mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
Regex solver updates (#4636)
* std::cout debugging statements * comment out std::cout debugging as this is now a shared fork * convert std::cout to TRACE statements for seq_rewriter and seq_regex * add cases to min_length and max_length for regexes * bug fix * update min_length and max_length functions for REs * initial pass on simplifying derivative normal forms by eliminating redundant predicates locally * add seq_regex_brief trace statements * working on debugging ref count issue * fix ref count bug and convert trace statements to seq_regex_brief * add compact tracing for cache hits/misses * seq_regex fix cache hit/miss tracing and wrapper around is_nullable * minor * label and disable more experimental changes for testing * minor documentation / tracing * a few more @EXP annotations * dead state elimination skeleton code * progress on dead state elimination * more progress on dead state elimination * refactor dead state class to separate self-contained state_graph class * finish factoring state_graph to only work with unsigned values, and implement separate functionality for expr* logic * implement get_all_derivatives, add debug tracing * trace statements for debugging is_nullable loop bug * fix is_nullable loop bug * comment out local nullable change and mark experimental * pretty printing for state_graph * rewrite state graph to remove the fragile assumption that all edges from a state are added at a time * start of general cycle detection check + fix some comments * implement full cycle detection procedure * normalize derivative conditions to form 'ele <= a' * order derivative conditions by character code * fix confusing names m_to and m_from * assign increasing state IDs from 1 instead of using get_id on AST node * remove elim_condition call in get_dall_derivatives * use u_map instead of uint_map to avoid memory leak * remove unnecessary call to is_ground * debugging * small improvements to seq_regex_brief tracing * fix bug on evil2 example * save work * new propagate code * work in progress on using same seq sort for deriv calls * avoid re-computing derivatives: use same head var for every derivative call * use min_length on regexes to prune search * simple implementation of can_be_in_cycle using rank function idea * add a disabled experimental change * minor cleanup comments, etc. * seq_rewriter cleanup for PR * typo noticed by Nikolaj * move state graph to util/state_graph * re-add accidentally removed line * clean up seq_regex code removing obsolete functions and comments * a few more cleanup items * oops, missed merge change to fix compilation * disabled change to lift unions to the top level and treat them seperately in seq_regex solver * added get_overapprox_regex to over-approximate regex membership constraints * replace calls to is_epsilon with a centrally available method in seq_decl_plugin * simplifications and modifications in get_overapprox_regex and related * added approximation support for sequence expressions that use ite * removed is_app check that was redundant * tweak differences with upstream * rewrite derivative leaves * enable Antimorov-style derivatives via lifting unions in the solver * TODO placeholders for outputting state graph * change order in seq_regex propagate_in_re * implement a more restricted form of Antimorov derivatives via a special op code to indicate lifting unions * minor * new Antimorov optimizations based on BDD compatibility checking * seq regex tracing for # of derivatives * fix get_cofactors (currently this fix is buggy) * partially revert get_cofactors buggy change * re-implement get_cofactors to more efficiently explore nodes in the derivative expression * dgml generation for state graph * fix release build * improved dgml output * bug fixes in dgml generation * dot output support for state_graph and moved dgml and dot output under CASSERT * updated tracing of what regex corresponds to what state id with /tr:state_graph * clean up & document Antimorov derivative support * remove op cache tracing * remove re_rank experimental idea * small fix * fix Antimorov derivative (important change for the good performance) * remove unused and unnecessary code * implemented simpler efficient get_cofactors alternative mk_deriv_accept * simplifications in propagate_accept, and trace unusual cases * document the various seq_regex tracing & debugging command-line options * fix debug build (broken tracing) * guard eager Antimorov lifting for possible disabling * fix bug in propagate_accept Rule 1 * disable eager version of Antimorov lifting for performance reasons * remove some remaining obsolete comments Co-authored-by: calebstanford-msr <t-casta@microsoft.com> Co-authored-by: Margus Veanes <margus@microsoft.com>
This commit is contained in:
parent
9df6c10ad8
commit
2c02264a94
7 changed files with 556 additions and 140 deletions
|
@ -557,6 +557,12 @@ br_status seq_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * con
|
|||
st = mk_re_concat(args[0], args[1], result);
|
||||
}
|
||||
break;
|
||||
case _OP_RE_ANTIMOROV_UNION:
|
||||
SASSERT(num_args == 2);
|
||||
// Rewrite Antimorov union to real union
|
||||
result = re().mk_union(args[0], args[1]);
|
||||
st = BR_REWRITE1;
|
||||
break;
|
||||
case OP_RE_UNION:
|
||||
if (num_args == 1) {
|
||||
result = args[0];
|
||||
|
@ -2365,11 +2371,26 @@ br_status seq_rewriter::mk_re_reverse(expr* r, expr_ref& result) {
|
|||
}
|
||||
}
|
||||
|
||||
/***************************************************
|
||||
***** Begin Derivative Code *****
|
||||
***************************************************/
|
||||
|
||||
/*
|
||||
Symbolic derivative: seq -> regex -> regex
|
||||
seq should be single char
|
||||
*/
|
||||
|
||||
This is the rewriter entrypoint for computing a derivative.
|
||||
Use mk_derivative from seq_decl_plugin instead to create a derivative
|
||||
expression without computing it (simplifying).
|
||||
|
||||
This calls mk_derivative, the main logic which builds a derivative
|
||||
recursively, but mk_derivative doesn't guarantee full simplification.
|
||||
Once the derivative is built, we return BR_REWRITE_FULL so that
|
||||
any remaining possible simplification is performed from the bottom up.
|
||||
|
||||
Rewriting also replaces _OP_RE_ANTIMOROV_UNION, which is produced
|
||||
by is_derivative, with real union.
|
||||
*/
|
||||
br_status seq_rewriter::mk_re_derivative(expr* ele, expr* r, expr_ref& result) {
|
||||
result = mk_derivative(ele, r);
|
||||
// TBD: we may even declare BR_DONE here and potentially miss some simplifications
|
||||
|
@ -2377,14 +2398,105 @@ br_status seq_rewriter::mk_re_derivative(expr* ele, expr* r, expr_ref& result) {
|
|||
}
|
||||
|
||||
/*
|
||||
Memoized, recursive implementation of the symbolic derivative such that
|
||||
the result is in an optimized BDD form.
|
||||
Note: Derivative Normal Form
|
||||
|
||||
Definition of BDD form:
|
||||
if-then-elses are pushed outwards
|
||||
and sorted by condition ID (cond->get_id()), from largest on
|
||||
the outside to smallest on the inside.
|
||||
Duplicate nested conditions are eliminated.
|
||||
When computing derivatives recursively, we preserve the following
|
||||
BDD normal form:
|
||||
|
||||
- At the top level, the derivative is a union of Antimorov derivatives
|
||||
(Conceptually each element of the union is a different derivative).
|
||||
We currently express this derivative using an internal op code:
|
||||
_OP_RE_ANTIMOROV_UNION
|
||||
- An Antimorov derivative is a nested if-then-else term.
|
||||
if-then-elses are pushed outwards and sorted by condition ID
|
||||
(cond->get_id()), from largest on the outside to smallest on the
|
||||
inside. Duplicate nested conditions are eliminated.
|
||||
- The leaves of the if-then-else BDD can have unions themselves,
|
||||
but these are interpreted as Regex union, not as separate Antimorov
|
||||
derivatives.
|
||||
|
||||
To debug the normal form, call Z3 with -dbg:seq_regex:
|
||||
this calls check_deriv_normal_form (below) periodically.
|
||||
|
||||
The main logic is in mk_der_op_rec for combining normal forms
|
||||
(some also in mk_der_compl_rec).
|
||||
*/
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
/*
|
||||
Debugging to check the derivative normal form that we assume
|
||||
(see definition above).
|
||||
|
||||
This may fail on unusual/unexpected REs, such as those containing
|
||||
regex variables, but this is by design as this is only checked
|
||||
during debugging, and we have not considered how normal form
|
||||
should apply in such cases.
|
||||
*/
|
||||
bool seq_rewriter::check_deriv_normal_form(expr* r, int level) {
|
||||
if (level == 3) { // top level
|
||||
STRACE("seq_verbose", tout
|
||||
<< "Checking derivative normal form invariant...";);
|
||||
}
|
||||
expr *r1 = nullptr, *r2 = nullptr, *p = nullptr, *s = nullptr;
|
||||
unsigned lo = 0, hi = 0;
|
||||
STRACE("seq_verbose", tout << " (level " << level << ")";);
|
||||
int new_level = 0;
|
||||
if (re().is_antimorov_union(r)) {
|
||||
SASSERT(level >= 2);
|
||||
new_level = 2;
|
||||
}
|
||||
else if (m().is_ite(r)) {
|
||||
SASSERT(level >= 1);
|
||||
new_level = 1;
|
||||
}
|
||||
|
||||
SASSERT(!re().is_diff(r));
|
||||
SASSERT(!re().is_opt(r));
|
||||
SASSERT(!re().is_plus(r));
|
||||
|
||||
if (re().is_antimorov_union(r, r1, r2) ||
|
||||
re().is_concat(r, r1, r2) ||
|
||||
re().is_union(r, r1, r2) ||
|
||||
re().is_intersection(r, r1, r2) ||
|
||||
m().is_ite(r, p, r1, r2)) {
|
||||
check_deriv_normal_form(r1, new_level);
|
||||
check_deriv_normal_form(r2, new_level);
|
||||
}
|
||||
else if (re().is_star(r, r1) ||
|
||||
re().is_complement(r, r1) ||
|
||||
re().is_loop(r, r1, lo) ||
|
||||
re().is_loop(r, r1, lo, hi)) {
|
||||
check_deriv_normal_form(r1, new_level);
|
||||
}
|
||||
else if (re().is_reverse(r, r1)) {
|
||||
SASSERT(re().is_to_re(r1));
|
||||
}
|
||||
else if (re().is_full_seq(r) ||
|
||||
re().is_empty(r) ||
|
||||
re().is_range(r) ||
|
||||
re().is_full_char(r) ||
|
||||
re().is_of_pred(r) ||
|
||||
re().is_to_re(r, s)) {
|
||||
// OK
|
||||
}
|
||||
else {
|
||||
SASSERT(false);
|
||||
}
|
||||
if (level == 3) {
|
||||
STRACE("seq_verbose", tout << " passed!" << std::endl;);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
Memoized, recursive implementation of the symbolic derivative such that
|
||||
the result is in normal form.
|
||||
|
||||
Functions without _rec are memoized wrappers, which call the _rec
|
||||
version if lookup fails.
|
||||
|
||||
The main logic is in mk_der_op_rec for combining normal forms.
|
||||
*/
|
||||
expr_ref seq_rewriter::mk_derivative(expr* ele, expr* r) {
|
||||
STRACE("seq_verbose", tout << "derivative: " << mk_pp(ele, m())
|
||||
|
@ -2396,9 +2508,14 @@ expr_ref seq_rewriter::mk_derivative(expr* ele, expr* r) {
|
|||
}
|
||||
STRACE("seq_verbose", tout << "derivative result: "
|
||||
<< mk_pp(result, m()) << std::endl;);
|
||||
CASSERT("seq_regex", check_deriv_normal_form(r));
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_der_antimorov_union(expr* r1, expr* r2) {
|
||||
return mk_der_op(_OP_RE_ANTIMOROV_UNION, r1, r2);
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_der_union(expr* r1, expr* r2) {
|
||||
return mk_der_op(OP_RE_UNION, r1, r2);
|
||||
}
|
||||
|
@ -2466,15 +2583,37 @@ bool seq_rewriter::pred_implies(expr* a, expr* b) {
|
|||
}
|
||||
|
||||
/*
|
||||
Apply a binary operation, preserving BDD normal form on derivative expressions.
|
||||
Utility function to decide if two BDDs (nested if-then-else terms)
|
||||
have exactly the same structure and conditions.
|
||||
*/
|
||||
bool seq_rewriter::ite_bdds_compatabile(expr* a, expr* b) {
|
||||
expr* ca = nullptr, *a1 = nullptr, *a2 = nullptr;
|
||||
expr* cb = nullptr, *b1 = nullptr, *b2 = nullptr;
|
||||
if (m().is_ite(a, ca, a1, a2) && m().is_ite(b, cb, b1, b2)) {
|
||||
return (ca == cb) && ite_bdds_compatabile(a1, b1)
|
||||
&& ite_bdds_compatabile(a2, b2);
|
||||
}
|
||||
else if (m().is_ite(a) || m().is_ite(b)) {
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Apply a binary operation, preserving normal form on derivative expressions.
|
||||
|
||||
Preconditions:
|
||||
- k is a binary op code on REs: one of concat, intersection, or union
|
||||
(not difference)
|
||||
- a and b are in BDD form
|
||||
- k is one of the following binary op codes on REs:
|
||||
OP_RE_INTERSECT
|
||||
OP_RE_UNION
|
||||
OP_RE_CONCAT
|
||||
_OP_RE_ANTIMOROV_UNION
|
||||
- a and b are in normal form (check_deriv_normal_form)
|
||||
|
||||
Postcondition:
|
||||
- result is in BDD form
|
||||
- result is in normal form (check_deriv_normal_form)
|
||||
*/
|
||||
expr_ref seq_rewriter::mk_der_op_rec(decl_kind k, expr* a, expr* b) {
|
||||
STRACE("seq_verbose", tout << "mk_der_op_rec: " << k
|
||||
|
@ -2483,6 +2622,7 @@ expr_ref seq_rewriter::mk_der_op_rec(decl_kind k, expr* a, expr* b) {
|
|||
expr* ca = nullptr, *a1 = nullptr, *a2 = nullptr;
|
||||
expr* cb = nullptr, *b1 = nullptr, *b2 = nullptr;
|
||||
expr_ref result(m());
|
||||
|
||||
// Simplify if-then-elses whenever possible
|
||||
auto mk_ite = [&](expr* c, expr* a, expr* b) {
|
||||
return (a == b) ? a : m().mk_ite(c, a, b);
|
||||
|
@ -2497,6 +2637,46 @@ expr_ref seq_rewriter::mk_der_op_rec(decl_kind k, expr* a, expr* b) {
|
|||
m().is_not(e, e);
|
||||
return e->get_id();
|
||||
};
|
||||
|
||||
// Choose when to lift a union to the top level, by converting
|
||||
// it to an Antimorov union
|
||||
// This implements a restricted form of Antimorov derivatives
|
||||
if (k == OP_RE_UNION) {
|
||||
if (re().is_antimorov_union(a) || re().is_antimorov_union(b)) {
|
||||
k = _OP_RE_ANTIMOROV_UNION;
|
||||
}
|
||||
#if 0
|
||||
// Disabled: eager Antimorov lifting unless BDDs are compatible
|
||||
// Note: the check for BDD compatibility could be made more
|
||||
// sophisticated: in an Antimorov union of n terms, we really
|
||||
// want to check if any pair of them is compatible.
|
||||
else if (m().is_ite(a) && m().is_ite(b) &&
|
||||
!ite_bdds_compatabile(a, b)) {
|
||||
k = _OP_RE_ANTIMOROV_UNION;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
if (k == _OP_RE_ANTIMOROV_UNION) {
|
||||
result = re().mk_antimorov_union(a, b);
|
||||
return result;
|
||||
}
|
||||
if (re().is_antimorov_union(a, a1, a2)) {
|
||||
expr_ref r1(m()), r2(m());
|
||||
r1 = mk_der_op(k, a1, b);
|
||||
r2 = mk_der_op(k, a2, b);
|
||||
result = re().mk_antimorov_union(r1, r2);
|
||||
return result;
|
||||
}
|
||||
if (re().is_antimorov_union(b, b1, b2)) {
|
||||
expr_ref r1(m()), r2(m());
|
||||
r1 = mk_der_op(k, a, b1);
|
||||
r2 = mk_der_op(k, a, b2);
|
||||
result = re().mk_antimorov_union(r1, r2);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Remaining non-union case: combine two if-then-else BDDs
|
||||
// (underneath top-level Antimorov unions)
|
||||
if (m().is_ite(a, ca, a1, a2)) {
|
||||
expr_ref r1(m()), r2(m());
|
||||
expr_ref notca(m().mk_not(ca), m());
|
||||
|
@ -2594,6 +2774,7 @@ expr_ref seq_rewriter::mk_der_op(decl_kind k, expr* a, expr* b) {
|
|||
result = mk_der_op_rec(k, a, b);
|
||||
m_op_cache.insert(k, a, b, result);
|
||||
}
|
||||
CASSERT("seq_regex", check_deriv_normal_form(result));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -2603,13 +2784,22 @@ expr_ref seq_rewriter::mk_der_compl(expr* r) {
|
|||
expr_ref result(m_op_cache.find(OP_RE_COMPLEMENT, r, nullptr), m());
|
||||
if (!result) {
|
||||
expr* c = nullptr, * r1 = nullptr, * r2 = nullptr;
|
||||
if (m().is_ite(r, c, r1, r2)) {
|
||||
if (re().is_antimorov_union(r, r1, r2)) {
|
||||
// Convert union to intersection
|
||||
// Result: Antimorov union at top level is lost, pushed inside ITEs
|
||||
expr_ref res1(m()), res2(m());
|
||||
res1 = mk_der_compl(r1);
|
||||
res2 = mk_der_compl(r2);
|
||||
result = mk_der_inter(res1, res2);
|
||||
}
|
||||
else if (m().is_ite(r, c, r1, r2)) {
|
||||
result = m().mk_ite(c, mk_der_compl(r1), mk_der_compl(r2));
|
||||
}
|
||||
else if (BR_FAILED == mk_re_complement(r, result))
|
||||
result = re().mk_complement(r);
|
||||
m_op_cache.insert(OP_RE_COMPLEMENT, r, nullptr, result);
|
||||
}
|
||||
CASSERT("seq_regex", check_deriv_normal_form(result));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -2675,6 +2865,7 @@ expr_ref seq_rewriter::mk_der_cond(expr* cond, expr* ele, sort* seq_sort) {
|
|||
}
|
||||
STRACE("seq_verbose", tout << "mk_der_cond result: "
|
||||
<< mk_pp(result, m()) << std::endl;);
|
||||
CASSERT("seq_regex", check_deriv_normal_form(result));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -2696,7 +2887,11 @@ expr_ref seq_rewriter::mk_derivative_rec(expr* ele, expr* r) {
|
|||
}
|
||||
expr_ref dr2 = mk_derivative(ele, r2);
|
||||
is_n = re_predicate(is_n, seq_sort);
|
||||
return mk_der_union(result, mk_der_concat(is_n, dr2));
|
||||
// Instead of mk_der_union here, we use mk_der_antimorov_union to
|
||||
// force the two cases to be considered separately and lifted to
|
||||
// the top level. This avoids blowup in cases where determinization
|
||||
// is expensive.
|
||||
return mk_der_antimorov_union(result, mk_der_concat(is_n, dr2));
|
||||
}
|
||||
else if (re().is_star(r, r1)) {
|
||||
return mk_der_concat(mk_derivative(ele, r1), r);
|
||||
|
@ -2843,6 +3038,11 @@ expr_ref seq_rewriter::mk_derivative_rec(expr* ele, expr* r) {
|
|||
return expr_ref(re().mk_derivative(ele, r), m());
|
||||
}
|
||||
|
||||
/*************************************************
|
||||
***** End Derivative Code *****
|
||||
*************************************************/
|
||||
|
||||
|
||||
/*
|
||||
* pattern match against all ++ "abc" ++ all ++ "def" ++ all regexes.
|
||||
*/
|
||||
|
@ -3128,11 +3328,11 @@ br_status seq_rewriter::mk_re_concat(expr* a, expr* b, expr_ref& result) {
|
|||
result = b;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (is_epsilon(a)) {
|
||||
if (re().is_epsilon(a)) {
|
||||
result = b;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (is_epsilon(b)) {
|
||||
if (re().is_epsilon(b)) {
|
||||
result = a;
|
||||
return BR_DONE;
|
||||
}
|
||||
|
@ -3249,11 +3449,11 @@ br_status seq_rewriter::mk_re_union0(expr* a, expr* b, expr_ref& result) {
|
|||
result = b;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (re().is_star(a) && is_epsilon(b)) {
|
||||
if (re().is_star(a) && re().is_epsilon(b)) {
|
||||
result = a;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (re().is_star(b) && is_epsilon(a)) {
|
||||
if (re().is_star(b) && re().is_epsilon(a)) {
|
||||
result = b;
|
||||
return BR_DONE;
|
||||
}
|
||||
|
@ -3558,11 +3758,11 @@ br_status seq_rewriter::mk_re_star(expr* a, expr_ref& result) {
|
|||
result = re().mk_star(re().mk_union(b, c1));
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
if (is_epsilon(b)) {
|
||||
if (re().is_epsilon(b)) {
|
||||
result = re().mk_star(c);
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
if (is_epsilon(c)) {
|
||||
if (re().is_epsilon(c)) {
|
||||
result = re().mk_star(b);
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
|
@ -3599,7 +3799,7 @@ br_status seq_rewriter::mk_re_plus(expr* a, expr_ref& result) {
|
|||
result = a;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (is_epsilon(a)) {
|
||||
if (re().is_epsilon(a)) {
|
||||
result = a;
|
||||
return BR_DONE;
|
||||
}
|
||||
|
@ -4252,12 +4452,6 @@ bool seq_rewriter::reduce_by_length(expr_ref_vector& ls, expr_ref_vector& rs,
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool seq_rewriter::is_epsilon(expr* e) const {
|
||||
expr* e1;
|
||||
return re().is_to_re(e, e1) && str().is_empty(e1);
|
||||
}
|
||||
|
||||
/**
|
||||
reduce for the case where rs = a constant string,
|
||||
ls contains a substring that matches no substring of rs.
|
||||
|
@ -4357,6 +4551,8 @@ void seq_rewriter::op_cache::cleanup() {
|
|||
if (m_table.size() >= m_max_cache_size) {
|
||||
m_trail.reset();
|
||||
m_table.reset();
|
||||
STRACE("seq_regex", tout << "Op cache reset!" << std::endl;);
|
||||
STRACE("seq_regex_brief", tout << "(OP CACHE RESET) ";);
|
||||
STRACE("seq_verbose", tout << "Derivative op cache reset" << std::endl;);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -191,6 +191,11 @@ class seq_rewriter {
|
|||
expr_ref mk_der_inter(expr* a, expr* b);
|
||||
expr_ref mk_der_compl(expr* a);
|
||||
expr_ref mk_der_cond(expr* cond, expr* ele, sort* seq_sort);
|
||||
expr_ref mk_der_antimorov_union(expr* r1, expr* r2);
|
||||
bool ite_bdds_compatabile(expr* a, expr* b);
|
||||
#ifdef Z3DEBUG
|
||||
bool check_deriv_normal_form(expr* r, int level = 3);
|
||||
#endif
|
||||
|
||||
bool lt_char(expr* ch1, expr* ch2);
|
||||
bool eq_char(expr* ch1, expr* ch2);
|
||||
|
@ -277,7 +282,6 @@ class seq_rewriter {
|
|||
void add_next(u_map<expr*>& next, expr_ref_vector& trail, unsigned idx, expr* cond);
|
||||
bool is_sequence(expr* e, expr_ref_vector& seq);
|
||||
bool is_sequence(eautomaton& aut, expr_ref_vector& seq);
|
||||
bool is_epsilon(expr* e) const;
|
||||
bool get_lengths(expr* e, expr_ref_vector& lens, rational& pos);
|
||||
bool reduce_back(expr_ref_vector& ls, expr_ref_vector& rs, expr_ref_pair_vector& new_eqs);
|
||||
bool reduce_front(expr_ref_vector& ls, expr_ref_vector& rs, expr_ref_pair_vector& new_eqs);
|
||||
|
|
|
@ -616,6 +616,7 @@ void seq_decl_plugin::init() {
|
|||
m_sigs[OP_RE_OF_PRED] = alloc(psig, m, "re.of.pred", 1, 1, &predA, reA);
|
||||
m_sigs[OP_RE_REVERSE] = alloc(psig, m, "re.reverse", 1, 1, &reA, reA);
|
||||
m_sigs[OP_RE_DERIVATIVE] = alloc(psig, m, "re.derivative", 1, 2, AreA, reA);
|
||||
m_sigs[_OP_RE_ANTIMOROV_UNION] = alloc(psig, m, "re.union", 1, 2, reAreA, reA);
|
||||
m_sigs[OP_SEQ_TO_RE] = alloc(psig, m, "seq.to.re", 1, 1, &seqA, reA);
|
||||
m_sigs[OP_SEQ_IN_RE] = alloc(psig, m, "seq.in.re", 1, 2, seqAreA, boolT);
|
||||
m_sigs[OP_SEQ_REPLACE_RE_ALL] = alloc(psig, m, "str.replace_re_all", 1, 3, seqAreAseqA, seqA);
|
||||
|
@ -760,6 +761,7 @@ func_decl * seq_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters,
|
|||
case OP_RE_COMPLEMENT:
|
||||
case OP_RE_REVERSE:
|
||||
case OP_RE_DERIVATIVE:
|
||||
case _OP_RE_ANTIMOROV_UNION:
|
||||
m_has_re = true;
|
||||
// fall-through
|
||||
case OP_SEQ_UNIT:
|
||||
|
|
|
@ -109,6 +109,7 @@ enum seq_op_kind {
|
|||
_OP_REGEXP_EMPTY,
|
||||
_OP_REGEXP_FULL_CHAR,
|
||||
_OP_RE_IS_NULLABLE,
|
||||
_OP_RE_ANTIMOROV_UNION, // Lifted union for antimorov-style derivatives
|
||||
_OP_SEQ_SKOLEM,
|
||||
LAST_SEQ_OP
|
||||
};
|
||||
|
@ -237,9 +238,10 @@ class seq_util {
|
|||
mutable scoped_ptr<bv_util> m_bv;
|
||||
bv_util& bv() const;
|
||||
|
||||
public:
|
||||
|
||||
unsigned max_plus(unsigned x, unsigned y) const;
|
||||
unsigned max_mul(unsigned x, unsigned y) const;
|
||||
public:
|
||||
|
||||
ast_manager& get_manager() const { return m; }
|
||||
|
||||
|
@ -437,6 +439,7 @@ public:
|
|||
app* mk_of_pred(expr* p);
|
||||
app* mk_reverse(expr* r) { return m.mk_app(m_fid, OP_RE_REVERSE, r); }
|
||||
app* mk_derivative(expr* ele, expr* r) { return m.mk_app(m_fid, OP_RE_DERIVATIVE, ele, r); }
|
||||
app* mk_antimorov_union(expr* r1, expr* r2) { return m.mk_app(m_fid, _OP_RE_ANTIMOROV_UNION, r1, r2); }
|
||||
|
||||
bool is_to_re(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_TO_RE); }
|
||||
bool is_concat(expr const* n) const { return is_app_of(n, m_fid, OP_RE_CONCAT); }
|
||||
|
@ -455,6 +458,7 @@ public:
|
|||
bool is_of_pred(expr const* n) const { return is_app_of(n, m_fid, OP_RE_OF_PRED); }
|
||||
bool is_reverse(expr const* n) const { return is_app_of(n, m_fid, OP_RE_REVERSE); }
|
||||
bool is_derivative(expr const* n) const { return is_app_of(n, m_fid, OP_RE_DERIVATIVE); }
|
||||
bool is_antimorov_union(expr const* n) const { return is_app_of(n, m_fid, _OP_RE_ANTIMOROV_UNION); }
|
||||
MATCH_UNARY(is_to_re);
|
||||
MATCH_BINARY(is_concat);
|
||||
MATCH_BINARY(is_union);
|
||||
|
@ -468,6 +472,7 @@ public:
|
|||
MATCH_UNARY(is_of_pred);
|
||||
MATCH_UNARY(is_reverse);
|
||||
MATCH_BINARY(is_derivative);
|
||||
MATCH_BINARY(is_antimorov_union);
|
||||
bool is_loop(expr const* n, expr*& body, unsigned& lo, unsigned& hi) const;
|
||||
bool is_loop(expr const* n, expr*& body, unsigned& lo) const;
|
||||
bool is_loop(expr const* n, expr*& body, expr*& lo, expr*& hi) const;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue