mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 19:52:29 +00:00 
			
		
		
		
	Regex solver updates (#4636)
* std::cout debugging statements * comment out std::cout debugging as this is now a shared fork * convert std::cout to TRACE statements for seq_rewriter and seq_regex * add cases to min_length and max_length for regexes * bug fix * update min_length and max_length functions for REs * initial pass on simplifying derivative normal forms by eliminating redundant predicates locally * add seq_regex_brief trace statements * working on debugging ref count issue * fix ref count bug and convert trace statements to seq_regex_brief * add compact tracing for cache hits/misses * seq_regex fix cache hit/miss tracing and wrapper around is_nullable * minor * label and disable more experimental changes for testing * minor documentation / tracing * a few more @EXP annotations * dead state elimination skeleton code * progress on dead state elimination * more progress on dead state elimination * refactor dead state class to separate self-contained state_graph class * finish factoring state_graph to only work with unsigned values, and implement separate functionality for expr* logic * implement get_all_derivatives, add debug tracing * trace statements for debugging is_nullable loop bug * fix is_nullable loop bug * comment out local nullable change and mark experimental * pretty printing for state_graph * rewrite state graph to remove the fragile assumption that all edges from a state are added at a time * start of general cycle detection check + fix some comments * implement full cycle detection procedure * normalize derivative conditions to form 'ele <= a' * order derivative conditions by character code * fix confusing names m_to and m_from * assign increasing state IDs from 1 instead of using get_id on AST node * remove elim_condition call in get_dall_derivatives * use u_map instead of uint_map to avoid memory leak * remove unnecessary call to is_ground * debugging * small improvements to seq_regex_brief tracing * fix bug on evil2 example * save work * new propagate code * work in progress on using same seq sort for deriv calls * avoid re-computing derivatives: use same head var for every derivative call * use min_length on regexes to prune search * simple implementation of can_be_in_cycle using rank function idea * add a disabled experimental change * minor cleanup comments, etc. * seq_rewriter cleanup for PR * typo noticed by Nikolaj * move state graph to util/state_graph * re-add accidentally removed line * clean up seq_regex code removing obsolete functions and comments * a few more cleanup items * oops, missed merge change to fix compilation * disabled change to lift unions to the top level and treat them seperately in seq_regex solver * added get_overapprox_regex to over-approximate regex membership constraints * replace calls to is_epsilon with a centrally available method in seq_decl_plugin * simplifications and modifications in get_overapprox_regex and related * added approximation support for sequence expressions that use ite * removed is_app check that was redundant * tweak differences with upstream * rewrite derivative leaves * enable Antimorov-style derivatives via lifting unions in the solver * TODO placeholders for outputting state graph * change order in seq_regex propagate_in_re * implement a more restricted form of Antimorov derivatives via a special op code to indicate lifting unions * minor * new Antimorov optimizations based on BDD compatibility checking * seq regex tracing for # of derivatives * fix get_cofactors (currently this fix is buggy) * partially revert get_cofactors buggy change * re-implement get_cofactors to more efficiently explore nodes in the derivative expression * dgml generation for state graph * fix release build * improved dgml output * bug fixes in dgml generation * dot output support for state_graph and moved dgml and dot output under CASSERT * updated tracing of what regex corresponds to what state id with /tr:state_graph * clean up & document Antimorov derivative support * remove op cache tracing * remove re_rank experimental idea * small fix * fix Antimorov derivative (important change for the good performance) * remove unused and unnecessary code * implemented simpler efficient get_cofactors alternative mk_deriv_accept * simplifications in propagate_accept, and trace unusual cases * document the various seq_regex tracing & debugging command-line options * fix debug build (broken tracing) * guard eager Antimorov lifting for possible disabling * fix bug in propagate_accept Rule 1 * disable eager version of Antimorov lifting for performance reasons * remove some remaining obsolete comments Co-authored-by: calebstanford-msr <t-casta@microsoft.com> Co-authored-by: Margus Veanes <margus@microsoft.com>
This commit is contained in:
		
							parent
							
								
									9df6c10ad8
								
							
						
					
					
						commit
						2c02264a94
					
				
					 7 changed files with 556 additions and 140 deletions
				
			
		|  | @ -557,6 +557,12 @@ br_status seq_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * con | |||
|             st = mk_re_concat(args[0], args[1], result);  | ||||
|         } | ||||
|         break; | ||||
|     case _OP_RE_ANTIMOROV_UNION: | ||||
|         SASSERT(num_args == 2); | ||||
|         // Rewrite Antimorov union to real union
 | ||||
|         result = re().mk_union(args[0], args[1]); | ||||
|         st = BR_REWRITE1; | ||||
|         break; | ||||
|     case OP_RE_UNION: | ||||
|         if (num_args == 1) { | ||||
|             result = args[0];  | ||||
|  | @ -2365,11 +2371,26 @@ br_status seq_rewriter::mk_re_reverse(expr* r, expr_ref& result) { | |||
|     } | ||||
| } | ||||
| 
 | ||||
| /***************************************************
 | ||||
|  *****          Begin Derivative Code          ***** | ||||
|  ***************************************************/ | ||||
| 
 | ||||
| /*
 | ||||
|     Symbolic derivative: seq -> regex -> regex | ||||
|     seq should be single char | ||||
| */ | ||||
| 
 | ||||
|     This is the rewriter entrypoint for computing a derivative. | ||||
|     Use mk_derivative from seq_decl_plugin instead to create a derivative | ||||
|     expression without computing it (simplifying). | ||||
| 
 | ||||
|     This calls mk_derivative, the main logic which builds a derivative | ||||
|     recursively, but mk_derivative doesn't guarantee full simplification. | ||||
|     Once the derivative is built, we return BR_REWRITE_FULL so that | ||||
|     any remaining possible simplification is performed from the bottom up. | ||||
| 
 | ||||
|     Rewriting also replaces _OP_RE_ANTIMOROV_UNION, which is produced | ||||
|     by is_derivative, with real union. | ||||
| */ | ||||
| br_status seq_rewriter::mk_re_derivative(expr* ele, expr* r, expr_ref& result) { | ||||
|     result = mk_derivative(ele, r); | ||||
|     // TBD: we may even declare BR_DONE here and potentially miss some simplifications
 | ||||
|  | @ -2377,14 +2398,105 @@ br_status seq_rewriter::mk_re_derivative(expr* ele, expr* r, expr_ref& result) { | |||
| } | ||||
| 
 | ||||
| /*
 | ||||
|     Memoized, recursive implementation of the symbolic derivative such that | ||||
|     the result is in an optimized BDD form. | ||||
|     Note: Derivative Normal Form | ||||
| 
 | ||||
|     Definition of BDD form: | ||||
|         if-then-elses are pushed outwards | ||||
|         and sorted by condition ID (cond->get_id()), from largest on | ||||
|         the outside to smallest on the inside. | ||||
|         Duplicate nested conditions are eliminated. | ||||
|     When computing derivatives recursively, we preserve the following | ||||
|     BDD normal form: | ||||
| 
 | ||||
|     - At the top level, the derivative is a union of Antimorov derivatives | ||||
|       (Conceptually each element of the union is a different derivative). | ||||
|       We currently express this derivative using an internal op code: | ||||
|           _OP_RE_ANTIMOROV_UNION | ||||
|     - An Antimorov derivative is a nested if-then-else term. | ||||
|       if-then-elses are pushed outwards and sorted by condition ID | ||||
|       (cond->get_id()), from largest on the outside to smallest on the | ||||
|       inside. Duplicate nested conditions are eliminated. | ||||
|     - The leaves of the if-then-else BDD can have unions themselves, | ||||
|       but these are interpreted as Regex union, not as separate Antimorov | ||||
|       derivatives. | ||||
| 
 | ||||
|     To debug the normal form, call Z3 with -dbg:seq_regex: | ||||
|     this calls check_deriv_normal_form (below) periodically. | ||||
| 
 | ||||
|     The main logic is in mk_der_op_rec for combining normal forms | ||||
|     (some also in mk_der_compl_rec). | ||||
| */ | ||||
| 
 | ||||
| #ifdef Z3DEBUG | ||||
| /*
 | ||||
|     Debugging to check the derivative normal form that we assume | ||||
|     (see definition above). | ||||
| 
 | ||||
|     This may fail on unusual/unexpected REs, such as those containing | ||||
|     regex variables, but this is by design as this is only checked | ||||
|     during debugging, and we have not considered how normal form | ||||
|     should apply in such cases. | ||||
| */ | ||||
| bool seq_rewriter::check_deriv_normal_form(expr* r, int level) { | ||||
|     if (level == 3) { // top level
 | ||||
|         STRACE("seq_verbose", tout | ||||
|             << "Checking derivative normal form invariant...";); | ||||
|     } | ||||
|     expr *r1 = nullptr, *r2 = nullptr, *p = nullptr, *s = nullptr; | ||||
|     unsigned lo = 0, hi = 0; | ||||
|     STRACE("seq_verbose", tout << " (level " << level << ")";); | ||||
|     int new_level = 0; | ||||
|     if (re().is_antimorov_union(r)) { | ||||
|         SASSERT(level >= 2); | ||||
|         new_level = 2; | ||||
|     } | ||||
|     else if (m().is_ite(r)) { | ||||
|         SASSERT(level >= 1); | ||||
|         new_level = 1; | ||||
|     } | ||||
| 
 | ||||
|     SASSERT(!re().is_diff(r)); | ||||
|     SASSERT(!re().is_opt(r)); | ||||
|     SASSERT(!re().is_plus(r)); | ||||
| 
 | ||||
|     if (re().is_antimorov_union(r, r1, r2) || | ||||
|         re().is_concat(r, r1, r2) || | ||||
|         re().is_union(r, r1, r2) || | ||||
|         re().is_intersection(r, r1, r2) || | ||||
|         m().is_ite(r, p, r1, r2)) { | ||||
|         check_deriv_normal_form(r1, new_level); | ||||
|         check_deriv_normal_form(r2, new_level); | ||||
|     } | ||||
|     else if (re().is_star(r, r1) || | ||||
|              re().is_complement(r, r1) || | ||||
|              re().is_loop(r, r1, lo) || | ||||
|              re().is_loop(r, r1, lo, hi)) { | ||||
|         check_deriv_normal_form(r1, new_level); | ||||
|     } | ||||
|     else if (re().is_reverse(r, r1)) { | ||||
|         SASSERT(re().is_to_re(r1)); | ||||
|     } | ||||
|     else if (re().is_full_seq(r) || | ||||
|              re().is_empty(r) || | ||||
|              re().is_range(r) || | ||||
|              re().is_full_char(r) || | ||||
|              re().is_of_pred(r) || | ||||
|              re().is_to_re(r, s)) { | ||||
|         // OK
 | ||||
|     } | ||||
|     else { | ||||
|         SASSERT(false); | ||||
|     } | ||||
|     if (level == 3) { | ||||
|         STRACE("seq_verbose", tout << " passed!" << std::endl;); | ||||
|     } | ||||
|     return true; | ||||
| } | ||||
| #endif | ||||
| 
 | ||||
| /*
 | ||||
|     Memoized, recursive implementation of the symbolic derivative such that | ||||
|     the result is in normal form. | ||||
| 
 | ||||
|     Functions without _rec are memoized wrappers, which call the _rec | ||||
|     version if lookup fails. | ||||
| 
 | ||||
|     The main logic is in mk_der_op_rec for combining normal forms. | ||||
| */ | ||||
| expr_ref seq_rewriter::mk_derivative(expr* ele, expr* r) { | ||||
|     STRACE("seq_verbose", tout << "derivative: " << mk_pp(ele, m()) | ||||
|  | @ -2396,9 +2508,14 @@ expr_ref seq_rewriter::mk_derivative(expr* ele, expr* r) { | |||
|     } | ||||
|     STRACE("seq_verbose", tout << "derivative result: " | ||||
|                                << mk_pp(result, m()) << std::endl;); | ||||
|     CASSERT("seq_regex", check_deriv_normal_form(r)); | ||||
|     return result; | ||||
| } | ||||
| 
 | ||||
| expr_ref seq_rewriter::mk_der_antimorov_union(expr* r1, expr* r2) { | ||||
|     return mk_der_op(_OP_RE_ANTIMOROV_UNION, r1, r2); | ||||
| } | ||||
| 
 | ||||
| expr_ref seq_rewriter::mk_der_union(expr* r1, expr* r2) { | ||||
|     return mk_der_op(OP_RE_UNION, r1, r2); | ||||
| } | ||||
|  | @ -2466,15 +2583,37 @@ bool seq_rewriter::pred_implies(expr* a, expr* b) { | |||
| } | ||||
| 
 | ||||
| /*
 | ||||
|     Apply a binary operation, preserving BDD normal form on derivative expressions. | ||||
|     Utility function to decide if two BDDs (nested if-then-else terms) | ||||
|     have exactly the same structure and conditions. | ||||
| */ | ||||
| bool seq_rewriter::ite_bdds_compatabile(expr* a, expr* b) { | ||||
|     expr* ca = nullptr, *a1 = nullptr, *a2 = nullptr; | ||||
|     expr* cb = nullptr, *b1 = nullptr, *b2 = nullptr; | ||||
|     if (m().is_ite(a, ca, a1, a2) && m().is_ite(b, cb, b1, b2)) { | ||||
|         return (ca == cb) && ite_bdds_compatabile(a1, b1) | ||||
|                           && ite_bdds_compatabile(a2, b2); | ||||
|     } | ||||
|     else if (m().is_ite(a) || m().is_ite(b)) { | ||||
|         return false; | ||||
|     } | ||||
|     else { | ||||
|         return true; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|     Apply a binary operation, preserving normal form on derivative expressions. | ||||
| 
 | ||||
|     Preconditions: | ||||
|         - k is a binary op code on REs: one of concat, intersection, or union | ||||
|           (not difference) | ||||
|         - a and b are in BDD form | ||||
|         - k is one of the following binary op codes on REs: | ||||
|             OP_RE_INTERSECT | ||||
|             OP_RE_UNION | ||||
|             OP_RE_CONCAT | ||||
|             _OP_RE_ANTIMOROV_UNION | ||||
|         - a and b are in normal form (check_deriv_normal_form) | ||||
| 
 | ||||
|     Postcondition: | ||||
|         - result is in BDD form | ||||
|         - result is in normal form (check_deriv_normal_form) | ||||
| */ | ||||
| expr_ref seq_rewriter::mk_der_op_rec(decl_kind k, expr* a, expr* b) { | ||||
|     STRACE("seq_verbose", tout << "mk_der_op_rec: " << k | ||||
|  | @ -2483,6 +2622,7 @@ expr_ref seq_rewriter::mk_der_op_rec(decl_kind k, expr* a, expr* b) { | |||
|     expr* ca = nullptr, *a1 = nullptr, *a2 = nullptr; | ||||
|     expr* cb = nullptr, *b1 = nullptr, *b2 = nullptr; | ||||
|     expr_ref result(m()); | ||||
| 
 | ||||
|     // Simplify if-then-elses whenever possible
 | ||||
|     auto mk_ite = [&](expr* c, expr* a, expr* b) { | ||||
|         return (a == b) ? a : m().mk_ite(c, a, b); | ||||
|  | @ -2497,6 +2637,46 @@ expr_ref seq_rewriter::mk_der_op_rec(decl_kind k, expr* a, expr* b) { | |||
|         m().is_not(e, e); | ||||
|         return e->get_id(); | ||||
|     }; | ||||
| 
 | ||||
|     // Choose when to lift a union to the top level, by converting
 | ||||
|     // it to an Antimorov union
 | ||||
|     // This implements a restricted form of Antimorov derivatives
 | ||||
|     if (k == OP_RE_UNION) { | ||||
|         if (re().is_antimorov_union(a) || re().is_antimorov_union(b)) { | ||||
|             k = _OP_RE_ANTIMOROV_UNION; | ||||
|         } | ||||
|         #if 0 | ||||
|         // Disabled: eager Antimorov lifting unless BDDs are compatible
 | ||||
|         // Note: the check for BDD compatibility could be made more
 | ||||
|         // sophisticated: in an Antimorov union of n terms, we really
 | ||||
|         // want to check if any pair of them is compatible.
 | ||||
|         else if (m().is_ite(a) && m().is_ite(b) && | ||||
|                  !ite_bdds_compatabile(a, b)) { | ||||
|             k = _OP_RE_ANTIMOROV_UNION; | ||||
|         } | ||||
|         #endif | ||||
|     } | ||||
|     if (k == _OP_RE_ANTIMOROV_UNION) { | ||||
|         result = re().mk_antimorov_union(a, b); | ||||
|         return result; | ||||
|     } | ||||
|     if (re().is_antimorov_union(a, a1, a2)) { | ||||
|         expr_ref r1(m()), r2(m()); | ||||
|         r1 = mk_der_op(k, a1, b); | ||||
|         r2 = mk_der_op(k, a2, b); | ||||
|         result = re().mk_antimorov_union(r1, r2); | ||||
|         return result; | ||||
|     } | ||||
|     if (re().is_antimorov_union(b, b1, b2)) { | ||||
|         expr_ref r1(m()), r2(m()); | ||||
|         r1 = mk_der_op(k, a, b1); | ||||
|         r2 = mk_der_op(k, a, b2); | ||||
|         result = re().mk_antimorov_union(r1, r2); | ||||
|         return result; | ||||
|     } | ||||
| 
 | ||||
|     // Remaining non-union case: combine two if-then-else BDDs
 | ||||
|     // (underneath top-level Antimorov unions)
 | ||||
|     if (m().is_ite(a, ca, a1, a2)) { | ||||
|         expr_ref r1(m()), r2(m()); | ||||
|         expr_ref notca(m().mk_not(ca), m()); | ||||
|  | @ -2594,6 +2774,7 @@ expr_ref seq_rewriter::mk_der_op(decl_kind k, expr* a, expr* b) { | |||
|         result = mk_der_op_rec(k, a, b); | ||||
|         m_op_cache.insert(k, a, b, result); | ||||
|     } | ||||
|     CASSERT("seq_regex", check_deriv_normal_form(result)); | ||||
|     return result; | ||||
| } | ||||
| 
 | ||||
|  | @ -2603,13 +2784,22 @@ expr_ref seq_rewriter::mk_der_compl(expr* r) { | |||
|     expr_ref result(m_op_cache.find(OP_RE_COMPLEMENT, r, nullptr), m()); | ||||
|     if (!result) { | ||||
|         expr* c = nullptr, * r1 = nullptr, * r2 = nullptr; | ||||
|         if (m().is_ite(r, c, r1, r2)) { | ||||
|         if (re().is_antimorov_union(r, r1, r2)) { | ||||
|             // Convert union to intersection
 | ||||
|             // Result: Antimorov union at top level is lost, pushed inside ITEs
 | ||||
|             expr_ref res1(m()), res2(m()); | ||||
|             res1 = mk_der_compl(r1); | ||||
|             res2 = mk_der_compl(r2); | ||||
|             result = mk_der_inter(res1, res2); | ||||
|         } | ||||
|         else if (m().is_ite(r, c, r1, r2)) { | ||||
|             result = m().mk_ite(c, mk_der_compl(r1), mk_der_compl(r2)); | ||||
|         } | ||||
|         else if (BR_FAILED == mk_re_complement(r, result)) | ||||
|             result = re().mk_complement(r);         | ||||
|         m_op_cache.insert(OP_RE_COMPLEMENT, r, nullptr, result); | ||||
|     } | ||||
|     CASSERT("seq_regex", check_deriv_normal_form(result)); | ||||
|     return result; | ||||
| } | ||||
| 
 | ||||
|  | @ -2675,6 +2865,7 @@ expr_ref seq_rewriter::mk_der_cond(expr* cond, expr* ele, sort* seq_sort) { | |||
|     } | ||||
|     STRACE("seq_verbose", tout << "mk_der_cond result: " | ||||
|         <<  mk_pp(result, m()) << std::endl;); | ||||
|     CASSERT("seq_regex", check_deriv_normal_form(result)); | ||||
|     return result; | ||||
| } | ||||
| 
 | ||||
|  | @ -2696,7 +2887,11 @@ expr_ref seq_rewriter::mk_derivative_rec(expr* ele, expr* r) { | |||
|         } | ||||
|         expr_ref dr2 = mk_derivative(ele, r2); | ||||
|         is_n = re_predicate(is_n, seq_sort); | ||||
|         return mk_der_union(result, mk_der_concat(is_n, dr2));         | ||||
|         // Instead of mk_der_union here, we use mk_der_antimorov_union to
 | ||||
|         // force the two cases to be considered separately and lifted to
 | ||||
|         // the top level. This avoids blowup in cases where determinization
 | ||||
|         // is expensive.
 | ||||
|         return mk_der_antimorov_union(result, mk_der_concat(is_n, dr2)); | ||||
|     } | ||||
|     else if (re().is_star(r, r1)) { | ||||
|         return mk_der_concat(mk_derivative(ele, r1), r); | ||||
|  | @ -2843,6 +3038,11 @@ expr_ref seq_rewriter::mk_derivative_rec(expr* ele, expr* r) { | |||
|     return expr_ref(re().mk_derivative(ele, r), m()); | ||||
| } | ||||
| 
 | ||||
| /*************************************************
 | ||||
|  *****          End Derivative Code          ***** | ||||
|  *************************************************/ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * pattern match against all ++ "abc" ++ all ++ "def" ++ all regexes. | ||||
| */ | ||||
|  | @ -3128,11 +3328,11 @@ br_status seq_rewriter::mk_re_concat(expr* a, expr* b, expr_ref& result) { | |||
|         result = b; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|     if (is_epsilon(a)) { | ||||
|     if (re().is_epsilon(a)) { | ||||
|         result = b; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|     if (is_epsilon(b)) { | ||||
|     if (re().is_epsilon(b)) { | ||||
|         result = a; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|  | @ -3249,11 +3449,11 @@ br_status seq_rewriter::mk_re_union0(expr* a, expr* b, expr_ref& result) { | |||
|         result = b; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|     if (re().is_star(a) && is_epsilon(b)) { | ||||
|     if (re().is_star(a) && re().is_epsilon(b)) { | ||||
|         result = a; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|     if (re().is_star(b) && is_epsilon(a)) { | ||||
|     if (re().is_star(b) && re().is_epsilon(a)) { | ||||
|         result = b; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|  | @ -3558,11 +3758,11 @@ br_status seq_rewriter::mk_re_star(expr* a, expr_ref& result) { | |||
|             result = re().mk_star(re().mk_union(b, c1)); | ||||
|             return BR_REWRITE2; | ||||
|         } | ||||
|         if (is_epsilon(b)) { | ||||
|         if (re().is_epsilon(b)) { | ||||
|             result = re().mk_star(c); | ||||
|             return BR_REWRITE2; | ||||
|         } | ||||
|         if (is_epsilon(c)) { | ||||
|         if (re().is_epsilon(c)) { | ||||
|             result = re().mk_star(b); | ||||
|             return BR_REWRITE2; | ||||
|         } | ||||
|  | @ -3599,7 +3799,7 @@ br_status seq_rewriter::mk_re_plus(expr* a, expr_ref& result) { | |||
|         result = a; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|     if (is_epsilon(a)) { | ||||
|     if (re().is_epsilon(a)) { | ||||
|         result = a; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|  | @ -4252,12 +4452,6 @@ bool seq_rewriter::reduce_by_length(expr_ref_vector& ls, expr_ref_vector& rs, | |||
|     return true; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| bool seq_rewriter::is_epsilon(expr* e) const { | ||||
|     expr* e1; | ||||
|     return re().is_to_re(e, e1) && str().is_empty(e1); | ||||
| } | ||||
| 
 | ||||
| /**
 | ||||
|    reduce for the case where rs = a constant string,  | ||||
|    ls contains a substring that matches no substring of rs. | ||||
|  | @ -4357,6 +4551,8 @@ void seq_rewriter::op_cache::cleanup() { | |||
|     if (m_table.size() >= m_max_cache_size) { | ||||
|         m_trail.reset(); | ||||
|         m_table.reset(); | ||||
|         STRACE("seq_regex", tout << "Op cache reset!" << std::endl;); | ||||
|         STRACE("seq_regex_brief", tout << "(OP CACHE RESET) ";); | ||||
|         STRACE("seq_verbose", tout << "Derivative op cache reset" << std::endl;); | ||||
|     } | ||||
| } | ||||
|  |  | |||
|  | @ -191,6 +191,11 @@ class seq_rewriter { | |||
|     expr_ref mk_der_inter(expr* a, expr* b); | ||||
|     expr_ref mk_der_compl(expr* a); | ||||
|     expr_ref mk_der_cond(expr* cond, expr* ele, sort* seq_sort); | ||||
|     expr_ref mk_der_antimorov_union(expr* r1, expr* r2); | ||||
|     bool ite_bdds_compatabile(expr* a, expr* b); | ||||
|     #ifdef Z3DEBUG | ||||
|     bool check_deriv_normal_form(expr* r, int level = 3); | ||||
|     #endif | ||||
| 
 | ||||
|     bool lt_char(expr* ch1, expr* ch2); | ||||
|     bool eq_char(expr* ch1, expr* ch2); | ||||
|  | @ -277,7 +282,6 @@ class seq_rewriter { | |||
|     void add_next(u_map<expr*>& next, expr_ref_vector& trail, unsigned idx, expr* cond); | ||||
|     bool is_sequence(expr* e, expr_ref_vector& seq); | ||||
|     bool is_sequence(eautomaton& aut, expr_ref_vector& seq); | ||||
|     bool is_epsilon(expr* e) const; | ||||
|     bool get_lengths(expr* e, expr_ref_vector& lens, rational& pos); | ||||
|     bool reduce_back(expr_ref_vector& ls, expr_ref_vector& rs, expr_ref_pair_vector& new_eqs); | ||||
|     bool reduce_front(expr_ref_vector& ls, expr_ref_vector& rs, expr_ref_pair_vector& new_eqs); | ||||
|  |  | |||
|  | @ -616,6 +616,7 @@ void seq_decl_plugin::init() { | |||
|     m_sigs[OP_RE_OF_PRED]        = alloc(psig, m, "re.of.pred", 1, 1, &predA, reA); | ||||
|     m_sigs[OP_RE_REVERSE]        = alloc(psig, m, "re.reverse", 1, 1, &reA, reA); | ||||
|     m_sigs[OP_RE_DERIVATIVE]     = alloc(psig, m, "re.derivative", 1, 2, AreA, reA); | ||||
|     m_sigs[_OP_RE_ANTIMOROV_UNION] = alloc(psig, m, "re.union", 1, 2, reAreA, reA); | ||||
|     m_sigs[OP_SEQ_TO_RE]         = alloc(psig, m, "seq.to.re",  1, 1, &seqA, reA); | ||||
|     m_sigs[OP_SEQ_IN_RE]         = alloc(psig, m, "seq.in.re", 1, 2, seqAreA, boolT); | ||||
|     m_sigs[OP_SEQ_REPLACE_RE_ALL] = alloc(psig, m, "str.replace_re_all", 1, 3, seqAreAseqA, seqA); | ||||
|  | @ -760,6 +761,7 @@ func_decl * seq_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, | |||
|     case OP_RE_COMPLEMENT: | ||||
|     case OP_RE_REVERSE: | ||||
|     case OP_RE_DERIVATIVE: | ||||
|     case _OP_RE_ANTIMOROV_UNION: | ||||
|         m_has_re = true; | ||||
|         // fall-through
 | ||||
|     case OP_SEQ_UNIT: | ||||
|  |  | |||
|  | @ -109,6 +109,7 @@ enum seq_op_kind { | |||
|     _OP_REGEXP_EMPTY, | ||||
|     _OP_REGEXP_FULL_CHAR, | ||||
|     _OP_RE_IS_NULLABLE, | ||||
|     _OP_RE_ANTIMOROV_UNION, // Lifted union for antimorov-style derivatives
 | ||||
|     _OP_SEQ_SKOLEM, | ||||
|     LAST_SEQ_OP | ||||
| }; | ||||
|  | @ -237,9 +238,10 @@ class seq_util { | |||
|     mutable scoped_ptr<bv_util> m_bv; | ||||
|     bv_util& bv() const; | ||||
| 
 | ||||
| public: | ||||
| 
 | ||||
|     unsigned max_plus(unsigned x, unsigned y) const; | ||||
|     unsigned max_mul(unsigned x, unsigned y) const; | ||||
| public: | ||||
| 
 | ||||
|     ast_manager& get_manager() const { return m; } | ||||
| 
 | ||||
|  | @ -437,6 +439,7 @@ public: | |||
|         app* mk_of_pred(expr* p); | ||||
|         app* mk_reverse(expr* r) { return m.mk_app(m_fid, OP_RE_REVERSE, r); } | ||||
|         app* mk_derivative(expr* ele, expr* r) { return m.mk_app(m_fid, OP_RE_DERIVATIVE, ele, r); } | ||||
|         app* mk_antimorov_union(expr* r1, expr* r2) { return m.mk_app(m_fid, _OP_RE_ANTIMOROV_UNION, r1, r2); } | ||||
| 
 | ||||
|         bool is_to_re(expr const* n)    const { return is_app_of(n, m_fid, OP_SEQ_TO_RE); } | ||||
|         bool is_concat(expr const* n)    const { return is_app_of(n, m_fid, OP_RE_CONCAT); } | ||||
|  | @ -455,6 +458,7 @@ public: | |||
|         bool is_of_pred(expr const* n) const { return is_app_of(n, m_fid, OP_RE_OF_PRED); } | ||||
|         bool is_reverse(expr const* n) const { return is_app_of(n, m_fid, OP_RE_REVERSE); } | ||||
|         bool is_derivative(expr const* n) const { return is_app_of(n, m_fid, OP_RE_DERIVATIVE); } | ||||
|         bool is_antimorov_union(expr const* n) const { return is_app_of(n, m_fid, _OP_RE_ANTIMOROV_UNION); } | ||||
|         MATCH_UNARY(is_to_re); | ||||
|         MATCH_BINARY(is_concat); | ||||
|         MATCH_BINARY(is_union); | ||||
|  | @ -468,6 +472,7 @@ public: | |||
|         MATCH_UNARY(is_of_pred); | ||||
|         MATCH_UNARY(is_reverse); | ||||
|         MATCH_BINARY(is_derivative); | ||||
|         MATCH_BINARY(is_antimorov_union); | ||||
|         bool is_loop(expr const* n, expr*& body, unsigned& lo, unsigned& hi) const; | ||||
|         bool is_loop(expr const* n, expr*& body, unsigned& lo) const; | ||||
|         bool is_loop(expr const* n, expr*& body, expr*& lo, expr*& hi) const; | ||||
|  |  | |||
|  | @ -109,24 +109,6 @@ namespace smt { | |||
|             return; | ||||
|         } | ||||
| 
 | ||||
|         // Convert a non-ground sequence into an additional regex and
 | ||||
|         // strengthen the original regex constraint into an intersection
 | ||||
|         // for example:
 | ||||
|         //     (x ++ "a" ++ y) in b*
 | ||||
|         // is coverted to
 | ||||
|         //     (x ++ "a" ++ y) in intersect((.* ++ "a" ++ .*), b*)
 | ||||
|         if (!m.is_value(s)) { | ||||
|             expr_ref s_approx = get_overapprox_regex(s); | ||||
|             if (!re().is_full_seq(s_approx)) { | ||||
|                 r = re().mk_inter(r, s_approx); | ||||
|                 TRACE("seq_regex", tout | ||||
|                     << "get_overapprox_regex(" << mk_pp(s, m) | ||||
|                     << ") = " << mk_pp(s_approx, m) << std::endl;); | ||||
|                 STRACE("seq_regex_brief", tout | ||||
|                     << "overapprox=" << state_str(r) << " ";); | ||||
|             } | ||||
|         } | ||||
| 
 | ||||
|         if (coallesce_in_re(lit)) { | ||||
|             TRACE("seq_regex", tout | ||||
|                 << "simplified conjunctions to an intersection" << std::endl;); | ||||
|  | @ -141,6 +123,26 @@ namespace smt { | |||
|             return; | ||||
|         } | ||||
| 
 | ||||
|         // Convert a non-ground sequence into an additional regex and
 | ||||
|         // strengthen the original regex constraint into an intersection
 | ||||
|         // for example:
 | ||||
|         //     (x ++ "a" ++ y) in b*
 | ||||
|         // is coverted to
 | ||||
|         //     (x ++ "a" ++ y) in intersect((.* ++ "a" ++ .*), b*)
 | ||||
|         expr_ref _r_temp_owner(m); | ||||
|         if (!m.is_value(s)) { | ||||
|             expr_ref s_approx = get_overapprox_regex(s); | ||||
|             if (!re().is_full_seq(s_approx)) { | ||||
|                 r = re().mk_inter(r, s_approx); | ||||
|                 _r_temp_owner = r; | ||||
|                 TRACE("seq_regex", tout | ||||
|                     << "get_overapprox_regex(" << mk_pp(s, m) | ||||
|                     << ") = " << mk_pp(s_approx, m) << std::endl;); | ||||
|                 STRACE("seq_regex_brief", tout | ||||
|                     << "overapprox=" << state_str(r) << " ";); | ||||
|             } | ||||
|         } | ||||
| 
 | ||||
|         expr_ref zero(a().mk_int(0), m); | ||||
|         expr_ref acc = sk().mk_accept(s, zero, r); | ||||
|         literal acc_lit = th.mk_literal(acc); | ||||
|  | @ -213,6 +215,7 @@ namespace smt { | |||
|      * | ||||
|      * Rule 1. (accept s i r) => len(s) >= i + min_len(r) | ||||
|      * Rule 2. (accept s i r) & len(s) <= i => nullable(r) | ||||
|      *     (only necessary if min_len fails and returns 0 for non-nullable r) | ||||
|      * Rule 3. (accept s i r) and len(s) > i => | ||||
|      *             (accept s (i + 1) (derivative s[i] r) | ||||
|      * | ||||
|  | @ -258,24 +261,36 @@ namespace smt { | |||
|         STRACE("seq_regex_brief", tout << "(unfold) ";); | ||||
| 
 | ||||
|         // Rule 1: use min_length to prune search
 | ||||
|         expr_ref s_to_re(re().mk_to_re(s), m); | ||||
|         expr_ref s_plus_r(re().mk_concat(s_to_re, r), m); | ||||
|         unsigned min_len = re().min_length(s_plus_r); | ||||
|         literal len_s_ge_min = th.m_ax.mk_ge(th.mk_len(s), min_len); | ||||
|         unsigned min_len = re().min_length(r); | ||||
|         unsigned min_len_plus_i = u().max_plus(min_len, idx); | ||||
|         literal len_s_ge_min = th.m_ax.mk_ge(th.mk_len(s), min_len_plus_i); | ||||
|         th.propagate_lit(nullptr, 1, &lit, len_s_ge_min); | ||||
|         // Axiom equivalent to the above: th.add_axiom(~lit, len_s_ge_min);
 | ||||
| 
 | ||||
|         // Rule 2: nullable check
 | ||||
|         literal len_s_le_i = th.m_ax.mk_le(th.mk_len(s), idx); | ||||
|         expr_ref is_nullable = is_nullable_wrapper(r); | ||||
|         if (m.is_false(is_nullable)) { | ||||
|             th.propagate_lit(nullptr, 1, &lit, ~len_s_le_i); | ||||
|         } | ||||
|         else if (!m.is_true(is_nullable)) { | ||||
|             // is_nullable did not simplify
 | ||||
|             literal is_nullable_lit = th.mk_literal(is_nullable_wrapper(r)); | ||||
|             ctx.mark_as_relevant(is_nullable_lit); | ||||
|             th.add_axiom(~lit, ~len_s_le_i, is_nullable_lit); | ||||
|         if (min_len == 0) { | ||||
|             expr_ref is_nullable = is_nullable_wrapper(r); | ||||
|             if (m.is_false(is_nullable)) { | ||||
|                 STRACE("seq_regex", tout | ||||
|                     << "Warning: min_length returned 0 for non-nullable regex" | ||||
|                     << std::endl;); | ||||
|                 STRACE("seq_regex_brief", tout | ||||
|                     << " (Warning: min_length returned 0 for" | ||||
|                     << " non-nullable regex)";); | ||||
|                 th.propagate_lit(nullptr, 1, &lit, ~len_s_le_i); | ||||
|             } | ||||
|             else if (!m.is_true(is_nullable)) { | ||||
|                 // is_nullable did not simplify
 | ||||
|                 STRACE("seq_regex", tout | ||||
|                     << "Warning: is_nullable did not simplify to true or false" | ||||
|                     << std::endl;); | ||||
|                 STRACE("seq_regex_brief", tout | ||||
|                     << " (Warning: is_nullable did not simplify)";); | ||||
|                 literal is_nullable_lit = th.mk_literal(is_nullable); | ||||
|                 ctx.mark_as_relevant(is_nullable_lit); | ||||
|                 th.add_axiom(~lit, ~len_s_le_i, is_nullable_lit); | ||||
|             } | ||||
|         } | ||||
| 
 | ||||
|         // Rule 3: derivative unfolding
 | ||||
|  | @ -283,24 +298,11 @@ namespace smt { | |||
|         expr_ref hd = th.mk_nth(s, i); | ||||
|         expr_ref deriv(m); | ||||
|         deriv = derivative_wrapper(hd, r); | ||||
|         expr_ref accept_deriv(m); | ||||
|         accept_deriv = mk_deriv_accept(s, idx + 1, deriv); | ||||
|         accept_next.push_back(~lit); | ||||
|         accept_next.push_back(len_s_le_i); | ||||
|         expr_ref_pair_vector cofactors(m); | ||||
|         get_cofactors(deriv, cofactors); | ||||
|         for (auto const& p : cofactors) { | ||||
|             if (m.is_false(p.first) || re().is_empty(p.second)) continue; | ||||
|             expr_ref cond(p.first, m); | ||||
|             expr_ref deriv_leaf(p.second, m); | ||||
| 
 | ||||
|             expr_ref acc = sk().mk_accept(s, a().mk_int(idx + 1), deriv_leaf); | ||||
|             expr_ref choice(m.mk_and(cond, acc), m); | ||||
|             literal choice_lit = th.mk_literal(choice); | ||||
|             accept_next.push_back(choice_lit); | ||||
|             // TBD: try prioritizing unvisited states here over visited
 | ||||
|             // ones (in the state graph), to improve performance
 | ||||
|             STRACE("seq_regex_verbose", tout << "added choice: " | ||||
|                                            << mk_pp(choice, m) << std::endl;); | ||||
|         } | ||||
|         accept_next.push_back(th.mk_literal(accept_deriv)); | ||||
|         th.add_axiom(accept_next); | ||||
|     } | ||||
| 
 | ||||
|  | @ -442,7 +444,7 @@ namespace smt { | |||
|         expr_ref r = symmetric_diff(r1, r2);        | ||||
|         expr_ref emp(re().mk_empty(m.get_sort(r)), m); | ||||
|         expr_ref n(m.mk_fresh_const("re.char", seq_sort), m);  | ||||
|         expr_ref is_empty = sk().mk_is_empty(r, emp, n); | ||||
|         expr_ref is_empty = sk().mk_is_empty(r, r, n); | ||||
|         th.add_axiom(~th.mk_eq(r1, r2, false), th.mk_literal(is_empty)); | ||||
|     } | ||||
|      | ||||
|  | @ -455,7 +457,7 @@ namespace smt { | |||
|         expr_ref r = symmetric_diff(r1, r2); | ||||
|         expr_ref emp(re().mk_empty(m.get_sort(r)), m); | ||||
|         expr_ref n(m.mk_fresh_const("re.char", seq_sort), m);  | ||||
|         expr_ref is_non_empty = sk().mk_is_non_empty(r, emp, n); | ||||
|         expr_ref is_non_empty = sk().mk_is_non_empty(r, r, n); | ||||
|         th.add_axiom(th.mk_eq(r1, r2, false), th.mk_literal(is_non_empty)); | ||||
|     } | ||||
| 
 | ||||
|  | @ -517,22 +519,98 @@ namespace smt { | |||
|         th.add_axiom(lits); | ||||
|     } | ||||
| 
 | ||||
|     void seq_regex::get_cofactors(expr* r, expr_ref_vector& conds, expr_ref_pair_vector& result) { | ||||
|         expr* cond = nullptr, *th = nullptr, *el = nullptr; | ||||
|         if (m.is_ite(r, cond, th, el)) { | ||||
|             conds.push_back(cond); | ||||
|             get_cofactors(th, conds, result); | ||||
|             conds.pop_back(); | ||||
|             conds.push_back(mk_not(m, cond)); | ||||
|             get_cofactors(el, conds, result); | ||||
|             conds.pop_back(); | ||||
|         } | ||||
|         else { | ||||
|             expr_ref conj = mk_and(conds); | ||||
|             result.push_back(conj, r); | ||||
|     /*
 | ||||
|         Given a string s, index i, and a derivative regex d, return an | ||||
|         expression that is equivalent to | ||||
|             accept s i r | ||||
|         but which pushes accept s i r into the leaves (next derivatives to | ||||
|         explore). | ||||
| 
 | ||||
|         Input r is of type regex; output is of type bool. | ||||
| 
 | ||||
|         Example: | ||||
|             mk_deriv_accept(s, i, (ite a r1 r2) u (ite b r3 r4)) | ||||
|             = (or (ite a (accept s i r1) (accept s i r2)) | ||||
|                   (ite b (accept s i r3) (accept s i r4))) | ||||
|     */ | ||||
|     expr_ref seq_regex::mk_deriv_accept(expr* s, unsigned i, expr* r) { | ||||
|         vector<expr*> to_visit; | ||||
|         to_visit.push_back(r); | ||||
|         obj_map<expr, expr*> re_to_bool; | ||||
|         expr_ref_vector _temp_bool_owner(m); // temp owner for bools we create
 | ||||
| 
 | ||||
|         // DFS
 | ||||
|         while (to_visit.size() > 0) { | ||||
|             expr* e = to_visit.back(); | ||||
|             expr* econd = nullptr, *e1 = nullptr, *e2 = nullptr; | ||||
|             if (!re_to_bool.contains(e)) { | ||||
|                 // First visit: add children
 | ||||
|                 STRACE("seq_regex_verbose", tout << "1";); | ||||
|                 if (m.is_ite(e, econd, e1, e2) || | ||||
|                     re().is_union(e, e1, e2)) { | ||||
|                     to_visit.push_back(e1); | ||||
|                     to_visit.push_back(e2); | ||||
|                 } | ||||
|                 // Mark first visit by adding nullptr to the map
 | ||||
|                 re_to_bool.insert(e, nullptr); | ||||
|             } | ||||
|             else if (re_to_bool.find(e) == nullptr) { | ||||
|                 // Second visit: set value
 | ||||
|                 STRACE("seq_regex_verbose", tout << "2";); | ||||
|                 to_visit.pop_back(); | ||||
|                 if (m.is_ite(e, econd, e1, e2)) { | ||||
|                     expr* b1 = re_to_bool.find(e1); | ||||
|                     expr* b2 = re_to_bool.find(e2); | ||||
|                     expr* b = m.mk_ite(econd, b1, b2); | ||||
|                     _temp_bool_owner.push_back(b); | ||||
|                     re_to_bool.find(e) = b; | ||||
|                 } | ||||
|                 else if (re().is_union(e, e1, e2)) { | ||||
|                     expr* b1 = re_to_bool.find(e1); | ||||
|                     expr* b2 = re_to_bool.find(e2); | ||||
|                     expr* b = m.mk_or(b1, b2); | ||||
|                     _temp_bool_owner.push_back(b); | ||||
|                     re_to_bool.find(e) = b; | ||||
|                 } | ||||
|                 else { | ||||
|                     expr* iplus1 = a().mk_int(i); | ||||
|                     _temp_bool_owner.push_back(iplus1); | ||||
|                     expr_ref acc_leaf = sk().mk_accept(s, iplus1, e); | ||||
|                     _temp_bool_owner.push_back(acc_leaf); | ||||
|                     re_to_bool.find(e) = acc_leaf; | ||||
| 
 | ||||
|                     STRACE("seq_regex_verbose", tout | ||||
|                         << "mk_deriv_accept: added accept leaf: " | ||||
|                         << mk_pp(acc_leaf, m) << std::endl;); | ||||
|                 } | ||||
|             } | ||||
|             else { | ||||
|                 STRACE("seq_regex_verbose", tout << "3";); | ||||
|                 // Remaining visits: skip
 | ||||
|                 to_visit.pop_back(); | ||||
|             } | ||||
|         } | ||||
| 
 | ||||
|         // Finalize
 | ||||
|         expr_ref result(m); | ||||
|         result = re_to_bool.find(r); // Assigns ownership of all exprs in
 | ||||
|                                      // re_to_bool for after this completes
 | ||||
|         rewrite(result); | ||||
|         return result; | ||||
|     } | ||||
| 
 | ||||
|     /*
 | ||||
|         Return a list of all leaves in the derivative of a regex r, | ||||
|         ignoring the conditions along each path. | ||||
| 
 | ||||
|         Warning: Although the derivative | ||||
|         normal form tries to eliminate unsat condition paths, one cannot | ||||
|         assume that the path to each leaf is satisfiable in general | ||||
|         (e.g. when regexes are created using re.pred). | ||||
|         So not all results may correspond to satisfiable predicates. | ||||
|         It is OK to rely on the results being satisfiable for completeness, | ||||
|         but not soundness. | ||||
|     */ | ||||
|     void seq_regex::get_all_derivatives(expr* r, expr_ref_vector& results) { | ||||
|         // Get derivative
 | ||||
|         sort* seq_sort = nullptr; | ||||
|  | @ -541,14 +619,74 @@ namespace smt { | |||
|         expr_ref hd = mk_first(r, n); | ||||
|         expr_ref d(m); | ||||
|         d = derivative_wrapper(hd, r); | ||||
|         // Use get_cofactors method and try to filter out unsatisfiable conds
 | ||||
|         expr_ref_pair_vector cofactors(m); | ||||
|         get_cofactors(d, cofactors); | ||||
|         STRACE("seq_regex_verbose", tout << "getting all derivatives of: " << mk_pp(r, m) << std::endl;); | ||||
|         for (auto const& p : cofactors) { | ||||
|             if (m.is_false(p.first) || re().is_empty(p.second)) continue; | ||||
|             STRACE("seq_regex_verbose", tout << "adding derivative: " << mk_pp(p.second, m) << std::endl;); | ||||
|             results.push_back(p.second); | ||||
| 
 | ||||
|         // DFS
 | ||||
|         vector<expr*> to_visit; | ||||
|         to_visit.push_back(d); | ||||
|         obj_map<expr, bool> visited; // set<expr> (bool is used as a unit type)
 | ||||
|         while (to_visit.size() > 0) { | ||||
|             expr* e = to_visit.back(); | ||||
|             to_visit.pop_back(); | ||||
|             if (visited.contains(e)) continue; | ||||
|             visited.insert(e, true); | ||||
|             expr* econd = nullptr, *e1 = nullptr, *e2 = nullptr; | ||||
|             if (m.is_ite(e, econd, e1, e2) || | ||||
|                 re().is_union(e, e1, e2)) { | ||||
|                 to_visit.push_back(e1); | ||||
|                 to_visit.push_back(e2); | ||||
|             } | ||||
|             else if (!re().is_empty(e)) { | ||||
|                 results.push_back(e); | ||||
|                 STRACE("seq_regex_verbose", tout | ||||
|                     << "get_all_derivatives: added deriv: " | ||||
|                     << mk_pp(e, m) << std::endl;); | ||||
|             } | ||||
|         } | ||||
| 
 | ||||
|         STRACE("seq_regex", tout << "Number of derivatives: " | ||||
|                                  << results.size() << std::endl;); | ||||
|         STRACE("seq_regex_brief", tout << "#derivs=" << results.size() << " ";); | ||||
|     } | ||||
| 
 | ||||
|     /*
 | ||||
|         Return a list of all (cond, leaf) pairs in a given derivative | ||||
|         expression r. | ||||
| 
 | ||||
|         Note: this recursive implementation is inefficient, since if nodes | ||||
|         are repeated often in the expression DAG, they may be visited | ||||
|         many times. For this reason, prefer mk_deriv_accept and | ||||
|         get_all_derivatives when possible. | ||||
| 
 | ||||
|         This method is still used by: | ||||
|             propagate_is_empty | ||||
|             propagate_is_non_empty | ||||
|     */ | ||||
|     void seq_regex::get_cofactors(expr* r, expr_ref_pair_vector& result) { | ||||
|         expr_ref_vector conds(m); | ||||
|         get_cofactors_rec(r, conds, result); | ||||
|         STRACE("seq_regex", tout << "Number of derivatives: " | ||||
|                                  << result.size() << std::endl;); | ||||
|         STRACE("seq_regex_brief", tout << "#derivs=" << result.size() << " ";); | ||||
|     } | ||||
|     void seq_regex::get_cofactors_rec(expr* r, expr_ref_vector& conds, | ||||
|                                       expr_ref_pair_vector& result) { | ||||
|         expr* cond = nullptr, *r1 = nullptr, *r2 = nullptr; | ||||
|         if (m.is_ite(r, cond, r1, r2)) { | ||||
|             conds.push_back(cond); | ||||
|             get_cofactors_rec(r1, conds, result); | ||||
|             conds.pop_back(); | ||||
|             conds.push_back(mk_not(m, cond)); | ||||
|             get_cofactors_rec(r2, conds, result); | ||||
|             conds.pop_back(); | ||||
|         } | ||||
|         else if (re().is_union(r, r1, r2)) { | ||||
|             get_cofactors_rec(r1, conds, result); | ||||
|             get_cofactors_rec(r2, conds, result); | ||||
|         } | ||||
|         else { | ||||
|             expr_ref conj = mk_and(conds); | ||||
|             if (!m.is_false(conj) && !re().is_empty(r)) | ||||
|                 result.push_back(conj, r); | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|  | @ -618,6 +756,9 @@ namespace smt { | |||
|             m_expr_to_state.insert(e, new_id); | ||||
|             STRACE("seq_regex_brief", tout << "new(" << expr_id_str(e) | ||||
|                                            << ")=" << state_str(e) << " ";); | ||||
|             STRACE("seq_regex", tout | ||||
|                 << "New state ID: " << new_id | ||||
|                 << " = " << mk_pp(e, m) << std::endl;); | ||||
|         } | ||||
|         return m_expr_to_state.find(e); | ||||
|     } | ||||
|  | @ -627,6 +768,7 @@ namespace smt { | |||
|         return m_state_to_expr.get(id); | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
|     bool seq_regex::can_be_in_cycle(expr *r1, expr *r2) { | ||||
|         // TBD: This can be used to optimize the state graph:
 | ||||
|         // return false here if it is known that r1 -> r2 can never be
 | ||||
|  | @ -649,10 +791,11 @@ namespace smt { | |||
|             STRACE("seq_regex_brief", tout << "(MAX SIZE REACHED) ";); | ||||
|             return false; | ||||
|         } | ||||
|         STRACE("seq_regex", tout << "Updating state graph for regex " | ||||
|                                  << mk_pp(r, m) << ") ";); | ||||
|         // Add state
 | ||||
|         m_state_graph.add_state(r_id); | ||||
|         STRACE("state_graph", tout << "regex(" << r_id << ") = " << mk_pp(r, m) << std::endl;); | ||||
|         STRACE("seq_regex", tout << "Updating state graph for regex " | ||||
|                                  << mk_pp(r, m) << ") " << std::endl;); | ||||
|         STRACE("seq_regex_brief", tout << std::endl << "USG(" | ||||
|                                        << state_str(r) << ") ";); | ||||
|         expr_ref r_nullable = is_nullable_wrapper(r); | ||||
|  | @ -663,18 +806,20 @@ namespace smt { | |||
|             // Add edges to all derivatives
 | ||||
|             expr_ref_vector derivatives(m); | ||||
|             STRACE("seq_regex_verbose", tout | ||||
|                 << std::endl << "  getting all derivs: " << r_id << " ";); | ||||
|                 << "getting all derivs: " << r_id << " " << std::endl;); | ||||
|             get_all_derivatives(r, derivatives); | ||||
|             for (auto const& dr: derivatives) { | ||||
|                 unsigned dr_id = get_state_id(dr); | ||||
|                 STRACE("seq_regex_verbose", tout | ||||
|                     << std::endl << "  traversing deriv: " << dr_id << " ";); | ||||
|                     << "  traversing deriv: " << dr_id << " " << std::endl;); | ||||
|                 m_state_graph.add_state(dr_id); | ||||
|                 STRACE("state_graph", tout << "regex(" << dr_id << ") = " << mk_pp(dr, m) << std::endl;); | ||||
|                 bool maybecycle = can_be_in_cycle(r, dr); | ||||
|                 m_state_graph.add_edge(r_id, dr_id, maybecycle); | ||||
|             } | ||||
|             m_state_graph.mark_done(r_id); | ||||
|         } | ||||
|         STRACE("seq_regex", m_state_graph.display(tout);); | ||||
|         STRACE("seq_regex_brief", tout << std::endl;); | ||||
|         STRACE("seq_regex_brief", m_state_graph.display(tout);); | ||||
|         return true; | ||||
|  |  | |||
|  | @ -23,6 +23,71 @@ Author: | |||
| #include "smt/smt_context.h" | ||||
| #include "smt/seq_skolem.h" | ||||
| 
 | ||||
| /*
 | ||||
|     *** Tracing and debugging in this module and related modules *** | ||||
| 
 | ||||
|     Tracing and debugging for the regex solver are split across several | ||||
|     command-line flags. | ||||
| 
 | ||||
|         TRACING | ||||
| 
 | ||||
|         -tr:seq_regex and -tr:seq_regex_brief | ||||
|         These are the main tags to trace what the regex solver is doing. | ||||
|         They mostly trace the same things, except that seq_regex_brief | ||||
|         avoids printing out expressions and tries to abbreviate the output | ||||
|         as much as possible. seq_regex_brief shows the following output: | ||||
|             Top-level propagations: | ||||
|                 PIR:      Propagating an in_re constraint | ||||
|                 PE/PNE:   Propagating an empty/non-empty constraint | ||||
|                 PEQ/PNEQ: Propagating a not-equal constraint | ||||
|                 PA:       Propagating an accept constraint | ||||
|             In tracing, arguments are generally put in parentheses. | ||||
|             To achieve abbreviated output, expressions are traced in one of two | ||||
|             ways: | ||||
|                 id243 (expr ID):  the regex or expression with id 243 | ||||
|                 3     (state ID): the regex with state ID 3 | ||||
|             When a regex is newly assigned to a state ID, we print this: | ||||
|                 new(id606)=4 | ||||
|             Of these, PA is the most important, and traces as follows: | ||||
|                 PA(x@i,r): propagate accept for string x at index i, regex r. | ||||
|                 (empty), (dead), (blocked), (unfold): info about whether this | ||||
|                     PA was cut off early, or unfolded into the derivatives | ||||
|                     (next states) | ||||
|                 d(r1)=r2: r2 is the derivative of r1 | ||||
|                 n(r1)=b:  b = whether r1 is nullable or not | ||||
|                 USG(r):   updating state graph for regex r (add all derivatives) | ||||
| 
 | ||||
|         -tr:state_graph | ||||
|         This is the tracing done by util/state_graph, the data structure | ||||
|         that seq_regex uses to track live and dead regexes, which can | ||||
|         altneratively be used to get a high-level picture of what states | ||||
|         are being explored and updated as the solver progresses. | ||||
| 
 | ||||
|         -tr:seq_regex_verbose | ||||
|         Used for some more frequent tracing (in the style of seq_regex, | ||||
|         not in the style of seq_regex_brief) | ||||
| 
 | ||||
|         -tr:seq and -tr:seq_verbose | ||||
|         These are the underlying sequence theory tracing, often used by | ||||
|         the rewriter. | ||||
| 
 | ||||
|         DEBUGGING AND VIEWING STATE GRAPH GRAPHICAL OUTPUT | ||||
| 
 | ||||
|         -dbg:seq_regex | ||||
|         Debugging that checks invariants. Currently, checks that derivative | ||||
|         normal form is correctly preserved in the rewriter. | ||||
| 
 | ||||
|         -dbg:state_graph | ||||
|         Debugging for the state graph, which | ||||
|         1. Checks state graph invariants, and | ||||
|         2. Generates the files .z3-state-graph.dgml and .z3-state-graph.dot | ||||
|            which can be used to visually view the state graph being explored, | ||||
|            during or after executing Z3. | ||||
|            The output can be viewed: | ||||
|               - Using Visual Studio for .dgml | ||||
|               - Using a tool such as xdot (`xdot .z3-state-graph.dot`) for .dot | ||||
| */ | ||||
| 
 | ||||
| namespace smt { | ||||
| 
 | ||||
|     class theory_seq; | ||||
|  | @ -93,12 +158,13 @@ namespace smt { | |||
|         expr_ref is_nullable_wrapper(expr* r); | ||||
|         expr_ref derivative_wrapper(expr* hd, expr* r); | ||||
| 
 | ||||
|         void get_cofactors(expr* r, expr_ref_vector& conds, expr_ref_pair_vector& result); | ||||
|         void get_cofactors(expr* r, expr_ref_pair_vector& result) { | ||||
|             expr_ref_vector conds(m); | ||||
|             get_cofactors(r, conds, result); | ||||
|         } | ||||
|         // Various support for unfolding derivative expressions that are
 | ||||
|         // returned by derivative_wrapper
 | ||||
|         expr_ref mk_deriv_accept(expr* s, unsigned i, expr* r); | ||||
|         void get_all_derivatives(expr* r, expr_ref_vector& results); | ||||
|         void get_cofactors(expr* r, expr_ref_pair_vector& result); | ||||
|         void get_cofactors_rec(expr* r, expr_ref_vector& conds, | ||||
|                                expr_ref_pair_vector& result); | ||||
| 
 | ||||
|     public: | ||||
| 
 | ||||
|  |  | |||
|  | @ -324,13 +324,41 @@ bool state_graph::is_done(state s) const { | |||
|     return m_seen.contains(s) && !m_unexplored.contains(m_state_ufind.find(s)); | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|     Pretty printing | ||||
| */ | ||||
| std::ostream& state_graph::display(std::ostream& o) const { | ||||
|     o << "---------- State Graph ----------" << std::endl | ||||
|         << "Seen:"; | ||||
|     for (auto s : m_seen) { | ||||
|         o << " " << s; | ||||
|         state s_root = m_state_ufind.find(s); | ||||
|         if (s_root != s) | ||||
|             o << "(=" << s_root << ")"; | ||||
|     } | ||||
|     o << std::endl | ||||
|         << "Live:" << m_live << std::endl | ||||
|         << "Dead:" << m_dead << std::endl | ||||
|         << "Unknown:" << m_unknown << std::endl | ||||
|         << "Unexplored:" << m_unexplored << std::endl | ||||
|         << "Edges:" << std::endl; | ||||
|     for (auto s1 : m_seen) { | ||||
|         if (m_state_ufind.is_root(s1)) { | ||||
|             o << "  " << s1 << " -> " << m_targets[s1] << std::endl; | ||||
|         } | ||||
|     } | ||||
|     o << "---------------------------------" << std::endl; | ||||
| 
 | ||||
|     return o; | ||||
| } | ||||
| 
 | ||||
| #ifdef Z3DEBUG | ||||
| /*
 | ||||
|     Class invariants check (and associated auxiliary functions) | ||||
| 
 | ||||
|     check_invariant performs a sequence of SASSERT assertions, | ||||
|     then always returns true. | ||||
| */ | ||||
| #ifdef Z3DEBUG | ||||
| bool state_graph::is_subset(state_set set1, state_set set2) const { | ||||
|     for (auto s1: set1) { | ||||
|         if (!set2.contains(s1)) return false; | ||||
|  | @ -387,37 +415,7 @@ bool state_graph::check_invariant() const { | |||
|     STRACE("state_graph", tout << "(invariant passed) ";); | ||||
|     return true; | ||||
| } | ||||
| #endif | ||||
| 
 | ||||
| /*
 | ||||
|     Pretty printing | ||||
| */ | ||||
| std::ostream& state_graph::display(std::ostream& o) const { | ||||
|     o << "---------- State Graph ----------" << std::endl | ||||
|       << "Seen:"; | ||||
|     for (auto s: m_seen) { | ||||
|         o << " " << s; | ||||
|         state s_root = m_state_ufind.find(s); | ||||
|         if (s_root != s) | ||||
|             o << "(=" << s_root << ")"; | ||||
|     } | ||||
|     o << std::endl | ||||
|       << "Live:" << m_live << std::endl | ||||
|       << "Dead:" << m_dead << std::endl | ||||
|       << "Unknown:" << m_unknown << std::endl | ||||
|       << "Unexplored:" << m_unexplored << std::endl | ||||
|       << "Edges:" << std::endl; | ||||
|     for (auto s1: m_seen) { | ||||
|         if (m_state_ufind.is_root(s1)) { | ||||
|             o << "  " << s1 << " -> " << m_targets[s1] << std::endl; | ||||
|         } | ||||
|     } | ||||
|     o << "---------------------------------" << std::endl; | ||||
| 
 | ||||
|     return o; | ||||
| } | ||||
| 
 | ||||
| #ifdef Z3DEBUG | ||||
| /*
 | ||||
|     Output the whole state graph in dgml format into the file '.z3-state-graph.dgml' | ||||
|  */ | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue