namespace smt {
if (m != &pm) m->limit().cancel();
}
return r;
} catch (z3_error & err) {
if (finished_id == UINT_MAX) {
error_code = err.error_code();
@ -291,16 +296,117 @@ namespace smt {
done = true;
}
}
return l_undef; // Return undef if an exception occurred
};
struct BatchManager {
std::mutex mtx;
std::vector<expr_ref_vector> batches;
size_t batch_idx = 0;
size_t batch_size = 1; // num batches
BatchManager(size_t batch_size) : batch_size(batch_size) {}
// translate the next SINGLE batch of batch_size cubes to the thread
expr_ref_vector get_next_batch(
ast_manager &main_ctx_m,
ast_manager &thread_m
) {
std::lock_guard<std::mutex> lock(mtx);
expr_ref_vector cube_batch(thread_m); // ensure bound to thread manager
for (expr* cube : batches[batch_idx]) {
cube_batch.push_back(
expr_ref(translate(cube, main_ctx_m, thread_m), thread_m)
);
}
++batch_idx;
return cube_batch;
}
expr_ref_vector cube_batch_pq(context& ctx) {
unsigned k = 3; // generates 2^k cubes in the batch
ast_manager& m = ctx.get_manager();
auto candidates = ctx.m_pq_scores.get_heap();
std::sort(candidates.begin(), candidates.end(),
[](const auto& a, const auto& b) { return a.priority > b.priority; });
expr_ref_vector top_lits(m);
for (const auto& node : candidates) {
if (ctx.get_assignment(node.key) != l_undef) continue;
expr* e = ctx.bool_var2expr(node.key);
if (!e) continue;
top_lits.push_back(expr_ref(e, m));
if (top_lits.size() >= k) break;
}
std::cout << "Top lits:\n";
for (size_t j = 0; j < top_lits.size(); ++j) {
std::cout << " [" << j << "] " << top_lits[j].get() << "\n";
}
unsigned num_lits = top_lits.size();
unsigned num_cubes = 1 << num_lits; // 2^num_lits combinations
expr_ref_vector cube_batch(m);
for (unsigned mask = 0; mask < num_cubes; ++mask) {
expr_ref_vector cube_conj(m);
for (unsigned i = 0; i < num_lits; ++i) {
expr_ref lit(top_lits[i].get(), m);
if ((mask >> i) & 1)
cube_conj.push_back(mk_not(lit));
else
cube_conj.push_back(lit);
}
cube_batch.push_back(mk_and(cube_conj));
}
std::cout << "Cubes out:\n";
for (size_t j = 0; j < cube_batch.size(); ++j) {
std::cout << " [" << j << "] " << cube_batch[j].get() << "\n";
}
return cube_batch;
};
std::vector<expr_ref_vector> gen_new_batches(context& main_ctx) {
std::lock_guard<std::mutex> lock(mtx);
std::vector<expr_ref_vector> cube_batches;
size_t num_batches = 0;
while (num_batches < batch_size) {
expr_ref_vector cube_batch = cube_batch_pq(main_ctx);
cube_batches.push_back(cube_batch);
num_batches += cube_batch.size();
}
return cube_batches;
}
};
BatchManager batch_manager(1);
batch_manager.batches = batch_manager.gen_new_batches(ctx);
// Thread scheduling loop
while (true) {
vector<std::thread> threads(num_threads);
std::vector<std::thread> threads(num_threads);
// Launch threads
for (unsigned i = 0; i < num_threads; ++i) {
// [&, i] is the lambda's capture clause: capture all variables by reference (&) except i, which is captured by value.
threads[i] = std::thread([&, i]() { worker_thread(i); });
threads[i] = std::thread([&, i]() {
while (!done) {
auto next_batch = batch_manager.get_next_batch(ctx.m, *pms[i]);
if (next_batch.empty()) break; // No more work
lbool r = worker_thread(i, next_batch);
}
});
}
// Wait for all threads to finish
@ -315,7 +421,7 @@ namespace smt {
collect_units();
++num_rounds;
max_conflicts = (max_conflicts < thread_max_conflicts) ? 0 : (max_conflicts - thread_max_conflicts);
thread_max_conflicts *= 2;
thread_max_conflicts *= 2;
}
// Gather statistics from all solver contexts